【実施例】
【0059】
次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0060】
[実施例1]
エノキタケ由来メチルトランスフェラーゼ遺伝子の単離・同定を行った。
<メチルトランスフェラーゼ酵素活性のスクリーニング>
食用として市販されている日本産のシイタケ、シメジ、マイタケ、エノキタケ、ブナシメジ、ヒラタケ、ナラタケ、タモギタケ、エリンギ、アワビタケをスクリーニングに用いた。
まず、これらの子実体の柄の部分をカットし、0.5%次亜塩素酸に浸した後、滅菌水で洗浄した。柄の内部から5mm程度を切り出し、Difco Potato Dextrose Ager培地上で、25℃にて培養し、菌糸体を単離した。得られた菌糸体を、菌糸体培養用液体培地(0.02% glucose、0.01% peptone、0.002% Yeast Extract、0.002% KH
2PO
4、0.001% MgSO
4・7H
2O)に接種し、28℃で旋回培養した。
得られた菌糸体培養液をろ過して菌糸体を回収し、粗酵素溶解液(20mM Tris−HCl(pH7.5)、1mM DTT、1mM EDTA、10% glycerol)を加えて超音波破砕した後、遠心分離して上清を回収した。この上清を粗酵素液として酵素活性測定に用いた。
酵素活性測定は、基質としてEGCGを用い、そのメチル化体の生成量を指標とした。酵素反応液の組成は、20mM Tris−HCl(pH7.5)、2.5mM MgCl
2、0.25mM EGCG、0.5mM SAM、及び50% 粗酵素液とし、全量3mlを37℃、16時間反応させた。
反応後、酵素反応液3mlに、1N HCl 70μl及び酢酸エチル5mlを加えて攪拌し、遠心分離して有機層を回収した。有機層を窒素で乾固した後、1%アスコルビン酸含有30%メタノール水溶液に溶解し、HPLCを用いて測定した。HPLC条件を以下に示す。
カラム:Wakopak Navi C18−5(4.6×150mm)及びC18−5(4.6×10mm)(和光純薬社製)
移動相A:蒸留水、アセトニトリル、リン酸を400:10:1(v/v)で混合した溶液
移動相B:移動相Aとメタノールを2:1(v/v)で混合した溶液
グラジエント条件:20%B液(2分間)→80%B液(25分間)→80%B液(10分間)、直線濃度勾配
流速:1ml/min
検出:UV280nm
【0061】
その結果、エノキタケ培養菌糸体から抽出した粗酵素を用いた場合に、エピガロカテキン−3−O−(3−O−メチル)ガレート、エピガロカテキン−3−O−(4−O−メチル)ガレート、エピガロカテキン−3−O−(3,4−O−ジメチル)ガレート、エピガロカテキン−3−O−(3,5−O−ジメチル)ガレート、エピ(4−O−メチル)ガロカテキン−3−O−(3,5−O−ジメチル)ガレートの生成が確認された。なお、エピガロカテキン−3−O−(3,4−O−ジメチル)ガレート、エピガロカテキン−3−O−(3,5−O−ジメチル)ガレート、エピ(4−O−メチル)ガロカテキン−3−O−(3,5−O−ジメチル)ガレートに関しては、それらのピークを分取し、TOF−MS、NMRを用いて構造を確認した。また、粗酵素液を煮沸した後に酵素反応液に添加した場合や、酵素反応液にEGCGやSAMを添加しなかった場合には、これらのメチル化体の生成は認められなかった。
以上の結果から、エノキタケ培養菌糸体から抽出した粗酵素がメチルトランスフェラーゼ酵素活性を有することが確認された。
【0062】
<各種エノキタケ酵素活性の確認>
