特許第5763284号(P5763284)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社の特許一覧

特許5763284室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
<>
  • 特許5763284-室温硬化性ポリオルガノシロキサン組成物および電気・電子機器 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】5763284
(24)【登録日】2015年6月19日
(45)【発行日】2015年8月12日
(54)【発明の名称】室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
(51)【国際特許分類】
   C08L 83/06 20060101AFI20150723BHJP
   C08K 5/5415 20060101ALI20150723BHJP
   C09D 183/06 20060101ALI20150723BHJP
【FI】
   C08L83/06
   C08K5/5415
   C09D183/06
【請求項の数】6
【全頁数】20
(21)【出願番号】特願2015-504798(P2015-504798)
(86)(22)【出願日】2014年12月12日
(86)【国際出願番号】JP2014083054
【審査請求日】2015年3月9日
(31)【優先権主張番号】特願2013-266101(P2013-266101)
(32)【優先日】2013年12月24日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000221111
【氏名又は名称】モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
(74)【代理人】
【識別番号】110001092
【氏名又は名称】特許業務法人サクラ国際特許事務所
(72)【発明者】
【氏名】飯田 勲
(72)【発明者】
【氏名】砂賀 健
【審査官】 山村 周平
(56)【参考文献】
【文献】 特開2010−084063(JP,A)
【文献】 特開2010−180382(JP,A)
【文献】 特開2002−097367(JP,A)
【文献】 特開平04−359058(JP,A)
【文献】 特開2010−024327(JP,A)
【文献】 特開2013−124343(JP,A)
【文献】 国際公開第2014/017397(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 83/00−83/16
C08K 3/00−13/08
C09D 183/00−183/16
(57)【特許請求の範囲】
【請求項1】
(A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、23℃における粘度が3mPa・s〜500mPa・sであるポリオルガノシロキサン10〜80質量部と、
(A2)平均組成式(a2):RSi(OR{4−(a+b)}/2 …(a2)
(式(a2)中、Rは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基である。また、aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。)で表され、重量平均分子量(Mw)が2,000〜100,000であり、三次元網目構造を有し常温で固体状または半固体状であるポリオルガノシロキサン90〜20質量部
とを混合してなるポリオルガノシロキサン混合物(A)100質量部に対して、
(B)硬化触媒として有機チタン化合物0.1〜15質量部
を含有することを特徴とする室温硬化性ポリオルガノシロキサン組成物。
【請求項2】
さらに、(C)式(c1):RSi(OR4−c …(c1)
(式(c1)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基であり、cは0、1または2である。)で表されるシラン化合物0.1〜15質量部を含有することを特徴とする請求項1記載の室温硬化性ポリオルガノシロキサン組成物。
【請求項3】
前記(A1)成分は、下記一般式(a11):
【化1】
(式(a11)中、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基、RおよびRは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Xは二価の酸素(オキシ基)または二価炭化水素基である。また、dは0または1であり、nは23℃における粘度が3mPa・s〜500mPa・sとなる整数である。)で表されるポリオルガノシロキサンを含むことを特徴とする請求項1または2記載の室温硬化性ポリオルガノシロキサン組成物。
【請求項4】
前記(A1)成分は、式(a12):RSi(OR4−e …(a12)
(式(a12)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基であり、eは0、1または2である。)で表されるシラン化合物の部分加水分解縮合物であるポリオルガノシロキサンを含むことを特徴とする請求項1乃至3のいずれか1項に記載の室温硬化性ポリオルガノシロキサン組成物。
【請求項5】
電気・電子機器の電極および/または配線のコーティング用組成物であることを特徴とする請求項1乃至4のいずれか1項記載の室温硬化性ポリオルガノシロキサン組成物。
【請求項6】
電極および/または配線の表面に、請求項1乃至4のいずれか1項記載の室温硬化性ポリオルガノシロキサン組成物の硬化物からなる被膜を有することを特徴とする電気・電子機器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、室温硬化性ポリオルガノシロキサン組成物および電気・電子機器に係り、特に、耐スクラッチ性に優れた硬化被膜を形成し、電気・電子機器用コーティング材等として有用な室温硬化性ポリオルガノシロキサン組成物と、この室温硬化性ポリオルガノシロキサン組成物の硬化被膜を有する電気・電子機器に関する。
【背景技術】
【0002】
従来から、室温で硬化してゴム状等の硬化物を生じる種々の室温硬化性ポリオルガノシロキサン組成物が知られている。それらのうちで、電気・電子部品のコーティング材やポッティング材等の用途には、空気中の水分と接触することにより硬化反応を生起するタイプのもので、硬化時にアルコールやアセトン等を放出するものが一般に用いられている。そのようなタイプの室温硬化性ポリオルガノシロキサン組成物は、作業性が良好であるうえに、硬化時に放出するアルコールやアセトンが金属類に対して腐食性が低いため、電極や配線の腐食のおそれが少なく、また接着性等にも優れるという利点がある。
【0003】
