【実施例】
【0051】
以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0052】
(実施例1)
厚さ20μmのチタン基板を準備した。そして、チタン基板の一面を、カーボンナノファイバを形成する際の触媒となる厚さ0.002μmのニッケル薄膜で被覆し、触媒担持基板を形成した。ニッケル薄膜はスパッタリング法により形成した。次いで、この触媒担持基板を、MPCVD(Microwave Plasma Chemical Vapor Deposition)プロセス装置のチャンバ内に設置し、マイクロ波出力を300Wとし、水素とメタンの混合ガス(メタン:3vol%)を導入して、2.7kPaの圧力下、650℃の温度で、3分間触媒担持基板上にカーボンナノファイバを成長させた。その結果、直径が1〜15nmであるカーボンナノファイバが得られた。こうしてカーボンナノファイバ複合電極を得た。
【0053】
得られたカーボンナノファイバ複合電極について、走査型電子顕微鏡(SEM:Scanning Electron Microscope)にて観察したところ、カーボンナノファイバ複合電極は、金属基板と、カーボンナノファイバと、金属基板及びカーボンナノファイバの間に設けられる厚さ0.05μmの層とで構成されていた。金属基板及びカーボンナノファイバの間に設けられる層については、エネルギー分散型蛍光X線分光(EDX:Energy Dispersive X-ray spectrometry)分析により、不定形炭素で構成される層であることが分かった。また金属基板のうち、不定形炭素層から厚さ0.05μmまでの部分については、EDX分析により、ニッケルとチタンとの合金からなる合金層が形成され、残りの部分(本体部)についてはチタン単体で構成されていることが分かった。また金属基板の厚さはチタン基板と同様、20μmであった。
【0054】
(実施例2)
チタン基板の厚さを40μmとして、水素とメタンの混合ガス(メタン:5vol%)を導入して、触媒担持基板上にカーボンナノファイバを成長させる時間(以下、「CVD時間」と呼ぶ)を10分間にしたこと以外は実施例1と同様にして直径が4〜20nmであるカーボンナノファイバ複合電極を得た。
【0055】
得られたカーボンナノファイバ複合電極についても、実施例1と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、カーボンナノファイバと、金属基板及びカーボンナノファイバの間に設けられる厚さ0.2μmの不定形炭素層とで構成されることが分かった。また金属基板のうち、不定形炭素層から厚さ0.15μmまでの部分については、ニッケルとチタンとの合金からなる合金層が形成され、残りの部分(本体部)についてはチタン単体で構成されていることも分かった。また金属基板の厚さはチタン基板と同様、40μmであった。
【0056】
(実施例3)
チタン基板の厚さを100μmとして、水素とメタンの混合ガス(メタン:10vol%)を導入して、CVD時間を30分間にしたこと以外は実施例1と同様にして直径が5〜25nmであるカーボンナノファイバ複合電極を得た。
【0057】
得られたカーボンナノファイバ複合電極についても、実施例1と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、カーボンナノファイバと、金属基板及びカーボンナノファイバの間に設けられる厚さ1.5μmの不定形炭素層とで構成されることが分かった。また金属基板のうち、不定形炭素層から厚さ0.3μmまでの部分については、ニッケルとチタンとの合金からなる合金層が形成され、残りの部分(本体部)についてはチタン単体で構成されていることも分かった。また金属基板の厚さはチタン基板と同様、100μmであった。
【0058】
(実施例4)
チタン基板の厚さを300μmとしたこと以外は実施例3と同様にして直径が5〜25nmであるカーボンナノファイバ複合電極を得た。
【0059】
得られたカーボンナノファイバ複合電極についても、実施例3と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、カーボンナノファイバと、金属基板及びカーボンナノファイバの間に設けられる厚さ1.5μmの不定形炭素層とで構成されることが分かった。また金属基板のうち、不定形炭素層から厚さ2.0μmまでの部分については、ニッケルとチタンとの合金からなる合金層が形成され、残りの部分(本体部)についてはチタン単体で構成されていることも分かった。また金属基板の厚さはチタン基板と同様、300μmであった。
【0060】
(実施例5)
