【実施例】
【0046】
下記の実施例は、本発明の種々の実施形態を示す。下記の結論は、本発明の実施形態に関して引き出すことができる。
●本発明の最良の性能を発揮するサンプルは、この規準に適合しないにもかかわらず良い性能を発揮したS−33/k以外は、1.8cc/gよりも大きい細孔体積を有していた。更に広く記載すると、好ましい材料は、1.2cc/gよりも大きい細孔体積を有していた。換言すると、好ましい材料は、直径が約7.5Å〜約50Åの範囲内であった細孔の約1.0cc/gを超える細孔体積を有していた。
●メタン表面積は、7.5Åよりも大きく、50(又は40)Åよりも小さい細孔体積と相関関係がある。
●メタン吸収は、7.5Åよりも小さい細孔体積と相関関係がない。
●500psigよりも高い圧力でのメタン吸収(500psigでの過剰吸着で正の勾配)は、20〜40Åの直径範囲内の細孔によって増強される。これは、20〜30Åの直径範囲内の実質的細孔体積を有する本発明の実施形態の固有の利点である。
●水素吸収は、10Åよりも小さい直径を有する細孔に於ける細孔体積と相関関係がある。
●メタン貯蔵のための、最適なKOH:炭比は、約2.5:1〜4.0:1である。
●活性化温度及びKOHの僅かに低下した組合せは、より多くの<7.5Åの細孔及び非常に高い表面積をもたらす。新規な材料は、<7.5Åの範囲内の>0.5cc/gの細孔体積で作られた。この処理の解釈は、より高い温度によって、KOHが、10Åよりも大きい値まで細孔直径を増加させ続けることである。約10Å付近の直径を有する細孔の体積を最大にするために、活性化温度、KOH濃度及び活性化時間の最適値が存在する。これらの最適値は、サンプルS56及びBa5.1を製造するために使用されたもの(表7参照)に近い。
●50℃ではなくて80℃での浸漬は、より大きい密度をもたらす。密度は、炭化する前の、75℃〜100℃の温度での少なくとも2時間の浸漬によって増加する傾向がある。
●浸漬に於けるより高い酸濃度は、より大きい密度をもたらす。
●キャパシタ機能性は、高い表面積と相関関係がある。
[実施例1]好ましい炭素サンプルの製造及びキャラクタリゼーション
【0047】
一連の実験を、最終の炭素細孔体積、細孔サイズ分布及び表面積への、異なるパラメーター(例えば、リン酸処理及びKOH活性化)の影響を示すために実施した。明瞭性の目的のために、塩基(好ましくはKOH)活性化前の炭素材料を炭と呼び、塩基活性化後の炭素材料を活性炭と呼ぶ。
【0048】
乾燥し粉砕したトウモロコシの穂軸を、0〜70体積%の範囲内の異なった濃度のリン酸と、1:1.5(トウモロコシの穂軸のグラム:リン酸/水溶液のグラム)の重量比で混合した。これは、水無しの基準で酸質量対トウモロコシの穂軸質量のほぼ0.8:1の比である。トウモロコシの穂軸を、異なった温度でリン酸の中に約8〜10時間浸漬した。その後、この混合物を165〜175℃で2時間加熱することによって、過剰のリン酸を除去した。次いで、浸漬したトウモロコシの穂軸を、窒素雰囲気中で、400〜800℃の範囲内の一定温度で1時間炭化して、炭を形成させた。炭化の後、炭を、流出液が約7のpHを有するまで、水で十分に洗浄して、過剰の酸を除去した。
【0049】
より高い細孔体積及びより高い表面積を得るために、リン酸によって得られた炭を更に処理した。該炭を、様々な量のKOHフレーク及び水と混合して、スラリーを形成させた。次いで、このスラリーを、不活性雰囲気中で(例えば、窒素下で)700〜900℃の温度に1時間加熱した。次いで、最終生成物を、流出液が約7のpHを有するまで、水で十分に洗浄して、反応の間に形成されたカリウム固体を除去した。炭のKOH活性化によって、活性炭が形成された。
【0050】
製造された全ての炭/炭素のキャラクタリゼーションを、QuantachromeからのAutosorb 1−C機器を使用して、77KでのN
2吸着によって行った。等温線の分析は、異なった情報を得るために種々の方法を適用することによって実施した。BET式を使用して、N