特に、電気・電子部品やそれらを搭載した回路基板の表面を使用環境から保護するために施されるコンフォーマルコーティング剤としては、低粘度の室温硬化性ポリオルガノシロキサン組成物からなるコーティング材(例えば、特許文献1、2参照。)や、シリコーンレジンを溶剤に溶解させたタイプのコーティング材が使用されている。
【0004】
しかしながら、低粘度の室温硬化性ポリオルガノシロキサン組成物からなるコーティング材では、得られる硬化被膜が脆くて硬度が低く、耐スクラッチ性のような引っかき強度が十分ではなかった。
また、シリコーンレジンを含む溶剤タイプのコーティング材においては、硬化時に加熱による溶剤除去工程を必要とするため、溶剤の揮発により、作業環境の悪化や、電気・電子部品およびそれらを搭載した回路基板の腐食や劣化を引き起こすおそれがあった。さらに、作業環境を改善するために、溶剤を大気中に放出せずに回収しようとすると、高額の投資を必要とした。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平7−173435号公報
【特許文献2】特開平7−238259号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明はこれらの問題を解決するためになされたもので、低粘度、無溶剤で塗布性が良好であり、硬度が高く、耐スクラッチ性に優れた硬化被膜を形成する室温硬化性ポリオルガノシロキサン組成物を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の室温硬化性ポリオルガノシロキサン組成物は、
(A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、23℃における粘度が3mPa・s〜500mPa・sであるポリオルガノシロキサン10〜80質量部と、
(A2)平均組成式(a2):RSi(OR{4−(a+b)}/2 …(a2)
(式(a2)中、Rは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基である。また、aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。)で表され、重量平均分子量(Mw)が2000〜100000であり、三次元網目構造を有し常温で固体状または半固体状であるポリオルガノシロキサン90〜20質量部
とを混合してなるポリオルガノシロキサン混合物(A)100質量部に対して、
(B)硬化触媒として有機チタン化合物0.1〜15質量部
を含有することを特徴とする。
【0008】
本発明の電気・電子機器は、電極および/または配線の表面に、前記本発明の室温硬化性ポリオルガノシロキサン組成物の硬化物からなる被膜を有することを特徴とする。
【0009】
本発明において、「常温」は、特に加熱も冷却もしない平常の温度を意味し、例えば23℃を示す。そして、「固体状」とは、全く流動性を有しない、通常のいわゆる固体状態を意味する。「半固体状」とは、若干の流動性を有するため固体状態ではないが、例えば粘稠な水あめ状のように、液状とは認められない程度に高粘度な状態を意味する。すなわち、「半固体状」とは、高粘度、例えば、粘度10Pa・s以上であって、若干の流動性を有する状態をいう。
【発明の効果】
【0010】
本発明の室温硬化性ポリオルガノシロキサン組成物は、低粘度で塗布性が良く、溶剤で希釈することなくそのまま通常の塗布方法で塗布することができる。そして、塗布膜は室温で速やかに硬化し、硬度(Type A)が60以上と高く、耐スクラッチ性に優れた硬化被膜を形成する。したがって、電気・電子機器のコーティング材、ポッティング材等の用途に有用であり、特に、コンフォーマルコーティング剤のような、電気・電子部品をコーティングする用途に好適する。
【図面の簡単な説明】
【0011】
図1】本発明の電気・電子機器の一例を示す断面図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態について説明する。
本発明の実施形態の室温硬化性ポリオルガノシロキサン組成物は、
(A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、23℃における粘度が3mPa・s〜500mPa・sである常温で液状の第1のポリオルガノシロキサンと、(A2)上記平均組成式(a2)で表され、三次元網目構造を有し、重量平均分子量(Mw)が2,000〜100,000で常温で固体状または半固体状の第2のポリオルガノシロキサンとを、特定の割合で混合してなるポリオルガノシロキサン混合物(A)100質量部に対して、
(B)硬化触媒として有機チタン化合物0.1〜15質量部を含有する。
実施形態の室温硬化性ポリオルガノシロキサン組成物は、(C)後述の式(c1)で表されるシラン化合物をさらに含有することができる。
以下、実施形態の室温硬化性ポリオルガノシロキサン組成物を構成する各成分、含有割合等について説明する。
【0013】
(A)ポリオルガノシロキサン混合物
本発明の実施形態において、(A)成分であるポリオルガノシロキサン混合物は、本組成物のベースとなるポリマー成分であり、(A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、常温で液状で23℃における粘度(以下、単に粘度と示す。)が3mPa・s〜500mPa・sである第1のポリオルガノシロキサンと、(A2)上記平均組成式(a2)で表され、三次元網目構造を有し、重量平均分子量(Mw)が2,000〜100,000で常温で固体状または半固体状の第2のポリオルガノシロキサンとを混合してなる。なお、Mwは、ポリスチレンを基準とするGPC(ゲルパーミエーションクロマトグラフ)により求められる値である。
【0014】
(A1)成分
(A1)成分である第1のポリオルガノシロキサンの分子構造は、分子中にケイ素原子に結合するアルコキシ基を2個以上有し、粘度が3mPa・s〜500mPa・sであれば、直鎖状であっても、分岐鎖を有する構造(以下、分岐状と示す。)であってもよい。粘度を上記範囲に設定しやすいことから、直鎖状のポリオルガノシロキサンが好ましい。なお、分岐状のポリオルガノシロキサンを使用する場合には、(A1)成分全体として上に規定された粘度を保つために、直鎖状のポリオルガノシロキサンと併用することが好ましい。
【0015】
(A1)成分の粘度は3mPa・s〜500mPa・sである。(A1)成分の粘度が3mPa・s未満であると、得られる硬化物のゴム弾性が乏しくなり、500mPa・sを超えると硬化被膜等の硬化物を作製する際の作業性が低下する。また、(A1)成分の粘度が500mPa・sを超えると、後述する(A2)成分との相溶性が悪く、均一な組成物が得られない。(A1)成分の粘度は、5mPa・s〜100mPa・sの範囲が好ましい。
【0016】