チタン基板をコバルト基板に変更したこと以外は実施例2と同様にして直径が4〜20nmであるカーボンナノファイバ複合電極を得た。
【0061】
得られたカーボンナノファイバ複合電極についても、実施例2と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、カーボンナノファイバと、金属基板及びカーボンナノファイバの間に設けられる厚さ0.2μmの不定形炭素層とで構成されることが分かった。また金属基板のうち、不定形炭素層から厚さ0.15μmまでの部分については、ニッケルとコバルトとの合金からなる合金層が形成され、残りの部分(本体部)についてはコバルト単体で構成されていることも分かった。また金属基板の厚さはコバルト基板と同様、40μmであった。
【0062】
(実施例6)
触媒金属を鉄としたこと以外は実施例2と同様にして直径が10〜20nmであるカーボンナノファイバ複合電極を得た。
【0063】
得られたカーボンナノファイバ複合電極についても、実施例2と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、カーボンナノファイバと、金属基板及びカーボンナノファイバの間に設けられる厚さ0.3μmの不定形炭素層とで構成されることが分かった。また金属基板のうち、不定形炭素層から厚さ0.2μmまでの部分については、鉄とチタンとの合金からなる合金層が形成され、残りの部分(本体部)についてはチタン単体で構成されていることも分かった。また金属基板の厚さはチタン基板と同様、40μmであった。
【0064】
(実施例7)
チタン基板をニッケル基板に変更したこと以外は実施例2と同様にして直径が4〜20nmであるカーボンナノファイバ複合電極を得た。
【0065】
得られたカーボンナノファイバ複合電極についても、実施例2と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、カーボンナノファイバと、金属基板及びカーボンナノファイバの間に設けられる厚さ0.2μmの不定形炭素層とで構成されることが分かった。また金属基板のうち、触媒と基板が同一金属であったので、合金層は形成されなかった。また金属基板の厚さはニッケル基板と同様、40μmであった。
【0066】
(比較例1)
触媒担持基板に、熱CVDプロセス装置を用い、アセチレン及びアルゴンの混合ガスを導入して、101kPaの圧力下、800℃の温度でカーボンナノファイバを成長させたこと以外は実施例1と同様にしてカーボンナノファイバ複合電極を得た。
【0067】
得られたカーボンナノファイバ複合電極について、実施例1と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、金属基板表面に直接結合したカーボンナノファイバとで構成されることが分かった。金属基板及びカーボンナノファイバの間には、不定形炭素層は観察されなかった。また金属基板のうち、カーボンナノファイバ層から厚さ0.05μmまでの部分については、ニッケルとチタンとの合金からなる合金層が形成され、残りの部分についてはチタン単体で構成されていることも分かった。また金属基板の厚さはチタン基板と同様、20μmであった。
【0068】
(比較例2)
触媒担持基板に、比較例1と同一の熱CVDプロセス装置を用い、アセチレン及びアルゴンの混合ガスを導入して、101kPaの圧力下、800℃の温度でカーボンナノファイバを成長させたこと以外は実施例2と同様にしてカーボンナノファイバ複合電極を得た。
【0069】
得られたカーボンナノファイバ複合電極について、実施例1と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、金属基板表面に直接結合したカーボンナノファイバとで構成されることが分かった。金属基板及びカーボンナノファイバの間には、不定形炭素層は観察されなかった。また金属基板のうち、カーボンナノファイバ層から厚さ0.15μmまでの部分については、ニッケルとチタンとの合金からなる合金層が形成され、残りの部分についてはチタン単体で構成されていることも分かった。また金属基板の厚さはチタン基板と同様、40μmであった。
【0070】
(比較例3)
触媒担持基板に、比較例1と同一の熱CVDプロセス装置を用い、アセチレン及びアルゴンの混合ガスを導入して、101kPaの圧力下、800℃の温度でカーボンナノファイバを成長させたこと以外は実施例3と同様にしてカーボンナノファイバ複合電極を得た。
【0071】