エノキタケの採取地の違い等によるメチルトランスフェラーゼ酵素活性の有無を確認した。エノキタケの菌糸は、農業生物資源ジーンバンクより購入したものを使用し、Difco Potato Dextrose Ager培地上で25℃にて培養した。菌糸体の液体培養及び酵素活性測定は、上記<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様にして行った。試験には、MAFF番号430204、430205、430206、430207、430209、435210、430212、430214、430224、435085、430211、430213、435121、440110、440111、及び440118を用いた。その結果、それぞれの菌糸によって酵素活性の強弱はあるものの、全ての菌糸において、メチルトランスフェラーゼ酵素活性を確認した。
【0063】
<エノキタケ由来メチルトランスフェラーゼの同定>
上記と同様にしてエノキタケ菌糸体を液体培養し、得られた菌糸体培養液をろ過して菌糸体を回収し、凍結乾燥した。凍結乾燥物約12gを乳鉢で破砕した後、粗酵素溶解液600mlに懸濁した。この懸濁物を超音波破砕した後、遠心分離(10,000rpm×10min、4℃)し、回収した上清を再度遠心分離(30,000rpm×30min、4℃)して上清を回収した。この上清に、60%飽和になるように硫酸アンモニウムを添加し、攪拌、遠心分離して上清を回収した。さらに、この回収した上清に、80%飽和になるように硫酸アンモニウムを添加し、攪拌、遠心分離して沈殿物を得た。得られた沈殿物を、粗酵素溶解液40mlに溶解した後、PD−10(GEヘルスケアバイオサイエンス社製)を用いて脱塩した。脱塩したサンプルは、トリス緩衝液(20mM Tris−HCl(pH7.5)、1mM DTT)で平衡化した陰イオン交換カラム(HiPrep 16/10 DEAE FF、GEヘルスケアバイオサイエンス社製)に吸着させ、上記トリス緩衝液で調整した0〜500mM NaCl溶液の直線濃度勾配を用いて溶出し、メチルトランスフェラーゼ酵素活性が確認されたフラクションを、活性画分として分取した。なお、メチルトランスフェラーゼ酵素活性の確認は、<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様にして行った。
得られた活性画分を、限外ろ過カラムで脱塩、濃縮した後、上記トリス緩衝液で平衡化した陰イオン交換カラム(HiLoad 26/10 Q−sepharose HP、GEヘルスケアバイオサイエンス社製)に吸着させ、上記トリス緩衝液で調整した0〜500mM NaCl溶液の直線濃度勾配を用いて溶出し、活性画分を分取した。得られた活性画分を、限外ろ過カラムにて脱塩、濃縮し、再度同じ陰イオン交換カラムに吸着させ、分取画分を前条件より詳細にして活性画分を分取し、同様に限外ろ過カラムにて脱塩、濃縮を行った。
【0064】
得られた濃縮画分を、150mM NaClを含むトリス緩衝液(20mM Tris−HCl(pH7.5)、1mM DTT、150mM NaCl)で平衡化したゲルろ過カラム(HiLoad 16/60 Superdex 200 prep grade、GEヘルスケアバイオサイエンス社製)を用いて分画した。分取した各画分をSDS−PAGE電気泳動にかけ、得られたタンパク質染色像と、各画分のメチルトランスフェラーゼ酵素活性とを比較したところ、酵素活性と相関したバンドが、約24〜25kDaの位置に確認された。酵素活性が確認された画分を、さらに、上記トリス緩衝液で平衡化した陰イオン交換カラム(TSK−GEL BIOASSIST Q、東ソー社製)に吸着させ、上記トリス緩衝液で調整した0〜500mM NaCl溶液の直線濃度勾配を用いて溶出し、活性画分を分取した。活性画分を、再度SDS−PAGE電気泳動にかけた結果、約24〜25kDaの位置に再度特異的なバンドを確認した。この酵素タンパク質の内部配列を明らかにするために上記陰イオン交換カラム(HiLoad 26/10 Q−sepharose HP、GEヘルスケアバイオサイエンス社製)で精製したサンプルをSDS−PAGE電気泳動にかけ、バンドをゲルから回収した。