(A1)成分は、ポリオルガノシロキサンの1種または2種以上で構成され得る。(A1)成分が1種のポリオルガノシロキサンで構成される場合、該ポリオルガノシロキサンは分子中に2個以上のアルコキシ基を有し、粘度が3mPa・s〜500mPa・sである。(A1)成分が、2種以上のポリオルガノシロキサンの混合物で構成される場合、該混合物が(A1)成分としての上記アルコキシ基数や粘度の規定を満足すればよい。したがって、この場合、個々のポリオルガノシロキサンの構造や粘度は必ずしも上記規定を満たさなくてもよいが、(A1)成分を構成する個々のポリオルガノシロキサンの構造および粘度が上記規定を満たすことが好ましい。
【0017】
(A1)成分が直鎖状のポリオルガノシロキサンである場合、ケイ素原子に結合した2個以上のアルコキシ基は、分子末端のケイ素原子に結合していてもよく、中間部のケイ素原子に結合していてもよい。少なくとも1個のアルコキシ基が分子末端のケイ素原子に結合していることが好ましい。この場合、直鎖状のポリオルガノシロキサンが有するアルコキシ基の全てが分子末端のケイ素原子に結合していてもよいし、あるいは少なくとも1個のアルコキシ基が中間部のケイ素原子に結合していてもよい。
【0018】
(A1)成分を構成する直鎖状のポリオルガノシロキサンとしては、下記一般式(a11)で表される両末端アルコキシシリル基封鎖ポリオルガノシロキサンが好ましい。本明細書において、式(a11)で表されるポリオルガノシロキサンをポリオルガノシロキサン(a11)といもいう。以下、他の式で表される化合物についても同様にその式を示す記号を含む略称を用いることがある。
【化1】
【0019】
式(a11)中、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基である。複数のRは、互いに同一であっても異なっていてもよい。上記Rのアルキル基として具体的には、メチル基、エチル基、プロピル基、ブチル基等が例示され、アルコキシ置換アルキル基として具体的には、2−メトキシエチル基、2−エトキシエチル基、3−メトキシプロピル基等が例示される。Rは好ましくはメチル基である。
【0020】
は、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。複数のRは、互いに同一であっても異なっていてもよい。Rも、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。複数のRは、互いに同一であっても異なっていてもよい。
【0021】
上記RおよびRの非置換の一価炭化水素基として具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基のようなアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、2−フェニルエチル基、2−フェニルプロピル基等のアラルキル基等が挙げられる。置換された一価炭化水素基としては、上記一価炭化水素基の水素原子の一部がハロゲン原子で置換された、例えばクロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基のようなハロゲン化アルキル基や、前記一価炭化水素基の水素原子の一部がシアノアルキル基で置換された、例えば3−シアノプロピル基等が例示される。
【0022】
合成が容易で、分子量の割に低い粘度を有し、かつ硬化物(硬化被膜)に良好な物理的性質を与えることから、RおよびRはメチル基であることが好ましい。ただし、硬化被膜に耐熱性や耐寒性を付与する必要がある場合には、Rおよび/またはRの一部を、フェニル基のようなアリール基とすることが好ましい。
【0023】
式(a11)中、Xは、二価の酸素(オキシ基)または二価炭化水素基である。2個のXは同一であっても異なっていてもよい。二価炭化水素としては、メチレン基、エチレン基、プロピレン基、トリメチレン基等のアルキレン基、フェニレン基等のアリーレン基が例示される。合成の容易さから、二価の酸素原子(オキシ基)またはエチレン基が好ましく、特にオキシ基が好ましい。
【0024】
式(a11)中、dは0または1である。nはポリオルガノシロキサン(a11)の粘度が3mPa・s〜500mPa・sとなる整数であり、具体的には、1≦n<250の整数である。ポリオルガノシロキサン(a11)の粘度は、5mPa・s〜100mPa・sの範囲が好ましく、nの値は3〜100の整数であることが好ましい。
【0025】
ポリオルガノシロキサン(a11)は、例えば、オクタメチルシロキサンのような環状ジオルガノシロキサン低量体を、水の存在下に酸性触媒またはアルカリ性触媒によって開環重合または開環共重合させることにより得られる両末端水酸基含有ジオリガノポリシロキサンを、メチルトリメトキシシラン等でエンキャップすることにより得ることができる。
【0026】
ポリオルガノシロキサン(a11)として好ましくは、下記式(ただし、dは0または1、nは好ましい態様を含めて式(a11)と同様である。)で示される両末端にメチルジメトキシシリル基またはトリメトキシシリル基を有するポリジメチルシロキサンが挙げられる。
【0027】
【化2】
【0028】
また、(A1)成分としては、3官能型シロキサン単位(ただし、ケイ素に結合する1個の有機基は非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。)および/または4官能型シロキサン単位を有する分岐状のポリオルガノシロキサンを用いることができる。以下、3官能型シロキサン単位をT単位、4官能型シロキサン単位をQ単位とそれぞれ示す。分岐状のポリオルガノシロキサンは、単独で(A1)成分を構成してもよく、前記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)とともに用いて(A1)成分を構成してもよい。(A1)成分としての粘度を上記規定の範囲に調整しやすい点から、直鎖状のポリオルガノシロキサンと併用することが好ましい。
【0029】
なお、この分岐状のポリオルガノシロキサンは、1官能型シロキサン単位(ただし、ケイ素に結合する3個の有機基は、独立して、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。)および/または2官能型シロキサン単位(ただし、ケイ素に結合する2個の有機基は、独立して、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。)を有することができる。以下、1官能型シロキサン単位をM単位、2官能型シロキサン単位をD単位とそれぞれ示す。
【0030】
分岐状のポリオルガノシロキサンとしては、D単位とT単位を含むポリオルガノシロキサンが好ましい。この場合、D単位とT単位の含有モル比は、D:T=1:99〜99:1が好ましい。D:T=10:90〜90:10がより好ましい。分岐状のポリオルガノシロキサンの分子量は、(A1)成分としての粘度を規定の粘度とできる分子量とする。
【0031】