得られたカーボンナノファイバ複合電極について、実施例1と同様にして観察及び分析したところ、カーボンナノファイバ複合電極は、金属基板と、金属基板表面に直接結合したカーボンナノファイバとで構成されることが分かった。金属基板及びカーボンナノファイバの間には、不定形炭素層は観察されなかった。また金属基板のうち、カーボンナノファイバ層から厚さ0.3μmまでの部分については、ニッケルとチタンとの合金からなる合金層が形成され、残りの部分についてはチタン単体で構成されていることも分かった。また金属基板の厚さはチタン基板と同様、100μmであった。
【0072】
[評価]
(電解質に対する耐久性)
実施例1〜7及び比較例1〜3のカーボンナノファイバ複合電極の電解質に対する耐久性を調べるために、実施例1〜7及び比較例1〜3のカーボンナノファイバ複合電極を電解質に4日間浸漬し、カーボンナノファイバ(CNF:Carbon Nano Fiber)が金属基板から剥離しているかどうかを目視にて調べた。結果を表1に示す。なお、このとき、電解質としては、アセトニトリルからなる揮発性溶媒を主溶媒とし、ヨウ素を0.05M、ヨウ化リチウムを0.1M、1,2−ジメチルー3−プロピルイミダゾリウムアイオダイド(DMPII)を0.6M、4−tert−ブチルピリジンを0.5M含む電解質を用いた。
【0073】
(色素増感太陽電池の耐久性)
実施例1〜7及び比較例1〜3のカーボンナノファイバ複合電極が色素増感太陽電池の耐久性に寄与するかどうかを調べるために、実施例1〜7及び比較例1〜3のカーボンナノファイバ複合電極を対極とする色素増感太陽電池を作製し、この色素増感太陽電池について光電変換効率の経時変化を調べた。このとき、実施例1〜7及び比較例1〜3の色素増感太陽電池の光電変換効率は、ソーラーシミュレータによって1.5AM、100mW/cm
2の放射輝度の条件下で、製造直後と100時間後で測定し、これらの差を光電変換効率の低下率として算出した。結果を表1に示す。
【0074】
なお、上記色素増感太陽電池は、以下のようにして作製した。
【0075】
まずガラス基板上にFTO膜が形成されたFTO/ガラス基板上に、TiO
2からなる厚さ20μmの多孔質酸化物半導体膜を形成して作用極を得た。作用極には、2−2−7 テトラブチルアンモニウム−トリチオシアナト(4,4’,4”−トリカルボニル−2,2’,2”−ターピリジン)ルテニウム(II)(ブラックダイ)を担持させた。
【0076】
そして、バイネル(商品名、デュポン社製)からなる四角環状の樹脂シートを、作用極の上に配置した後、樹脂シートを加熱溶融させて作用極に接着させた。こうして作用極に封止部を設けた。
【0077】
次いで、封止部を設けた作用極を水平になるように配置し、封止部の内側に、アセトニトリルからなる揮発性溶媒を主溶媒とし、ヨウ素を0.05M、ヨウ化リチウムを0.1M、1,2−ジメチルー3−プロピルイミダゾリウムアイオダイド(DMPII)を0.6M、4−tert−ブチルピリジンを0.5M含む電解質を注入した。
【0078】
そして、上記のようにして得られた実施例1〜7及び比較例1〜3のカーボンナノファイバ複合電極を作用極に重ね合せ、対極、封止部及び作用極を熱圧着させることにより作用極と対極とを連結させて電解質を封止した。こうして色素増感太陽電池を得た。
【表1】
【0079】
表1に示す結果より、実施例1〜7のカーボンナノファイバ複合電極においては、カーボンナノファイバが金属基板から剥離していなかったのに対し、比較例1〜3のカーボンナノファイバ複合電極においては、カーボンナノファイバの5〜15%程度が金属基板から剥離していた。このことから、実施例1〜7のカーボンナノファイバ複合電極は、比較例1〜3のカーボンナノファイバ複合電極に比べて、電解質に対する耐久性の点で優れることが分かった。なお、実施例4のカーボンナノファイバ複合電極は、実施例3のカーボンナノファイバ複合電極と比べ、光電変換効率の低下率が増加してしまった。これは、チタン基板の厚みが100μmから300μmに増えたことによってチタン基板の可撓性が低下し、チタン基板が作用極の表面における50μm程度の凹凸に追従できないために電極間距離が長くなり、色素増感太陽電池の内部抵抗が増加したためと考えられる。
【0080】
また実施例1〜7のカーボンナノファイバ複合電極を対極として用いた色素増感太陽電池は、比較例1〜3のカーボンナノファイバ複合電極を対極として用いた色素増感太陽電池に比べて、光電変換効率の低下率が小さかった。このことから、実施例1〜7のカーボンナノファイバ複合電極は、比較例1〜3のカーボンナノファイバ複合電極に比べて、色素増感太陽電池の耐久性の点で優れることが分かった。
【0081】
以上より、本発明のカーボンナノファイバ複合電極によれば、電解質に対する耐久性に優れることが確認された。