2等温線からBET表面積を得た。T−法を使用して、P/P
0=0.0315まで吸着されたN
2の体積から、微小細孔体積及び中間細孔分画の外部表面積を見出した。DFT法を使用して、細孔サイズの関数としての表面積を推定し、他方、BET法を使用して、全表面積を報告した。他の方法で報告しない限り、これらのパラメーターを、活性炭の製造に於いて使用した。
【0051】
表7に、本発明の幾つかの実施形態の製造、キャラクタリゼーション及び性能を要約する。メタン貯蔵のために、好ましいサンプルは、170g/kg(メタンのグラム/活性炭のキログラム)よりも大きい過剰のメタン吸着を有していた。更に好ましいサンプルは、また、160V/Vよりも大きい体積/体積メタン貯蔵容量を有していた。
【0052】
メタン吸収分析−体積が約10ccの円筒形圧力容器に、測定した質量の炭素を、最大限の約85%まで充填した。この容器を閉じ、140℃の温度で、約0.02バール絶対圧(真空)に4時間付した。真空に付されたことに起因する質量変化を測定し、容器内の炭素の質量を、この変化に基づいて減らした。次いで、この円筒を、メタンで20℃で500psigまで1時間加圧して、該圧力及び温度で平衡させた。真空状態から、これらの条件での平衡までの質量増加を測定した。[吸収されたメタンの質量−容器内の空いた空間内のメタンの質量]を、炭素の質量で割って、炭素の質量当たりのメタンの過剰の吸着を得た。
【表7】
a 過剰の吸着、m
ads,eは、吸着されたメタンの質量と等体積の吸着されていないメタンの質量との差を示す。過剰の吸着は、表面積にのみ依存し、表面が如何に強くメタンを吸着するかに依存する。即ち、過剰の吸着は、サンプルの細孔体積に依存しない。
b 貯蔵された量、m
stは、細孔空間内に存在するメタンの全質量(吸着されたメタン+吸着されていないメタン)を示す。これは、過剰の吸着からm
st/m
s=m
ads,e/m
s+(ρ
a-1−ρ
s-1)ρ
methane(式中、m
sはサンプルの質量を示し、ρ
aはサンプルの見掛け密度
fを示し、ρ
sはサンプルの骨格密度
fを示し、ρ
methaneは与えられた温度及び圧力でのバルクメタンの密度を示す)として計算した。重量貯蔵容量、m
st/m
sは、見掛け密度、ρ
aが減少した場合に増加する。体積貯蔵容量、ρ
am
st/m
sは、ρ
aが減少した場合に減少する。
c 体積/体積貯蔵容量、V/Vは、サンプルの体積当たりの(ρ
a/m
s)、25℃及び大気圧でのメタンの体積として表される、貯蔵された量、として計算した。
d 窒素吸着等温線のブルナウアー−エメット−テラー(BET)分析から計算した。
e 窒素吸着等温線の密度関数理論(DFT)分析から計算した。
f 見掛け密度、ρ
aは、細孔空間を含むサンプルの密度を示し、ρ
a=(V
pore/m
s+ρ
s-1)
-1(式中、V
poreはサンプルの全細孔体積を示し、m
sはサンプルの質量を示し、ρ
sはサンプルの骨格密度(細孔空間なしのサンプルの密度)を示す)から計算した。
g 下限の3Åは、多孔度を評価するために使用される窒素の結果として意味される。機器のソフトウエアは、この値を、<7.5Åとして報告した。
h 10−20多孔度は、cc/gでの、10Å〜20Åの直径を有する細孔の体積に、g/ccでの、見掛け密度を掛けたものとして定義される。7.5−20多孔度は、cc/gでの、7.5Å〜20Åの直径を有する細孔の体積に、g/ccでの、見掛け密度を掛けたものとして定義される。
[実施例2]炭化工程でのパラメーター研究
【0053】
表8に、40〜60メッシュのトウモロコシの穂軸原料を使用して、リン酸によって炭化する際のパラメーター研究結果を要約する。
【0054】
C−シリーズは、リン酸濃度の影響を示し、ここで、リン酸のより高い濃度は、製造された炭のより高い表面積をもたらす。この炭化工程は、一貫して、少なくとも900m
2/gのBET表面積を有する炭を製造する。
【0055】