このような分岐状のポリオルガノシロキサンの粘度も、直鎖状のポリオルガノシロキサンと同様に、単独で用いる場合は、3mPa・s〜500mPa・sであり、5mPa・s〜100mPa・sの範囲とすることが好ましい。粘度は、分岐状のポリオルガノシロキサンを上記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)と組み合わせる場合には、(A1)成分とした際の粘度が上記範囲であればよい。
【0032】
上記(A1)成分として用いる分岐状のポリオルガノシロキサンは、分子内にケイ素原子に結合したアルコキシ基を2個以上有する。該アルコキシ基はいずれの単位のケイ素原子に結合していてもよい。分岐状のポリオルガノシロキサンが、D単位とT単位を含むポリオルガノシロキサンの場合、ケイ素原子に結合する2個以上のアルコキシ基は、その80%以上がT単位のケイ素原子に結合していることが好ましい。アルコキシ基は全てがT単位のケイ素原子に結合していることがより好ましい。
【0033】
分岐状のポリオルガノシロキサンが有するアルコキシ基としては、ポリオルガノシロキサン(a11)を示す式(a11)におけるORと同様の基が例示される。該アルコキシ基としては、メトキシ基、エトキシ基が好ましい。分岐状のポリオルガノシロキサンが有するケイ素原子に結合した有機基、すなわち非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基としては、ポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。該有機基としてはメチル基が好ましい。
【0034】
さらに、(A1)成分として、式(a12):RSi(OR4−e…(a12)で表されるシラン化合物の部分加水分解縮合物であるポリオルガノシロキサンを、前記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)とともに用いることができる。また、(A1)成分として、前記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)と前記分岐状のポリオルガノシロキサンとの混合物に、さらにこのようなシラン化合物(a12)の部分加水分解縮合物を配合することもできる。そして、直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)、分岐状のポリオルガノシロキサン、シラン化合物(a12)の部分加水分解縮合物のそれぞれは、1種を単独で使用してもよく2種以上を混合して使用してもよい。
【0035】
式(a12)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、ビニル基等が好ましい。また、Rは、アルキル基またはアルコキシ置換アルキル基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、エチル基等が好ましい。式(a12)中、eは0、1または2である。
【0036】
このような部分加水分解縮合物の出発物質となるシラン化合物(a12)としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ビニルメチルジメトキシシラン、ジメチルジエトキシシラン等が例示される。そして、部分加水分解縮合物は、例えば、メチルトリメトキシシラン等のシラン化合物を、水の存在化、酸性触媒またはアルカリ性触媒によって部分加水分解することにより得られる。また、部分加水分解で生じたシラノール基を、メチルトリメトキシシラン等でエンキャップすることにより得られる。
【0037】
シラン化合物(a12)の部分加水分解縮合物であるポリオルガノシロキサンの粘度も、前記分岐状のポリオルガノシロキサンと同様に、上記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)や上記分岐状のポリオルガノシロキサンと組み合わせて(A1)成分とした際の粘度が3mPa・s〜500mPa・sとなるような粘度であればよい。シラン化合物(a12)の部分加水分解縮合物であるポリオルガノシロキサンの粘度は、5mPa・s〜100mPa・sの範囲とすることが好ましい。
【0038】
シラン化合物(a12)の部分加水分解縮合物におけるSi数は、部分加水分解縮合物における粘度が上記範囲となる数が選択される。
【0039】
(A1)成分として、例えば、ポリオルガノシロキサン(a11)とシラン化合物(a12)の部分加水分解縮合物を組み合わせて用いる場合、ポリオルガノシロキサン(a11)とシラン化合物(a12)の部分加水分解縮合物の割合は、ポリオルガノシロキサン(a11)を100質量部とした場合に、シラン化合物(a12)の部分加水分解縮合物が1〜200質量部となる割合が好ましく、10〜100質量部となる割合がより好ましい。
【0040】
(A2)成分
(A2)成分である第2のポリオルガノシロキサンは、平均組成式(a2):RSi(OR{4−(a+b)}/2…(a2)で表され、三次元網目構造を有し、常温(23℃)で固体状または半固体状でMwが2,000〜100,000のポリオルガノシロキサンである。
【0041】
式(a2)中、Rは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基であることが好ましい。また、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基であることが好ましい。
【0042】
式(a2)中、aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。aおよびbは、0.8≦a≦1.5、0<b<1を満足する正数であることが好ましい。aおよびbは、0.9≦a≦1.4、0<b<0.5を満足する正数であることがより好ましい。
【0043】
このようなポリオルガノシロキサン(a2)は、例えば、アルコキシシラン類を加水分解し、シラノール基を含有し三次元網目構造を有するポリオルガノシロキサンを調製した後、このポリオルガノシロキサンをアルコキシシランでエンキャップする方法で得ることができる。
【0044】
(A2)成分のMwは2,000〜50,000が好ましく、3,000〜30,000がより好ましい。(A2)成分はポリオルガノシロキサン(a2)の1種または2種以上からなる。(A2)成分がポリオルガノシロキサン(a2)の1種からなる場合、該ポリオルガノシロキサン(a2)のMwは2,000〜100,000である。(A2)成分が複数のポリオルガノシロキサン(a2)からなる場合、(A2)成分としてのMwが2,000〜100,000であれば、各ポリオルガノシロキサン(a2)のMwは必ずしも2,000〜100,000である必要はないが、該範囲内にあることが好ましい。ポリオルガノシロキサン(a2)についても、Mwは2,000〜50,000が好ましく、3,000〜30,000がより好ましい。
【0045】