回収したバンドは、常法に従ってゲル内トリプシン消化処理を行い、LC/MS/MSを用いてタンパク質の内部配列を解析した。さらに、同じ活性画分を二次元電気泳動で電気泳動し(一次元目:pH3〜10の等電点分離、二次元目:4〜20%グラジエントのポリアクリルアミドゲル)、分子量約24〜25kDa、pH5付近のスポットをゲルから回収した。
図3は、二次元電気泳動像である。図中、丸で囲んだスポットを、目的の酵素タンパク質として回収した。
この回収したスポットに対して常法に従ってゲル内トリプシン消化処理を行い、LC/MS/MSを用いて、スポットに存在しているタンパク質の内部配列の確認を行った。その結果、内部配列RVLEVGTLGGYSTTWLARA(配列番号3)及びTGGIIIVDNVVR(配列番号4)を得た。このアミノ酸配列をもとに、NCBIのデータベースによるホモロジー検索を行った結果、既知のO−メチルトランスフェラーゼの内部配列と高い相同性を有していた。
【0065】
<エノキタケ由来メチルトランスフェラーゼ遺伝子の単離・同定>
上記内部配列の配列情報に基づいてディジェネレートプライマーを設計し、エノキタケから回収したtotal−RNAから、エノキタケ由来メチルトランスフェラーゼ遺伝子を単離・同定した。
具体的には、まず、エノキタケ培養菌糸体約1gを、乳鉢を用いて液体窒素下で破砕したものから、TRI Reagent(シグマ社製)を用いてtotal−RNAを回収した。得られたtotal−RNA約4μgから、サーモスクリプトRT−PCRシステム(インビトロジェン社製)を用いて、55℃、50分間反応させることによりcDNAを合成した。このcDNAを鋳型とし、上記内部配列の配列情報に基づいて設計されたディジェネレートプライマー(FVOMT−F及びFVOMT−R)を用いてPCRを行い、エノキタケ由来メチルトランスフェラーゼ遺伝子の単離を行った。設計されたディジェネレートプライマーの塩基配列及びPCR条件を下記に記す。なお、塩基配列中、Sはグアニン又はシトシンを、Mはアデニン又はシトシンを、Yはチミン又はシトシンを、Dはアデニン、グアニン、又はチミンを、Kはグアニン又はチミンを、Vはアデニン、グアニン、又はシトシンを、Rはグアニン又はアデニンを、それぞれ示す。FVOMT−F:GAGGTSGGMACYYTDGGMGGSTAFVOMT−R:GCKSACVACRTTRTCMAC PCR条件:94℃,5min→(94℃,1min→55℃,1min→72℃,1min)×40cycles→72℃,7min
【0066】
PCR産物をアガロースゲル電気泳動にかけた結果、約400bpの増幅バンドが確認された。アガロースゲルから当該バンドを切り出し、QIAquick Gel Extraction Kit(キアゲン社製)を用いてPCR産物を回収し、pGEM−Tベクター(プロメガ社製)へクローニングした後、大腸菌JM−109株(タカラ社製)へ形質転換した。得られた形質転換体を、LB培地にて37℃で終夜振とう培養し、得られた培養物からQIAprep Spin Miniprep Kit(キアゲン社製)を用いてプラスミドを抽出した。抽出されたプラスミドのインサートの塩基配列を、Big Dye Terminator v3.1 Cycle Sequencing Kit(アプライドバイオシステムズ社製)及びABI PRISM 3100−AVANT Genetic Analyzer(アプライドバイオシステムズ社製)により確認した。
【0067】
確認された遺伝子の部分塩基配列をもとに、特異的プライマー(FVOMT−5’GSP1、FVOMT−5’GSP2、FVOMT−3’GSP1、FVOMT−3’GSP2)を設計し、5’側と3’側の全長を取得するためにRACE−PCR法を行った。設計した特異的プライマーの塩基配列を下記に示す。FVOMT−5’GSP1:AGCCTCTTAGCCTCAACAAAGTAFVOMT−5’GSP2:TCTTCGAGCTCGAAGGTGATFVOMT−3’GSP1:ATCACCTTCGAGCTCGAAGAFVOMT−3’GSP2:TACTTTGTTGAGGCTAAGAGGCT