ST−シリーズは、酸浸漬温度の影響を示す。80℃よりも高い浸漬温度は
BET表面積を劇的に減少させ、炭密度を増加させる。
【0056】
HTT−シリーズは、炭化温度の影響を示し、ここで、並はずれて高い炭化温度は、減少した微小細孔体積及び減少した表面積をもたらす。450℃付近の炭化温度は、一貫して、少なくとも900m
2/gのBET表面積を有する炭を製造した。約450℃を超える炭化温度は、表面積及び微小細孔体積を減少させた。
【0057】
N−シリーズは、400、450及び500℃の温度の狭い範囲で、次のKOH活性化を伴って、炭化温度の影響を再評価する。工程パラメーターは、80%リン酸、酸対供給原料の1.5g/g比、80℃で24時間の浸漬、1.5℃/分での示された炭化温度までの加熱、示された温度での1.5時間の炭化、2g/gのKOH:炭比、最大オーブン速度で活性化温度までの加熱、790℃で1時間の活性化、一晩冷却及び真空吸引フィルター内で中性pHまでの水による洗浄を含んでいた。メタン吸収研究のための炭素の質量は、ほぼ一定の体積であり、より高い炭化温度は、より高い密度の炭素をもたらした。従って、過剰吸着(g/g)は400〜500℃範囲に亘ってほぼ一定であったけれども、V/V貯蔵容量は、温度が上昇すると共に増加した。
【0058】
RH−シリーズは、加熱速度の影響を示す。約0.5℃/分を超える炭化速度は、表面積及び微小細孔体積を減少させた。
【表8】
[実施例3]活性化工程のパラメーター研究
【0059】
表9に、KOHによる活性化に関するパラメーター研究結果を要約する。実施例1のデフォルト工程条件を適用する。
【0060】
KC−シリーズは、3000m
2/gを超えるBET表面積を達成するために、2.0を超えるKOH:炭比をどのように使用できるかを示す。KOH:炭比が増加すると共に、密度が低下した。3.0よりも大きいKOH:炭比で、微小細孔体積が減少した。サンプルを800℃の温度で1時間活性化した。この活性化のために使用した炭を、50%リン酸に、50℃で8時間浸漬させ、450℃で炭化し、1℃/分で炭化温度まで加熱した。
図3、4及び5は、吸着への圧力(メタン及び窒素)の影響を示す。
【0061】
Ba−シリーズは、メタン吸収を重視して、KOH:炭比を再評価する。表7に記載したものに加えて、製造条件には、20〜40メッシュのトウモロコシの穂軸供給原料の使用、24時間の浸漬時間、炭化温度までの1.5℃/分での加熱、1.5時間の炭化時間、炭化後の40メッシュまでの粉砕、オーブン内での一晩の冷却及び790℃で1時間のKOH活性化が含まれていた。
図6は、細孔体積及びBET表面積をメタン吸収とグラフ的に相関させており、最終的に、過剰のメタン吸着における20〜50Åの直径を有する細孔の重要性を示している。KOHの量が大きくなるほど、活性化の間に蒸気として失われる炭素の量が大きくなる。
図6の相関関係に基づいて、本発明の実施形態のメタン吸収は、7.5〜50Åの直径を有する細孔の体積と最も良く相関関係にあった。この知見は、文献の推測及び/又はメタン吸収をもたらす際に20Åよりも大きい細孔直径が重要であると考えない知見とは異なっている。臨界分子直径に基づいて、約6〜30Åの細孔体積は、500psig及び20℃でのメタン吸収のために最も重要である。より高い貯蔵圧力は、より大きい細孔直径を一層有効に利用するであろう。
【0062】
KOH−HTT−シリーズは、活性炭特性への活性化温度の影響を示す。酸浸漬は8時間であり、1℃/分で炭化温度にまで加熱した。密度は、活性化温度が上昇すると共に減少した。活性炭BET表面積及び全細孔体積に於ける最大値は、850℃付近の活性化温度に対応した。表中に要約された臨界パラメーターの最適値を組み合わせて、バイオマス、例えば、トウモロコシの穂軸を、3000m
2/gを超えるBET表面積を有する活性炭に転化することができる経路を規定する。
【表9】
[実施例4]Darco炭素による制御研究
【0063】