本発明の室温硬化性ポリオルガノシロキサン組成物のベース成分である(A)成分は、このようなMwが2,000〜100,000で、三次元網目構造を有し常温で固体状または半固体状の第2のポリオルガノシロキサン(A2)と、前記した常温で液状で所定の粘度を有する第1のポリオルガノシロキサン(A1)とを混合して構成される。
【0046】
(A1)成分と(A2)成分との混合割合は、(A)成分全体を100質量部として、(A1)成分を10〜80質量部とし、(A2)成分を90〜20質量部とする。(A1)成分の配合量が10質量部未満であり(A2)成分の配合量が90質量部を超えると、無溶剤でそのままコーティング材として使用可能な組成物を得ることが難しい。また、(A1)成分の配合量が80質量部を超え(A2)成分の配合量が20質量部未満の場合には、十分な耐スクラッチ性を有する硬化被膜が得られない。(A1)成分と(A2)成分の配合割合は、(A1)成分が10〜70質量部、(A2)成分が90〜30質量部の範囲がより好ましく(A1)成分が20〜60質量部、(A2)成分が80〜40質量部の範囲がさらに好ましい。
【0047】
(B)成分
本発明の室温硬化性ポリオルガノシロキサン組成物において、(B)成分である有機チタン化合物は、(A1)成分と(A2)成分からなる(A)成分のアルコキシ基同士、および/または(A)成分のアルコキシ基と後述する(C)成分である架橋剤のアルコキシ基とを、水分の存在下に反応させて架橋構造を形成させるための硬化触媒である。
【0048】
(B)硬化触媒である有機チタン化合物としては、テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタン、ジイソプロポキシ−ビス(アセト酢酸エチル)チタン、ジイソプロポキシ−ビス(アセト酢酸メチル)チタン、ジイソプロポキシ−ビス(アセチルアセトン)チタン、ジブトキシ−ビス(アセト酢酸エチル)チタン、ジメトキシ−ビス(アセト酢酸エチル)チタン等を挙げることができる。これらの有機チタン化合物は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。微量の存在で大きな触媒能を持ち、かつ不純物の少ない組成物が得られることから、これらのなかでも特に、ジイソプロポキシ−ビス(アセト酢酸エチル)チタン等のチタンキレート類が好ましい。
【0049】
なお、室温硬化性ポリオルガノシロキサン組成物においては、ベース成分のアルコキシ基同士の反応や、ベース成分のアルコキシ基と架橋剤のアルコキシ基との反応を促進するための硬化触媒として、ジブチルスズジオクトエートやジブチルスズジラウレートのような有機スズ化合物が使用されることがあるが、硬化触媒として有機スズ化合物を使用した場合には、硬化に時間がかかり過ぎ好ましくない。本発明の実施形態においては、組成物の硬化性(硬化の速さ)と硬化被膜の耐スクラッチ性の両方の観点から、前記有機チタン化合物が使用される。
【0050】
(B)成分である有機チタン化合物の配合量は、前記(A)成分100質量部に対して0.1〜15質量部、好ましくは0.1〜10質量部である。0.1質量部未満では、硬化触媒として十分に機能せず、硬化に長い時間がかかるばかりでなく、特に空気との接触面から遠い深部における硬化が不十分となる。反対に15質量部を超えると、その配合量に見合う効果がなく無意味であるばかりか非経済的である。また、保存安定性も低下する。
【0051】
(C)成分
本発明の実施形態においては、(C)式(c1):RSi(OR4−c…(c1)で表されるシラン化合物を含有させることができる。このシラン化合物は、前記(A)成分であるベースポリマーの架橋剤として働く。
【0052】
式(c1)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基であり、前記したポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、ビニル基等が好ましい。また、Rは、アルキル基またはアルコキシ置換アルキル基であり、前記したポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、エチル基等が好ましい。式(c1)中、cは0、1または2である。
【0053】
このようなシラン化合物(c1)としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ビニルメチルジメトキシシラン、ジメチルジエトキシシラン等が例示される。これらのシラン化合物は、1種を単独で使用してもよく2種以上を混合して使用してもよい。
【0054】
合成が容易で、組成物の保存安定性を損なうことがなく、金属類に対する腐食性が少ないこと、かつ大きな架橋反応速度すなわち硬化速度が得られることから、架橋剤であるシラン化合物(c1)としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、ジメチルジメトキシシラン、ビニルメチルジメトキシシラン、ジメチルジエトキシシランを用いることが好ましく、特にメチルトリメトキシシランの使用が好ましい。
【0055】
(C)シラン化合物を配合する場合、その配合量は、前記(A)成分100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。(C)成分の配合量が15質量部を超えると、硬化の際の収縮率が大きくなり、硬化後の物性が低下する。また、硬化速度が著しく遅くなり、経済的に不利である。
【0056】
実施形態の室温硬化性ポリオルガノシロキサン組成物には、接着性付与剤として、トリス(N−トリアルコキシシリルプロピル)イソシアヌレートのようなイソシアヌレート化合物を配合することができる。イソシアヌレート化合物としては、1,3,5−トリス(N−トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。組成物への相溶性の観点から、このような接着性付与剤の配合量は、(A)成分100質量部に対して0.01〜5質量部とすることが好ましい。
【0057】
また、実施形態の室温硬化性ポリオルガノシロキサン組成物には、この種の組成物に通常配合されている無機充填剤、顔料、チクソトロピー性付与剤、押出作業性を改良するための粘度調整剤、紫外線吸収剤、防かび剤、耐熱性向上剤、難燃剤等の各種添加剤を、本発明の効果を阻害しない範囲で、必要に応じて配合することができる。無機充填剤の例としては、煙霧質シリカ、焼成シリカ、沈澱シリカ、煙霧質チタンおよびこれらの表面をオルガノクロロシラン類、ポリオルガノシロキサン類、ヘキサメチルジシラザン等で疎水化したもの等が挙げられる。その他、炭酸カルシウム、有機酸表面処理炭酸カルシウム、けいそう土、粉砕シリカ、アルミノケイ酸塩、マグネシア、アルミナ等も使用可能である。無機充填剤を配合する場合、その配合量は、(A)成分100質量部に対して100質量部以下が好ましく、50質量部以下がより好ましい。
【0058】