【0068】
5’RACE−PCRは、まず、単離したtotal−RNA2.5μgから、FVOMT−5’GSP1プライマーを用い、サーモスクリプトRT−PCRシステム(インビトロジェン社製)を用いて、55℃、50分間反応させてcDNAを合成した。次いで、得られたcDNAから、5’RACE System for Rapid Amplification of cDNA Ends,Version 2.0(インビトロジェン社製)を用い、FVOMT−5’GSP1プライマー及びFVOMT−5’GSP2プライマーを用いて5’側の単離を行い、塩基配列を確認した。
同様に、3’RACE−PCRは、サーモスクリプトRT−PCRシステム(インビトロジェン社製)を用いてcDNAを合成し、3’RACE System for Rapid Amplification of cDNA Ends,Version 2.0(インビトロジェン社製)を用いて、得られたcDNAからFVOMT−3’GSP1プライマー及びFVOMT−3’GSP2プライマーを用いて3’側の単離を行い、塩基配列を確認した。
確認された5’末端及び3’末端の塩基配列に基づき、下記に示すFVOMT−5’NdeIプライマー及びFVOMT−3’BamHIプライマーを設計し、RT−PCRを行った。得られたPCR産物をアガロースゲル電気泳動し、増幅バンドを回収した。回収したPCR産物をpGEM−Tベクターへクローニングし、大腸菌JM109株へ形質転換後、インサートの塩基配列を確認した。その結果、エノキタケ由来メチルトランスフェラーゼ酵素の全遺伝子を単離するにいたった。同定されたエノキタケ由来メチルトランスフェラーゼ遺伝子の塩基配列は、配列番号1で表される塩基配列であり、配列番号2で表されるアミノ酸配列からなるポリペプチドをコードしている。FVOMT−5’NdeI:TACATATGTCCAACCCGACAAGCATACTFVOMT−3’BamHI:TAGGATCCAAGTTTGATAGCGTACAAGAATCC
【0069】
[実施例2]<組換えエノキタケ由来メチルトランスフェラーゼ酵素の製造>
実施例1で単離されたエノキタケ由来メチルトランスフェラーゼ遺伝子を組み込んだ組換え発現ベクターを作製し、この組換え発現ベクターを大腸菌に導入して、大腸菌内で発現させたエノキタケ由来メチルトランスフェラーゼ酵素を回収した。
具体的には、まず、実施例1で作製したエノキタケ由来メチルトランスフェラーゼ遺伝子含有pGEM−Tベクターから、制限酵素NdeIとBamHIで切断し、アガロース電気泳動により、インサートを回収した。このインサートを、pET28a(+)ベクター(ノバジェン社製)のNdeI、BamHIサイトへクローニングすることにより、組換え発現ベクターを作製した。この組換え発現ベクターを大腸菌BL21(DE3)株(ストラタジーン社製)へ導入することにより、当該組換え発現ベクターを含む形質転換体を得た。
得られた形質転換体をLB培地にて37℃で終夜振とう培養した後、その一部を再度新しいLB培地へ添加して培養した。O.D.600=0.6付近となるように培養した後、IPTGを最終濃度1mMになるように添加し、さらに28℃で振とう培養して、ヒスチジンタグ付酵素タンパク質の発現誘導を行った。発現誘導した大腸菌を遠心分離し、沈殿物を上記トリス緩衝液に懸濁した。この大腸菌懸濁液を超音波破砕し、再度遠心分離した。得られた上清(ライセート)を、12%SDS−PAGEにて電気泳動した結果、IPTG誘導前の大腸菌を同様に処理して電気泳動した場合と比較して、約29kDa付近に、IPTG処理により発現が誘導されたタンパク質のバンドを確認した。