市販の炭素Darco G−60(24,227−6、100メッシュ炭素)及びDarco B(27,810−6)を、本発明の炭素に対する比較のために評価し、本発明の炭素に従って調製した。これらの市販の製品は、100〜325メッシュの粒子サイズ並びにそれぞれ600及び1500m
2/gの報告されたBET表面積を有していた。
【0064】
Darco G−60を、0、2、2.25及び2.5のKOH:炭素比で、窒素流下で790℃で活性化した。活性化の後、それぞれのサンプルを、ブフナー漏斗内で中性にまで洗浄した。それぞれの過剰の吸着(g/kg)は、22.2、85.2、63.4及び28.2であった。それぞれの嵩密度は、それぞれ、0.149、0.206、0.300及び「未知」であった。Darco B製品は、メタンを57.4g/kgで吸着した。
【0065】
更なる処理をしないDarco製品の表面積を比較することによって、これらのデータは、表面積が、単独で、高いメタン貯蔵能力をもたらさないことを示している。これらのデータは、また、トウモロコシの穂軸以外の供給原料から製造された炭素が、どのように、5重量%よりも多いメタンを吸着する材料に転換できるかを示している。これらのデータは、また、比較的高い表面積の炭素の処理を、どのように、KOH処理によって更に増強できるかを示している。
[実施例5]水についての銅カチオンの吸着の例証
【0066】
本発明の炭素材料を、水から金属を除去するためのそれらの能力について評価した。約9mg/Lの銅カチオンを蒸留水に添加した。表10のブランクサンプルによって報告したように、この混合物で発光分光法を実施した。等質量の5種の炭素をこの原液と混合して、銅を除去した。2種の市販の製品(Calgon及びDarco)を試験し、報告したような結果であった。表10中に記載した最後の3種のサンプルは、この実施形態の方法によって製造したサンプルである。最良の吸着は、KC4サンプル(表9参照)によって示された。この実施例は、水から金属を吸着するための、本発明の活性炭、特に、20〜50Å直径範囲内に細孔体積の45%よりも多くを有し且つ2.0cc/gよりも大きい全細孔体積を有する材料、の有効性を示している。
【表10】
[実施例6]活性炭上に触媒を担持させることの例証
【0067】
Pt、Cu、Pd、Cr、Niなどの金属を炭素上に担持できることが知られている。ナノスケール流動デバイスとして機能する、非常に多孔質の炭素ベースの円板触媒の有効性を例証するために、亜クロム酸銅触媒を、例証及び更なる研究のために選択した。
【0068】
この反応の条件は、それらが、触媒の炭素担体のガス化を起こさない範囲内であった。表11は、栓流反応器内で実施される、粉末形態での炭素担持亜クロム酸銅触媒を使用するグリセリンのプロピレングリコールへの転化での予備的データの幾つかを示す。これは、また、従来の亜クロム酸銅触媒及び活性炭上に担持された亜クロム酸銅触媒について、転化率と生産性との間の比較も示す。この反応は220℃で実施し、水素対グリセリンモル比は約20:1であった。触媒1及び触媒2は、異なった金属担持量で、高度に多孔質の炭素(表7のKC3に類似のもの)上に担持された触媒である。
【表11】
【0069】
(電子顕微鏡によって観察された)炭素上の金属粒子のサイズは、20nmよりも小さく、これは、金属粒子を、炭素の細孔サイズ分布の大部分を構成する微小細孔内に堆積させることができることを示している。亜クロム酸銅触媒上でのグリセロールのプロピレングリコールへの転化は、この反応が、プロピレングリコールとアセトールとの平衡転化を達成するために必要な時間よりも長い時間行われるとき、生成物分解をもたらすであろう。このため、結果(全て98%転化率を超えても)は、炭素上の低い触媒担持量が、同じ市販の触媒よりも著しく一層有効であることを示す。生産性に於ける更なる増加が、マイクロ反応器構成での圧縮された円板において期待される。均一な流れを促進し、圧力低下を減少させるために、チャネルを、例えば