実施形態の室温硬化性ポリオルガノシロキサン組成物は、前記(A)成分と(B)成分、および必要に応じて配合される(C)成分および上記各成分を、湿気を遮断した状態で混合することにより得られる。得られた組成物は、23℃で20mPa・s〜1000mPa・sの粘度を有する。粘度は、好ましくは、20mPa・s〜500mPa・sである。なお、実施形態の室温硬化性ポリオルガノシロキサン組成物は溶剤を含有しない。そのため、硬化被膜形成時に溶剤除去工程を必要とせず、溶剤の揮発により、作業環境の悪化や、電気・電子部品およびそれらを搭載した回路基板の腐食や劣化を引き起こすことがない。
【0059】
上記で得られた室温硬化性ポリオルガノシロキサン組成物は、密閉容器中でそのまま保存し、使用時に空気中の水分に曝すことによってはじめて硬化する、いわゆる1包装型室温硬化性組成物として使用することができる。また、実施形態の室温硬化性ポリオルガノシロキサン組成物を、例えば(A)成分と、(C)成分である架橋剤や(B)成分である硬化触媒とを別に分けて調製し、適宜2〜3個の別々の容器に分けて保存し、使用時にこれらを混合する、いわゆる多包装型室温硬化性組成物として使用することもできる。なお、各成分の混合の順序は特に限定されるものではない。
【0060】
本発明の室温硬化性ポリオルガノシロキサン組成物は、前記したように23℃で20mPa・s〜1000mPa・sの十分に低い粘度を有するので、塗布性が良好であり、溶剤で希釈することなくそのまま通常のコーティング方法で塗布することができる。塗布膜は、空気中の水分と接触することにより室温で速やかに硬化する。硬化被膜の硬度(Type A)は60以上と高く、電気的・機械的特性、とりわけ耐スクラッチ性に優れている。
【0061】
したがって、本発明の組成物は、電気・電子機器のコーティング材、ポッティング材等の用途に有用であり、特にコンフォーマルコーティング剤のような、電気・電子部品やこれらを搭載した回路基板の表面を保護する用途に好適する。具体的には、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等からなる基板やアルミナ等のセラミックからなる基板上に、ITO、銅、アルミニウム、銀、金等からなる電極および配線を形成した配線基板上に、IC等の半導体装置、抵抗体、コンデンサ等の電子部品を搭載した電気・電子機器において、電極や配線等のコーティング材として好適に使用される。
【0062】
本発明の室温硬化性ポリオルガノシロキサン組成物を配線基板の電極や配線のコーティング材として使用する場合、塗布方法としては、ディップ法、刷毛塗り法、スプレー法、ディスペンス法等を用いることができ、塗布層の厚さは、通常0.01〜3mm、好ましくは0.05〜2mmである。厚さが0.01mmに満たないと、耐スクラッチ性が十分に得られないおそれがある。また、3mmを超えると、それ以上の効果が得られないばかりでなく、内部が硬化するのに時間がかかり不経済である。
【0063】
次に、本発明の電気・電子機器について図面を参照して説明する。図1は、本発明に係る電気・電子機器(装置)の一例を示す断面図である。
【0064】
実施形態の電気・電子機器1は、ガラスエポキシ基板のような絶縁基板2aの上に、銅箔のような導電体からなる配線2bが形成された配線基板2を備えている。そして、このような配線基板2の一方の主面の所定の位置に、ICパッケージ3やコンデンサ4のような電気・電子部品が搭載され、前記配線2bと電気的に接続されている。なお、ICパッケージ3やコンデンサ4と配線2bとの接続は、これらの部品のリード端子3a、4aが配線基板2の部品孔(図示を省略する。)に挿入され、はんだ等を介して接合されることで行われている。
【0065】
また、配線基板2の部品搭載面には、前記した本発明の室温硬化性ポリオルガノシロキサン組成物の硬化物からなる硬化被膜5が、ICパッケージ3およびコンデンサ4の上面を覆うように形成されている。
【0066】
このような実施形態の電気・電子機器1においては、配線基板2およびその主面に搭載された電気・電子部品が、耐スクラッチ性に優れ、摩擦によって剥がれやめくれが生じにくい硬化被膜5で覆われているので、信頼性が高い。
【実施例】
【0067】
以下、本発明を実施例により具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。なお、実施例中、「部」とあるのはいずれも「質量部」、「%」とあるのはいずれも「質量%」を表し、粘度は全て23℃、相対湿度50%での値を示す。
【0068】
[合成例1]
(A1)成分として実施例に用いる分岐状ポリオルガノシロキサンである末端トリメチルシリル基封鎖分岐状ポリメチルシロキサン(A12−1)を以下のようにして合成した。
【0069】
3Lのセパラブルフラスコに水1300gを仕込み、撹拌しながら、ジメチルジクロロシラン410gとメチルトリクロロシラン123gとトリメチルクロロシラン16gの混合物をフラスコ内に滴下した。
【0070】
次いで、分液ロートを用いて下層の塩酸層を除去し、さらに水650gと食塩20gを添加し撹拌した後、食塩水層を除去し、ろ過した。こうして、末端シラノール基を有する分岐状のポリオルガノシロキサン800gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
【0071】
1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサン200gとメチルトリメトキシシラン50gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながら、ギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランを系外に留去させた。
【0072】
こうして、得られたポリオルガノシロキサン(A12−1)の組成および構造を、H−NMRおよび29Si−NMRで調べたところ、式:(CHSiO1/2で表されるM単位と、式:(CHSiO2/2で表されるD単位と、式:(CH)(OCH0.2SiO2.8/2で表されるT単位からなる平均組成を有し、各単位の含有モル比が、M:D:T=1:19:5である分岐状のポリオルガノシロキサンであることがわかった。また、得られたポリオルガノシロキサン(A12−1)の粘度は、40mPa・sであり、Mwは2,700であった。
【0073】
[合成例2]
実施例に用いる(A2)成分として、ポリオルガノシロキサン(a2)に相当するポリオルガノシロキサン(A2−1)を以下のようにして合成した。
【0074】
