【課題を解決するための手段】
【0007】
本発明の一態様は、被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
前記第1の温度が前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上であることを特徴とするポーリング処理方法である。
【0008】
また、本発明の一態様において、前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
【0009】
本発明の一態様は、被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
前記第1の温度がキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)であることを特徴とするポーリング処理方法である。
【0010】
また、本発明の一態様において、前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
【0011】
本発明の一態様は、被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
前記第1の温度が100℃以上であることを特徴とするポーリング処理方法である。
【0012】
また、本発明の一態様において、前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
【0013】
また、本発明の一態様において、前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであるとよい。
【0014】
また、本発明の一態様において、前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材(好ましくは鉄系合金、ステンレス系、SUS等の基材)、及び、Ni系基材(例えばNi合金等の基材)のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
【0015】
また、本発明の一態様において、前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
【0016】
本発明の一態様は、被ポーリング基材にポーリング処理を行うポーリング処理方法であって、
前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法である。
【0017】
また、本発明の一態様において、前記被ポーリング基材は誘電体又は絶縁体を有する基材であるとよい。
また、本発明の一態様において、前記被ポーリング基材は圧電体を有する基材であるとよい。
また、本発明の一態様において、前記被ポーリング基材は焦電体を有する基材であるとよい。
また、本発明の一態様において、前記被ポーリング基材は強誘電体を有する基材であるとよい。
【0018】
また、本発明の一態様において、前記被ポーリング基材にポーリング処理を行う際は、前記被ポーリング基材に対向する位置にプラズマを形成するとよい。
【0019】
また、本発明の一態様において、前記被ポーリング基材に対向する位置に直流プラズマを形成した際の直流電圧または前記被ポーリング基材に対向する位置に高周波プラズマを形成した際の直流電圧成分が±50V〜±2kVであるとよい。
【0020】
また、本発明の一態様において、前記プラズマを形成する際の圧力が0.01Pa〜大気圧であるとよい。
【0021】
また、本発明の一態様において、前記プラズマを形成する際のプラズマ形成用ガスは、不活性ガス、H
2、N
2、O
2、F
2、C
xH
y、C
xF
y及びエアーの群から選ばれた1種以上のガスであるとよい。
【0022】
本発明の一態様は、上述したポーリング処理方法によって前記被ポーリング基材にポーリング処理が行われ、前記被ポーリング基材に圧電活性が与えられたことを特徴とする圧電体である。
【0023】
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
前記制御部は、前記被ポーリング基材を、前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
【0024】
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材を、前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
【0025】
また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
【0026】
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
前記制御部は、前記被ポーリング基材をキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
【0027】
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材をキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
【0028】
また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
【0029】
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
前記制御部は、前記被ポーリング基材を100℃以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
【0030】
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材を100℃以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
【0031】
また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
【0032】
また、本発明の一態様において、前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであるとよい。
【0033】
また、本発明の一態様において、前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材(好ましくは鉄系合金、ステンレス系、SUS等の基材)、及び、Ni系基材(例えばNi合金等の基材)のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
【0034】
また、本発明の一態様において、前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
【0035】
また、本発明の一態様において、前記被ポーリング基材は誘電体又は絶縁体を有する基材であるとよい。
また、本発明の一態様において、前記被ポーリング基材は圧電体を有する基材であるとよい。
【0036】
また、本発明の一態様において、前記被ポーリング基材は焦電体を有する基材であるとよい。
また、本発明の一態様において、前記被ポーリング基材は強誘電体を有する基材であるとよい。
【0037】
また、本発明の一態様において、前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V〜±2kVであるとよい。
また、本発明の一態様において、前記ポーリング処理を行う際の前記ポーリングチャンバー内の圧力を0.01Pa〜大気圧に制御する圧力制御機構を具備するとよい。
【0038】
また、本発明の一態様において、前記プラズマ形成用ガスは、不活性ガス、H
2、N
2、O
2、F
2、C
xH
y、C
xF
y及びエアーの群から選ばれた1種以上のガスであるとよい。
【0039】
本発明の一態様は、上述したプラズマポーリング装置によって前記被ポーリング基材にポーリング処理が行われ、前記被ポーリング基材に圧電活性が与えられたことを特徴とする圧電体である。
【0040】
本発明の一態様は、上述したプラズマポーリング装置を有することを特徴とする成膜装置である。また、本発明の一態様において、前記成膜装置は、スピンコート装置、ランプアニール装置、スパッタリング装置、CVD装置及び蒸着装置のいずれかであるとよい。
【0041】
本発明の一態様は、上述したプラズマポーリング装置を有することを特徴とするエッチング装置である。
【0042】
本発明の一態様は、チャンバーと、
前記チャンバー内に配置され、誘電体材料膜、絶縁体材料膜、圧電体材料膜、焦電体材料膜及び強誘電体材料膜のいずれかの膜を有する被ポーリング基材が保持される保持電極と、
前記チャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記被ポーリング基材にランプ光を照射するランプヒータと、
前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記ランプヒータ、前記電源及び前記ガス供給機構を制御する制御部と、
を具備することを特徴とするランプアニール装置である。
【0043】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に、前記結晶化温度より低く且つ前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
【0044】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
【0045】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つ100℃以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
【0046】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱しながら前記被ポーリング基材に対向する位置にプラズマを形成することにより、前記いずれかの膜を結晶化させながら前記被ポーリング基材にポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
【0047】