図7によって示されるように、圧縮された円板内に含ませることが好ましい。クローズドチャネルアプローチが好ましい。クローズドチャネルを作る一つの方法は、2つの反対の面からブリケットの中にチャネルを開けることである。
[実施例7]実施例細孔サイズ分布
【0070】
表12に、表7のサンプルKC3と同様の方法によって製造した炭素の、実施例細孔サイズ分布を要約する。
【表12】
[実施例8]炭素ペーストキャパシタ
【0071】
活性炭サンプルS−56を、当該技術分野で公知の方法によって、炭素ペーストキャパシタに於ける用途のために評価した。このキャパシタは、炭素ペーストキャパシタに於ける用途のための最良の入手可能な炭素の幾つかについての数個の対照代表よりも良く性能を発揮した。S−56の良好な性能は、10Åよりも小さい直径の細孔における高い細孔体積によって可能になる高表面積に起因する。
[実施例9]水素貯蔵
【0072】
水素吸着及び貯蔵を、サンプルS−33/kに於いて77及び300Kで評価した。500psigで、これらのサンプルは、それぞれ、70及び10g/kg(H
2:炭素)の水素を可逆的に吸着した。
[実施例10]より高い圧力での吸着
【0073】
図3、4、5、8及び9は、吸着への圧力(メタン及び窒素)の影響を示す。
図10は、Ba5.32及びS−30サンプルについての貯蔵された量(全吸着)の追加の実施例を示す。
【0074】
吸着された天然ガス(ANG)貯蔵の利点は、より低い圧力でガスを貯蔵できることである。ANG貯蔵の主な利点は、(
図10中に圧縮された天然ガス、CNGとして示されている)吸着剤無しで同じタンク内に貯蔵することに対して、同じ圧力でより多くのガスを貯蔵することができることである。より高い圧力でANGを使用するとき、好ましい炭素は、500psigでの等温線上でより高い正勾配を有する等温線を有し、これは、より高い圧力が、全吸着を増加し続けることを示している。本発明の幾つかの実施形態、特に、10〜50Åの直径を有する細孔で1.1cc/gを超える細孔体積を有するKC3のようなものは、より高い圧力でのANG貯蔵のために特に良好である。
本開示は下記を含む。
<1> a.約50重量%よりも多いバイオマス由来の炭素、
b.約1500m2/gよりも大きいDFT表面積、
c.直径が約10Å〜約50Åの範囲である細孔の約0.6cc/gよりも大きい細孔体積、
d.直径が約10Å〜約20Åの範囲である細孔の約0.4cc/gよりも大きい細孔体積、及び
e.細孔体積の少なくとも約20%が、直径が約20Å〜約50Åの範囲である細孔を含むような細孔分布、
を含む活性炭。
<2> 直径が約10Å〜約50Åの範囲である細孔の細孔体積が、約0.8cc/gよりも大きい、<1>に記載の活性炭。
<3> 直径が約10Å〜約50Åの範囲である細孔の細孔体積が、約1.1cc/gよりも大きい、<1>に記載の活性炭。
<4> 前記活性炭が、約20℃の温度及び約500psigの圧力で、メタン中で自重の約15%よりも多くを吸着し貯蔵することができる、<3>に記載の活性炭。
<5> 前記活性炭が、メタン貯蔵タンク、メタンガス分離器、揮発性有機化合物吸着剤、水処理吸着剤、電気キャパシタ、バッテリー、触媒、燃料電池及びイオン交換材料からなる群から選択された製品中に使用される、<3>に記載の活性炭。
<6> 前記水処理吸着剤が、更に、約2重量%よりも高い濃度で金属を含有する、<5>に記載の活性炭。
<7> 前記バッテリーが、更に、約5重量%よりも高い濃度で金属を含有し、該金属が、リチウム、ナトリウム、鉛、コバルト、鉄及びマンガンからなる群から選択される、<5>に記載の活性炭。
<8>
前記触媒が、更に、約0.1重量%よりも高い濃度で金属を含有し、該金属が、白金、ルテニウム、パラジウム、銅、クロム、コバルト、銀、金及びバナジウムからなる群から選択される、<5>に記載の活性炭。
<9> 直径が約7.5Å〜約16.0Åの範囲である細孔の細孔体積が、約0.5cc/gよりも大きい、<3>に記載の活性炭。
<10> 前記活性炭がアセチレン貯蔵タンク内に使用される、<9>に記載の活性炭。