5Lのセパラブルフラスコに、トルエン1410gとメタノール135gを仕込み、撹拌しながら、メチルトリメトキシシラン1326gとメチルトリクロロシラン20gの混合物をフラスコ内に添加した。そして、マントルヒーターを用いて、フラスコ内の温度を35℃まで昇温させた後、市水510gをフラスコ内に滴下した。滴下終了後の液温は60℃まで昇温した。2時間、加熱還流を継続した後、市水510gを加えて分液を行い、上層の水・メタノール・HCLの層は廃棄した。下層のレジン・トルエン層は常圧で脱水した後、減圧ストリッピングにより過剰のトルエンを留去し、不揮発分を50%とした。ろ過後、末端にシラノール基を有し三次元網目構造を有するポリオルガノシロキサン1268gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
【0075】
1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサンの50%トルエン溶液400gと、メチルトリメトキシシラン112gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながら、ギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランとトルエンを系外に留去させた。
【0076】
こうして、得られたポリオルガノシロキサン(A2−1)の組成および構造を、H−NMRで調べたところ、平均組成式:(CH1.0Si(OCH0.21.4で表される三次元網目構造を有するポリオルガノシロキサンであることがわかった。また、このポリオルガノシロキサン(A2−1)は、常温で固体状であり、Mwは7,000であった。
【0077】
[合成例3]
実施例に用いる(A2)成分として、ポリオルガノシロキサン(a2)に相当するポリオルガノシロキサン(A2−2)を以下のようにして合成した。
【0078】
5Lのセパラブルフラスコに、トルエン1410gとメタノール135gを仕込み、撹拌しながら、メチルトリメトキシシラン1326gとジメチルジメトキシシラン130gおよびメチルトリクロロシラン20gの混合物をフラスコ内に添加した。そして、マントルヒーターを用いて、フラスコ内の温度を35℃まで昇温させた後、市水510gをフラスコ内に滴下した。滴下終了後の液温は60℃まで昇温した。2時間、加熱還流を継続した後、市水510gを加えて分液を行い、上層の水・メタノール・HCLの層は廃棄した。下層のレジン・トルエン層は常圧で脱水した後、減圧ストリッピングにより過剰のトルエンを留去し、不揮発分を50%とした。ろ過後、末端にシラノール基を有し三次元網目構造を有するポリオルガノシロキサン1268gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
【0079】
1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサンの50%トルエン溶液400gと、メチルトリメトキシシラン112gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながらギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランとトルエンを系外に留去させた。
【0080】
こうして、得られたポリオルガノシロキサン(A2−2)の組成および構造を、H−NMRで調べたところ、平均組成式:(CH1.1Si(OCH0.21.35で表される三次元網目構造を有するポリオルガノシロキサンであることがわかった。また、このポリオルガノシロキサン(A2−2)は、常温で半固体状(水あめ状)であり、Mwは5,000であった。
【0081】
[合成例4]
実施例に用いる(A2)成分として、ポリオルガノシロキサン(a2)に相当するポリオルガノシロキサン(A2−3)を以下のようにして合成した。
【0082】
5Lのセパラブルフラスコに、トルエン1410gとメタノール135gを仕込み、撹拌しながら、メチルトリメトキシシラン1739gとジメチルジメトキシシラン298gおよびメチルトリクロロシラン20gの混合物をフラスコ内に添加した。そして、マントルヒーターを用いて、フラスコ内の温度を35℃まで昇温させた後、市水510gをフラスコ内に滴下した。滴下終了後の液温は60℃まで昇温した。2時間、加熱還流を継続した後、市水510gを加えて分液を行い、上層の水・メタノール・HCLの層は廃棄した。下層のレジン・トルエン層は常圧で脱水した後、減圧ストリッピングにより過剰のトルエンを留去し、不揮発分を50%とした。ろ過後、末端にシラノール基を有し三次元網目構造を有するポリオルガノシロキサン1268gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
【0083】
1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサンの50%トルエン溶液400gと、メチルトリメトキシシラン112gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながら、ギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランとトルエンを系外に留去させた。
【0084】
こうして、得られたポリオルガノシロキサン(A2−3)の組成および構造を、H−NMRで調べたところ、平均組成式:(CH1.2Si(OCH0.221.29で表される三次元網目構造を有するポリオルガノシロキサンであることがわかった。また、このポリオルガノシロキサン(A2−3)は、常温で半固体状(水あめ状)であり、Mwは29,000であった。
【0085】
[実施例1]
(A1)成分として上記ポリオルガノシロキサン(a11)に分類される(A11−1)分子鎖両末端がメチルジメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度10mPa・s)50部に、合成例2で得られた平均組成式:(CH1.0Si(OCH0.21.4で表されるポリオルガノシロキサン(A2−1)(Mw7,000)50部、(C)メチルトリメトキシシラン5部、(B)ジイソプロポキシ−ビス(アセト酢酸エチル)チタン2部、および1,3,5−トリス(N−トリメトキシシリルプロピル)イソシアヌレート0.2部をそれぞれ配合し、湿気遮断下で均一に混合してポリオルガノシロキサン組成物を得た。
【0086】
[実施例2〜12]
表1に示す各成分を同表に示す組成でそれぞれ配合し、実施例1と同様に混合してポリオルガノシロキサン組成物を得た。
【0087】
なお、表1において、(A1)成分として用いたポリオルガノシロキサンの略号は以下のとおりである。
(A11)はポリオルガノシロキサン(a11)に分類される直鎖状ポリオルガノシロキサンを、(A12)は分岐状ポリオルガノシロキサンを、(A13)は、シラン化合物(a12)の部分加水分解縮合物を示す。
【0088】
(A11−1)は、上記のとおりポリオルガノシロキサン(a11)に分類される分子鎖両末端がメチルジメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度10mPa・s)を示す。