図4は、IPTG処理前の大腸菌のライセート(レーン1)、IPTG処理後の大腸菌のライセート(レーン2)、IPTG処理後の大腸菌のライセートからヒスチジンタグを用いて得られた精製物(レーン3)のSDS−PAGE電気泳動像である。図中、「M」は分子量マーカーを流したレーンである。図中の矢印の位置のバンド(約29kDa)を画像解析し、タンパク質量を数値化して比較した。画像解析には、Photoshop(アドビシステムズ社製)及びScion Image(Scion Corporation社製)ソフトウェアを使用した。その結果、この約29kDaのタンパク質量は、IPTG処理前を0%とした場合、IPTG処理後で8.4%、処理後の精製物で25.1%であり、当該タンパク質が、IPTG処理により発現が誘導されたヒスチジンタグを有するタンパク質であることが確認された。
pET28a(+)ベクターのNdeI、BamHIサイトへクローニングした場合、約5kDaのベクター由来発現タンパク質(ヒスチジンタグを含む)が付加される。また、配列番号2のアミノ酸配列から算出された本酵素タンパク質の理論分子量は、24.7kDaである。つまり、
図4の矢印で示した約29kDaのタンパク質は、組換え発現ベクターにより導入したアミノ酸配列から得られる推定分子量と一致し、ヒスチジンタグ付きエノキタケ由来メチルトランスフェラーゼ酵素であることが分かった。
【0070】
[実施例3]<組換えエノキタケ由来メチルトランスフェラーゼ酵素の酵素活性>
実施例2で得られたIPTG処理後の大腸菌のライセートを、エノキタケ由来メチルトランスフェラーゼ酵素の組換え酵素の粗酵素液とし、この粗酵素液のメチルトランスフェラーゼ酵素活性を調べた。
具体的には、20mM Tris−HCl(pH7.5)、2.5mM MgCl
2、0.25mM EGCG、0.5mM SAM、及び50% 粗酵素液となるように、酵素反応液3mlを調製し、この酵素反応液を37℃、16時間インキュベートし、反応させた。反応後の酵素反応液を、実施例1の<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様に処理して分析した結果、エピガロカテキン−3−O−(3−O−メチル)ガレート、エピガロカテキン−3−O−(4−O−メチル)ガレート、エピガロカテキン−3−O−(3,4−O−ジメチル)ガレート、エピガロカテキン−3−O−(3,5−O−ジメチル)ガレート、エピ(4−O−メチル)ガロカテキン−3−O−(3,5−O−ジメチル)ガレートの生成が確認できた。
これらの結果から、実施例2において大腸菌内で発現させた組換え酵素が、メチルトランスフェラーゼ酵素活性を有していることが確認された。
【0071】
[実施例4]<菌糸体抽出粗酵素液を用いたメチル化体の製造>
実施例1と同様にして、エノキタケ菌糸体培養液の菌糸体から抽出し、得られた抽出物の60%〜80%硫酸アンモニウム画分を脱塩処理したものを、エノキタケ由来メチルトランスフェラーゼ酵素の天然型酵素の粗酵素液とした。
具体的には、まず、エノキタケ菌糸体培養液をろ過して菌糸体を回収し、凍結乾燥した。得られた凍結乾燥物を乳鉢にて破砕した後、上記粗酵素溶解液に懸濁して、超音波破砕し、遠心分離して上清を回収した。この上清に、60%飽和になるように硫酸アンモニウムを添加し、攪拌、遠心分離して上清を回収した。さらに、この回収した上清に、80%飽和になるように硫酸アンモニウムを添加し、攪拌、遠心分離して沈殿物を得た。得られた沈殿物を、粗酵素溶解液に溶解した後、PD−10(GEヘルスケアバイオサイエンス社製)を用いて脱塩した。この脱塩サンプルを、エノキタケ由来メチルトランスフェラーゼ酵素の天然型酵素の粗酵素液とした。
得られた粗酵素液の各種基質に対するメチルトランスフェラーゼ活性を確認した。酵素反応液の組成は、20mM Tris−HCl(pH7.5)、2.5mM MgCl