本発明の一態様は、チャンバーと、
前記チャンバー内に配置され、誘電体材料膜、絶縁体材料膜、圧電体材料膜、焦電体材料膜及び強誘電体材料膜のいずれかの膜を有する被ポーリング基材が保持される保持電極と、
前記チャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記被ポーリング基材にランプ光を照射するランプヒータと、
前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記ランプヒータ、前記第1の電源、前記第2の電源及び前記ガス供給機構を制御する制御部と、
を具備し、
前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであることを特徴とするランプアニール装置である。
【0048】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に、前記結晶化温度より低く且つ前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
【0049】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
【0050】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つ100℃以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
【0051】
また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱しながら、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成することにより、前記いずれかの膜を結晶化させながら前記被ポーリング基材にポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
【0052】
また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
【0053】
また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
【0054】
また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
【0055】
また、本発明の一態様において、前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に前記いずれかの膜を形成したものであるとよい。
【0056】
また、本発明の一態様において、前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材(好ましくは鉄系合金、ステンレス系、SUS等の基材)、及び、Ni系基材(例えばNi合金等の基材)のいずれかの基材上に前記いずれかの膜を形成したものであるとよい。
【0057】
また、本発明の一態様において、前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に前記いずれかの膜を形成したものであるとよい。
【0058】
また、本発明の一態様において、前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V〜±2kVであるとよい。
【0059】
また、本発明の一態様において、前記ポーリング処理を行う際の前記チャンバー内の圧力を0.01Pa〜大気圧に制御する圧力制御機構を具備するとよい。
【0060】
また、本発明の一態様において、前記プラズマ形成用ガスは、不活性ガス、H
2、N
2、O
2、F
2、C
xH
y、C
xF
y及びエアーの群から選ばれた1種以上のガスであるとよい。
【0061】
また、本発明の一態様において、前記チャンバー内を加圧する加圧機構をさらに具備するとよい。
【0062】
また、本発明の一態様において、前記加圧機構は、前記チャンバー内に加圧されたガスを導入するガス導入機構と、前記チャンバー内のガスを排気するガス排気機構とを有するとよい。
【0063】
本発明の一態様は、圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
前記第1の温度が前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上であることを特徴とする圧電体の製造方法である。
【0064】
また、本発明の一態様において、前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
【0065】
本発明の一態様は、圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
前記第1の温度がキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)であることを特徴とする圧電体の製造方法である。
【0066】
また、本発明の一態様において、前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
【0067】
本発明の一態様は、圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
前記第1の温度が100℃以上であることを特徴とする圧電体の製造方法である。
【0068】
また、本発明の一態様において、前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
【0069】
また、本発明の一態様において、前記圧電体材料物は、基板上に圧電体材料膜を形成したものであり、
前記ポーリング処理は、前記圧電体材料膜に対向する位置にプラズマを形成することにより行われるとよい。
【0070】
また、本発明の一態様において、前記基板上に圧電体材料膜を形成する前に、前記基板の裏面を研削して前記基板の厚さを薄くするとよい。
【0071】
本発明の一態様は、基板の裏面を研削して前記基板の厚さを薄くし、
前記基板上に圧電体材料膜を形成し、
前記圧電体材料膜に対向する位置にプラズマを形成することにより、前記圧電体材料膜にポーリング処理を行うことを特徴とする圧電体の製造方法である。
【0072】
また、本発明の一態様において、前記基板の厚さを薄くした際の当該基板の厚さは400μm以下であるとよい。
【0073】
また、本発明の一態様において、前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
前記プラズマポーリング装置は、
ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、前記基板が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基板に対向して配置された対向電極と、
前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記基板の温度を制御する温度制御機構と、
を具備するとよい。
【0074】
また、本発明の一態様において、前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
前記プラズマポーリング装置は、
ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、前記基板が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基板に対向して配置された対向電極と、
前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記保持電極に保持された前記基板の温度を制御する温度制御機構と、
を具備するとよい。
【0075】
本発明の一態様は、基板上に圧電体材料膜を形成し、
前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
前記第1の温度は、前記結晶化温度より低く且つ前記圧電体材料膜のヒステリシス曲線の残留分極値が0%となる温度以上の温度であることを特徴とする圧電体の製造方法である。
【0076】
また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
前記第2の温度は、前記圧電体材料膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
【0077】
本発明の一態様は、基板上に圧電体材料膜を形成し、
前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
前記第1の温度は、前記結晶化温度より低く且つキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の温度であることを特徴とする圧電体の製造方法である。
【0078】
また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
【0079】
本発明の一態様は、基板上に圧電体材料膜を形成し、
前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
前記第1の温度は、前記結晶化温度より低く且つ100℃以上の温度であることを特徴とする圧電体の製造方法である。
【0080】
また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
【0081】
本発明の一態様は、基板上に圧電体材料膜を形成し、
前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱しながら、前記圧電体材料膜に対向する位置にプラズマを形成することにより、前記圧電体材料膜を結晶化させながら前記圧電体材料膜にポーリング処理を行うことを特徴とする圧電体の製造方法である。
【0082】
また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
前記第2の温度は、前記圧電体材料膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上又は50℃以上で且つ前記結晶化温度より低い温度であるとよい。