(A11−2)は、ポリオルガノシロキサン(a11)に分類される分子鎖両末端がトリメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度15mPa・s)を示す。
(A11−3)は、ポリオルガノシロキサン(a11)に分類される分子鎖両末端がトリメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度100mPa・s)を示す。
(A12−1)は、合成例1で得られた粘度40mPa・sでMw2,700の分岐状のポリオルガノシロキサンを示す。
(A13−1)は、メチルトリメトキシシランの部分加水分解縮合物(粘度18mPa・s、Si数7)を示す。
【0089】
また、(A2)成分として用いたポリオルガノシロキサンの略号は以下のとおりである。
(A2−1)は、上記のとおり合成例2で得られた平均組成式:(CH1.0Si(OCH0.21.4で表されるポリオルガノシロキサン(Mw7,000)を示す。
(A2−2)は、合成例3で得られた平均組成式:(CH1.1Si(OCH0.21.35で表されるポリオルガノシロキサン(Mw5,000)を示す。
(A2−3)は、合成例4で得られた平均組成式:(CH1.2Si(OCH0.221.29で表されるポリオルガノシロキサン(Mw29,000)を示す。
【0090】
[比較例1〜4]
表2に示す各成分を同表に示す組成でそれぞれ配合し、実施例1と同様に混合してポリオルガノシロキサン組成物を得た。
なお、比較例3において、実施例における(A)成分の代わりに(A1)’成分として分子鎖両末端がメチルジメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度1,000mPa・s)を使用した。また、比較例1および4においては、硬化触媒として、(B)ジイソプロポキシ−ビス(アセト酢酸エチル)チタンに代わって(B)’ジブチルスズジラウレートを使用した。
【0091】
実施例1〜12および比較例1〜4で得られたポリオルガノシロキサン組成物について、下記に示す方法で各種特性を測定し評価した。これらの結果を組成とともに、実施例1〜12については表1に、比較例1〜4については表2にそれぞれ示す。
【0092】
[粘度]
上記ポリオルガノシロキサン組成物の粘度を、JIS K6249に拠って測定した。回転粘度計(芝浦セムテック株式会社製、製品名:ビスメトロンVDA−2)を使用し、回転速度30rpm、回転子No.2で測定を行った。
【0093】
[タックフリータイム]
上記ポリオルガノシロキサン組成物のタックフリータイムを、JIS K6249に拠って測定した。試料を、泡が入らないようにアルミシャーレに平らに入れた(試料の厚みは3mm)後、エチルアルコールで洗浄した指先で表面に軽く触れた。試料が指先に付着しなくなる時間を、タックフリータイム(分)とした。
【0094】
[硬度]
上記ポリオルガノシロキサン組成物の硬度を、JIS K6249に拠り、以下に示すようにして測定した。すなわち、ポリオルガノシロキサン組成物を厚さ2mmのシート状に成形した後、23℃、50%RHで3日間放置して硬化させた。次いで、得られた硬化シートを3枚重ね、デュロメータ(Type A)により硬度を測定した。
【0095】
[耐スクラッチ性]
上記ポリオルガノシロキサン組成物を、JIS Z3197(ISO9455)で規定されたくし形電極基板(銅電極、パターン幅0.316mm)上に100μmの厚さで塗布し、23℃、50%RHで3日間放置して硬化させた。次いで、形成された硬化被膜に、JIS K5600−5−4に準じて鉛筆硬度試験を行い、耐スクラッチ性を評価した。鉛筆硬度試験では、2Bおよび4Bの鉛筆を用い、750g荷重で線を引き、硬化被膜のその後の状態を目視し、下記の基準に従って評価した。
【0096】
<評価基準>
評価○:硬化被膜のめくれなし。
評価×:硬化被膜が破壊。めくれ有り。
【0097】
【表1】
【0098】
【表2】
【0099】
表1から、実施例1〜12で得られたポリオルガノシロキサン組成物は、均一で薄膜塗布に適した粘度を有しているうえに、硬度(Type A)が60以上と高く、耐スクラッチ性に優れた硬化被膜を形成することがわかった。
【0100】
それに対して、表2からわかるように、比較例1および2では、均一で薄膜塗布に適した粘度を有するポリオルガノシロキサン組成物は得られなかった。また、比較例3で得られたポリオルガノシロキサン組成物は、薄膜塗布が可能な粘度ではあるが、得られた硬化被膜は硬度が低く、耐スクラッチ性も不良であった。さらに、比較例4で得られたポリオルガノシロキサン組成物は、タックフリータイムが長く、硬化に時間がかかり過ぎことがわかった。
【0101】
さらに、実施例1〜12、比較例1〜4で得られたポリオルガノシロキサン組成物について、以下に示すようにして、エポキシガラスに対する接着性を調べたところ、良好な結果が得られた。結果を表1および表2に示す。
[接着性]
エポキシガラスからなる基材の表面に、ポリオルガノシロキサン組成物を長さ50mm、幅10mmで、厚さ1mmになるように塗布し、23℃、50%RHの雰囲気中に3日間放置して硬化させた。その後、基材表面から硬化物を金属ヘラで掻き取り、このときの硬化物の剥離の状態を調べた。そして、以下の基準で接着性を評価した。
【0102】
<評価基準>
接着性○:基材との界面から硬化物を剥離することができず、硬化物が破壊する。
接着性△:基材との界面から硬化物の一部は剥離し、硬化物の一部は破壊する。
接着性×:基材との界面から硬化物を剥離することができる。
【産業上の利用可能性】
【0103】
本発明の室温硬化性ポリオルガノシロキサンは、電気・電子機器のコーティング材、ポッティング材等の用途に有用であり、特に、基板上に電子部品等が搭載された電気・電子機器におけるコンフォーマルコーティング剤として好適する。
【符号の説明】
【0104】
1…電気・電子機器、2…配線基板、3…ICパッケージ、4…コンデンサ、5…室温硬化性ポリオルガノシロキサン組成物の硬化被膜。
【要約】
低粘度、無溶剤で塗布性が良く、かつ耐スクラッチ性に優れた硬化被膜を形成する室温硬化性ポリオルガノシロキサン組成物を提供する。本発明の室温硬化性ポリオルガノシロキサン組成物は、(A1)ケイ素原子に結合するアルコキシ基を2個以上有し、粘度が3mPa・s〜500mPa・sのポリオルガノシロキサン10〜80質量部と、(A2)平均組成式:RSi(OR{4−(a+b)}/2(式中、Rは、非置換の一価炭化水素基など、Rは、アルキル基またはアルコキシ置換アルキル基。aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。)で表され、Mwが2,000〜100,000であり、三次元網目構造を有し常温で固体状または半固体状であるポリオルガノシロキサン90〜20質量部とを混合してなる混合物(A)100質量部に対して、(B)有機チタン化合物0.1〜15質量部を含有する。
図1