2、0.05mM 基質、0.5mM SAM、0.04% アスコルビン酸、及び粗酵素液(全量3mlに対して0.25ml)とし、全量3mlを37℃、6時間反応させた。基質には、エピカテキン−3−O−ガレート(ECG)、カテキンガレート(CG)、ガロカテキン−3−O−ガレート(GCG)、カフェ酸、クロロゲン酸、エラグ酸、ブテイン、スルフレチン、ルテオリン、ミリセチン、又はロスマリン酸を、それぞれ用いた。
反応後の酵素反応液を、実施例1<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様に処理して、当該酵素反応液中のメチル化体を、下記の条件でLC−MSを用いて分析した。標品と比較分析が可能なものについては同定も行った。HPLC条件及びMS条件を以下に示す。
・HPLC条件
カラム:Inertsil ODS−3、2.1×150mm(GLサイエンス社製)
移動相A:0.1(v/v)%ギ酸水溶液
移動相B:0.1(v/v)%ギ酸を含むアセトニトリル
グラジエント条件(i):8%B液(20分間)→25%B液(88分間)
グラジエント条件(ii):8%B液(10分間)→50%B液(31分間)
流速:0.2ml/min
検出:UV280nm
・MS条件
検出器:API3000(アプライドバイオシステムズ社製)
イオン源:ESI(ネガティブ)
カーテンガス:10
ネブライザーガス:14
ターボガス:6l/min
イオンスプレー電圧:−4000V
イオンスプレー温度:500度
コーン電圧:−41V
【0072】
LC−MS分析の結果を表1に示す。この結果、用いた全ての基質に対して、メチル化体の生成が確認された。これらの結果から、本発明の酵素は、水酸基を有する各種化合物を基質とし、メチル基を修飾することが可能であることが明らかとなった。
また、ECGのように、化合物中に複数の水酸基を有する化合物の中には、複数種類のメチル化体の生成が確認され、かつ、ジメチル化体も確認された。この結果から、本発明の酵素は、基質の化合物中の複数の水酸基のそれぞれを独立にメチル化可能であることも確認された。
【0073】
【表1】
【0074】
[実施例5]<反応時間の検討>
実施例4で用いたエノキタケ由来メチルトランスフェラーゼ酵素の天然型酵素の粗酵素液(以下、天然型酵素)と、実施例2で用いたエノキタケ由来メチルトランスフェラーゼ酵素のヒスチジンタグ精製した組換え酵素液(以下、組換え酵素)とを用いて、酵素反応の反応時間を検討した。
酵素反応液の組成は、20mM リン酸緩衝液(pH7.0)、2.5mM MgCl
2、0.05mM EGCG、0.5mM SAM、0.04% アスコルビン酸、及び各粗酵素液(全量30mlに対して2.5ml)とし、全量30mlを37℃で反応させた。反応開始から5分、10分、15分、20分、25分、30分、35分、40分、45分、50分、55分、60分、2時間、 4時間、6時間、8時間、24時間後に、酵素反応液を1mlずつ分取した。これらの酵素反応液を、実施例1<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様に処理して、当該酵素反応液中のメチル化体を、下記のHPLC条件で分析した。
カラム:Inertsil ODS−3、2.1×150mm(GLサイエンス社製)
移動相A:0.1(v/v)%ギ酸水溶液
移動相B:0.1(v/v)%ギ酸を含むアセトニトリル
グラジエント条件:10%B液(10分間)→16%B液(50分間)
流速:0.2ml/min
検出:UV280nm
各反応時間後に分取した酵素反応液中のEGCGメチル化体濃度を
図5A及び
図5Bに示す。
図5Aが天然型酵素の結果であり、
図5Bが組換え酵素の結果である。この結果、天然型酵素では反応開始8時間後で、組換え酵素では20分後で、EGCGメチル化体の生成が最も高い値を示した。
【0075】
[実施例6]<最適pHの検討>