<11> 約2850m2/gよりも大きいDFT表面積、及び、直径が約10Åよりも小さい細孔の約0.5cc/gよりも大きい細孔体積を有する、バイオマス由来の活性炭。
<12> 直径が約10Åよりも小さい細孔の細孔体積が、約0.7cc/gよりも大きい、<11>に記載の活性炭。
<13> 前記活性炭が、メタン貯蔵タンク、水素貯蔵タンク、アセチレン貯蔵タンク、キャパシタ、バッテリー及びモレキュラーシーブからなる群から選択された製品中に使用される、<12>に記載の活性炭。
<14> 前記メタン貯蔵タンク又は水素貯蔵タンクの活性炭が、更に、少なくとも1重量%の濃度で金属を含有し、該金属が、60よりも小さい原子量を有する、<13>に記載の活性炭。
<15> 前記水素貯蔵タンクの活性炭が、更に、少なくとも1重量%の濃度で共吸着剤を含有し、該共吸着剤が、約7.5Å〜約12Åの臨界直径を有する、<14>に記載の活性炭。
<16> a.約50重量%よりも多いバイオマス由来の炭素、
b.約1500m2/gよりも大きいDFT表面積、
c.約0.25よりも大きい10−20多孔度、
d.直径が約10Å〜約20Åの範囲である細孔の約0.4cc/gよりも大きい細孔体積、及び
e.細孔体積の少なくとも約30%が、直径が約10Å〜約20Åの範囲である細孔を含むような細孔分布、
を含む活性炭。
<17> 前記10−20多孔度が約0.3よりも大きく、直径が約10Å〜約20Åの範囲である細孔の細孔体積が約0.5cc/gよりも大きい、<16>に記載の活性炭。
<18> 前記活性炭が、更に、約10重量%よりも多い濃度で金属を含有し、メタン貯蔵タンク、水素貯蔵タンク、アセチレン貯蔵タンク、キャパシタ、バッテリー及びモレキュラーシーブからなる群から選択された製品中に使用される、<17>に記載の活性炭。
<19> a.約40重量%よりも多くの炭素を含有するバイオマス供給原料を、約350℃〜約850℃の温度で炭化して、約900m2/gよりも大きいDFT表面積、及び、直径が
約10Å〜約50Åの範囲である細孔の約1.0cc/gよりも大きい細孔体積を有する炭を形成することと、
b.前記炭を、約9よりも大きいpHを有するアルカリ性材料の存在下で、約600℃〜約1000℃の温度で活性化して、約1700m2/gよりも大きいDFT表面積、約
1.1cc/gよりも大きい全細孔体積、及び、細孔体積の少なくとも約20%が、直径が約20Å〜約50Åの範囲である細孔を含むような細孔分布を有する活性炭を形成することと、
を含む活性炭の製造方法。
<20> 前記バイオマス供給原料が、トウモロコシの穂軸、木材製品、オリーブの種、モモの種、ココナツの殻及びナッツの殻からなる群から選択される、<19>に記載の方法。
<21> 前記アルカリ性材料が、水酸化カリウム、水酸化ナトリウム、水酸化リチウム及び水酸化ベリリウムからなる群から選択された金属水酸化物である、<20>に記載の方法。
<22> 前記炭が、バイオマス及びリン酸の混合物から製造され、リン酸のバイオマスに対する質量比が、約0.5:1〜約1:1の範囲内である、<20>に記載の方法。
<23> 前記活性炭が、炭及び金属水酸化物の混合物から製造され、金属水酸化物のバイオマスに対する質量比が、約1:1〜約5:1の範囲内である、<21>に記載の方法。
<24> 前記活性炭が、約20℃の温度及び約500psigの圧力で、メタン中で自重の約15%よりも多くを吸着し貯蔵することができる、<19>に記載の方法。
<25> 前記バイオマス供給原料が、約0.4g/ccよりも小さい見掛け密度を有し、炭化される前に、リン酸中に、約75℃〜約100℃の温度で少なくとも2時間浸漬される、<19>に記載の方法。
<26> 更に、前記活性炭をバインダーと共に、約130℃〜約180℃の温度で約13000psi〜約17000psiの圧力でプレスして、ブリケットを形成することと、該ブリケットを約600℃〜約1200℃の温度で加熱することと、を含む、<19>に記載の方法。