実施例5において用いた天然型酵素及び組換え酵素の酵素反応における最適pHを調べた。
酵素反応液の組成は、20mMの各種緩衝液に、2.5mM MgCl
2、0.05mM EGCG、0.5mM SAM、0.04% アスコルビン酸、及び各粗酵素液(全量3mlに対して0.25ml)となるように添加して調製した。用いた緩衝液は、酢酸緩衝液(pH3.0〜5.5)、リン酸緩衝液(pH6.0〜7.0)、及びTris−HCl(pH7.5〜10)である。調製した酵素反応溶液の全量3mlを、37℃で反応させた。反応時間は、天然型酵素で6時間、組換え酵素で10分間とした。これらの酵素反応液を、実施例1<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様に処理して、当該酵素反応液中のメチル化体を分析した。
各pHの酵素反応液中のEGCGメチル化体濃度を
図6に示す。この結果、天然型酵素ではpH6.5〜8.5で、組換え酵素ではpH6以上で、EGCGメチル化体の生成が確認された。
【0076】
[実施例7]<最適温度の検討>
実施例5で用いた天然型酵素及び組換え酵素の酵素反応における最適温度を調べた。
酵素反応液の組成は、20mM リン酸緩衝液(pH7.0)、2.5mM MgCl
2、0.05mM EGCG、0.5mM SAM、0.04% アスコルビン酸、及び各粗酵素液(全量3mlに対して0.25ml)とし、全量3mlを、4、10、20、30、37、42、50、又は60℃で、それぞれ反応させた。反応時間は、天然型酵素で6時間、組換え酵素で10分間とした。これらの酵素反応液を、実施例1<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様に処理して、当該酵素反応液中のメチル化体を分析した。
各温度における酵素反応液中のEGCGメチル化体濃度を
図7に示す。この結果、天然型酵素では10〜50℃において、組換え酵素では行った全ての温度において、EGCGメチル化体の合成が確認された。中でも、30〜42℃で、両酵素のいずれにおいても良好な酵素活性が確認された。
【0077】
[実施例8]<天然型酵素(菌糸体抽出粗酵素液)を用いたメチル化体含有緑茶の製造>
実施例5で用いた天然型酵素を用いて、緑茶抽出物に対するメチルトランスフェラーゼ活性を確認した。
酵素反応液の組成は、20mM Tris−HCl(pH7.5)、2.5mM MgCl
2、0.01% 緑茶抽出物、0.5mM SAM、0.04% アスコルビン酸、及び各粗酵素液(全量3mlに対して0.25ml)とし、全量3mlを、37℃で6時間反応させた。なお、緑茶抽出物は、緑茶エキス粉末(上海宇維生物科技発展有限公司)を50%ジメチルスルホキシド水溶液に溶解したものを用いた。これらの酵素反応液を、実施例1<メチルトランスフェラーゼ酵素活性のスクリーニング>と同様に処理して、当該酵素反応液から抽出された酢酸エチル抽出物に含まれる緑茶カテキン類の組成を分析した。ブランクとして、粗酵素液に代えて水を添加した反応液を同様に処理し、緑茶カテキン類の組成を分析した。
図8は、天然型酵素処理したものとブランクの、緑茶カテキン類の組成を示した図である。なお、EGCはエピガロカテキンの略である。この結果、ブランクにはほとんど含まれていないEGCG3”Me及びECG3”Meの組成比が増大しており、本発明の酵素により、緑茶抽出物中のメチル化カテキン含量を増やすことが可能であることが明らかとなった。
[実施例9]
<組換えエノキタケ由来メチルトランスフェラーゼ酵素を用いたメチル化体の製造>
実施例2において製造した組換え酵素を用いて、各種基質に対するメチルトランスフェラーゼ活性を確認した。
酵素反応液の組成は、20mM リン酸緩衝液(pH6.5)、2.5mM MgCl
2、0.05mM 基質、0.5mM SAM、0.04% アスコルビン酸、及び酵素液(全量3mlに対して0.1ml)とし、全量3mlを37℃で、30分間反応させた。基質には、エピカテキン−3−O−ガレート(ECG)、カテキンガレート(CG)、ガロカテキン−3−O−ガレート(GCG)、エピカテキン(EC)、カテキン(C)、エピガロカテキン(EGC)、ガロカテキン(GC)、クロマニン、デルフィニジン、デルフィニジン3−O−グルコシド、プロシアニジンB2(PB2)、カフェ酸、クロロゲン酸、ロスマリン酸、カフェ酸フェネチルエステル、没食子酸、エラグ酸、ストリクチニン、ケルセチン、イソクエルシトリン、ルチン、ミリセチン、ブテイン、スルフレチン、ルテオリン、エリオジクチオールを用いた。
反応後、酵素反応液3mlに、1N HCl 70μl及び酢酸エチル5mlを加えて攪拌し、遠心分離して酵素を含む中間層を除き、有機層、又は水層を回収した。有機層は窒素で乾固した後、1%アスコルビン酸含有50%DMSO水溶液に、水層は凍結乾燥した後、1%アスコルビン酸水溶液に溶解し、下記の条件でLC−MSを用いて分析した。HPLC条件及びMS条件を以下に示す。
・HPLC条件
カラム:Inertsil ODS−3、2.1×150mm(GLサイエンス社製)
移動相A:0.1(v/v)%ギ酸水溶液
移動相B:0.1(v/v)%ギ酸を含むアセトニトリル
グラジエント条件(i):
8%B液(10分間)→50%B液(21分間)→50%B液(30分間)
流速:0.2ml/min
検出:UV280nm
・MS条件
検出器:QSTAR ELITE(アプライドバイオシステムズ社製)
イオン源:ESI ネガティブ(※アントシアニンのみポジティブで測定)
カーテンガス:30
イオンソースガス1:50
イオンソースガス2:50
イオンスプレー電圧:−4500V(+5500V)
イオンスプレー温度:450℃
デクラスタリングポテンシャル:−30V(+30V)
フォーカスポテンシャル:−250(250V)
デクラスタリングポテンシャル:−15V(+15V)
【0078】
LC−MS分析の結果を表2に示す。用いた全ての基質に対して、メチル化体の生成が確認された。これらの結果から、本発明の組換え酵素は水酸基を有する各種化合物を基質とし、メチル基を修飾することが可能であることが明らかとなった。
また、ECGのように複数の水酸基を有する化合物では、トリメチル化体を含む複数種類のメチル化体の生成が確認された。これらの結果から、本発明の酵素は、化合物中の複数の水酸基をそれぞれ独立にメチル化可能であることも確認された。
【0079】
【表2】
【0080】
実施例1〜9において使用した試薬の購入先は、以下の通りである。
Difco Potato Dextrose Ager:日本ベクトン・ディッキンソン
peptone: 日本ベクトン・ディッキンソン
Yeast Extract:日本ベクトン・ディッキンソン
EGCG:テアビゴ、DSMニュートリションジャパン
【0081】
LC/MS/MS:サーモフィッシャーサイエンティフィック
【0082】
エピカテキン−3−O−ガレート(ECG):フナコシ
カテキンガレート(CG):フナコシ
ガロカテキン−3−O−ガレート(GCG):フナコシ
カフェ酸:シグマ
クロロゲン酸:フナコシ
エラグ酸:フナコシ
ブテイン:フナコシ
スルフレチン:フナコシ
ルテオリン:フナコシ
ミリセチン:フナコシ
ロスマリン酸:フナコシ
【0083】
エピカテキン(EC):フナコシ
カテキン(C):フナコシ
エピガロカテキン(EGC) :フナコシ
ガロカテキン(GC) :フナコシ
クロマニン:フナコシ
デルフィニジン:フナコシ
デルフィニジン3−O−グルコシド:フナコシ
プロシアニジンB2(PB2):フナコシ
カフェ酸フェネチルエステル:フナコシ
没食子酸:フナコシ
ストリクチニン:フナコシ
ケルセチン:フナコシ
イソクエルシトリン:フナコシ
ルチン:フナコシ
エリオジクチオール:フナコシ