【課題を解決するための手段】
【0016】
本発明によると、横型HEMTは基板と第1層とを有し、上記第1層は、第1導電型の半導体物質を有し、少なくとも部分的に基板の上に配置されている。さらに、HEMTは、第2層を有し、上記第2層は半導体物質を有し、少なくとも部分的に上記第1層の上に配置されている。さらに、HEMTは、第3層を有し、上記第3層は、上記第1導電型に対して相補的な第2導電型の半導体物質を有し、少なくとも部分的に上記第1層の中に配置されている。
【0017】
このため、pnダイオードが、本発明に係る横型HEMTにおいて、上記第1層および上記第3層の間に形成される。最も高い電界強度が上記第3層の下に位置する。この結果、電界強度と、それに伴ってHEMT内の電圧が限定される。pnダイオードは、横型HEMTよりも低いブレークダウン電圧を有する。
【0018】
この結果、アバランシュブレークダウンが発生した場合、上記第3層の下でブレークダウンが起こり、このために発生する熱荷電粒子は、2次元電子ガスの周辺に入ってこない。このため、HEMTは、アバランシュブレークダウンが発生するときに保護され、半導体コンポーネントの劣化が防止される。
【0019】
本発明に係るHEMTの一実施形態では、上記第3層は、上記第1層の中に完全に配置されている。
【0020】
代替実施形態では、上記第3層は、また、上記第2層の中に部分的に配置されている。
【0021】
さらに、横型HEMTは、第1電極、第2電極、およびゲート電極を有してもよい。この場合、上記第1電極は、上記第2層から上記第3層まで垂直方向に延びてもよく、上記第2電極は、上記第2層から部分的に上記基板の中まで垂直方向に延びてもよい。これによって、上記第3層および上記第1電極の間において有利に接触が実現される。
【0022】
一実施形態では、上記第1層は、GaNを有している。さらに、上記第2層は、AlGaNを有してもよく、上記第3層は、GaNを有してもよい。上記基板は、Si、SiC、またはAl
2O
3(サファイア)を有してもよい。
【0023】
一実施形態では、上記第2層は、ドープされない。
【0024】
さらに、上記横型HEMTは、バッファ層を有してもよく、上記バッファ層は、上記基板と上記第1層との間に配置されている。1つの好ましい改良において、上記バッファ層は、AlN、GaN、またはAlGaNを有する。AlNは、電気的に絶縁性であるが、一方、GaNは、電気的に導電性であり、AlGaNは、Alの含有量が低いと、すなわち、10%よりも低いと、電気的導電性が小さくなる。このために、適切なバッファ層が、上記横型HEMTに対する要件に基づいて設けられる。
【0025】
さらなる実施形態では、横型HEMTは、パッシベーション層を有し、上記パッシベーション層は、少なくとも部分的に上記第2層の上に配置されている。例として、上記パッシベーション層は、Si
xN
y、SiO
2、またはAl
2O
3を有してもよい。
【0026】
さらに、横型HEMTは,絶縁層を有してもよく、上記絶縁層は,少なくとも部分的に上記パッシベーション層の上に配置されている。
【0027】
本発明に係るさらなる実施形態では、横型HEMTは、基板および第1層を有し、上記第1層は、第1導電型の半導体物質を有し、少なくとも部分的に上記基板の上に配置されている。さらに、上記横型HEMTは、第2層を有し、上記第2層は、半導体物質を有し、少なくとも部分的に上記第1層の上に配置されている。さらに、上記横型HEMTは、第3層を有し、上記第3層は、半導体物質を有し、少なくとも部分的に上記基板の中に配置されている。
【0028】
同様に、本発明に係る横型HEMTについての本実施形態は、先に詳細な説明を行ったように、pnダイオードの形成の結果、電圧制限および高いアバランシュブレークダウン強度という長所を有する。この点については繰り返しを避けるために再度の説明は行わない。上記の各実施形態と異なり、上記横型HEMTにおける電圧制限は、この場合、上記基板と上記第3層との間に形成されるpnダイオードによって、上記基板の中にて実行される。
【0029】
1つの改良において、上記第3層の半導体物質は、上記第1導電型に対して相補的な第2導電型を有し、上記基板は、上記第1導電型の半導体物質を有している。
【0030】
1つの代替の改良において、上記第3層の半導体物質は、上記第1導電型を有し、上記基板は、上記第1導電型に対して相補的な第2導電型の半導体物質を有する。
【0031】
さらに、上記横型HEMTは、第1電極、第2電極、およびゲート電極を有してもよい。この場合、上記第1電極は、上記第2層から上記第3層まで垂直方向に延びてもよく、上記第2電極は、上記第2層から部分的に上記基板の中まで垂直方向に延びてもよい。これによって、上記第3層と上記第1電極との間に接触が実現される。
【0032】
一実施形態では、上記第1層は、GaNを有する。さらに、上記第2層は、AlGaNおよび上記第3層Siを有してもよい。上記基板は、SiまたはSiCを有してもよい。
【0033】
一実施形態では、上記第2層はドープされない。
【0034】
さらに、上記横型HEMTは、バッファ層を有してもよく、上記バッファ層は、上記基板と上記第1層との間に配置されている。1つの好ましい改良において、上記バッファは、AlN、GaN、またはAlGaNを有する。
【0035】
AlNは、電気的に絶縁性であり、一方、GaNは、電気的に導電性であり、AlGaNは、Alの含有量が低いと、すなわち、10%よりも低いと、電気的導電性が小さくなる。このため、上記横型HEMTに対する要件に基づいて、適切なバッファ層を設けることができる。
【0036】
さらなる実施形態では、上記横型HEMTは、パッシベーション層を有し、上記パッシベーション層は、少なくとも部分的に上記第2層の上に配置されている。例として、上記パッシベーション層は、Si
xN
y、SiO
2、またはAl
2O
3を有してもよい。
【0037】
さらに、上記横型HEMTは、絶縁層を有してもよく、上記絶縁層は、少なくとも部分的に上記パッシベーション層の上に配置されている。
【0038】
さらなる実施形態では、本発明に係る横型HEMTは、基板を有し、上記基板は、第1導電型の半導体物質を有する。さらに、上記横型HEMTは、第1層および第2層を有し、上記第1層は、上記第1導電型の半導体物質を有し、少なくとも部分的に上記基板の上に配置され、上記第2層は、半導体物質を有し、少なくとも部分的に上記第1層の上に配置されている。
【0039】
さらに、上記横型HEMTは、第3層および第4層を有し、上記第3層は、上記第1導電型の半導体物質を有し、少なくとも部分的に上記第1層の下に配置され、上記第4層は、上記第1導電型に対して相補的な第2導電型の半導体物質を有し、少なくとも部分的に上記第3層の下に配置されている。
【0040】
さらに、上記横型HEMTは、第1電極、第2電極、およびゲート電極を有し、上記第2電極は、上記第2層から上記第3層まで垂直方向に延び、上記第2電極は、上記第2層から部分的に上記基板の中へ垂直方向に延びている。
【0041】
さらに、第1絶縁層は、上記第2電極と上記第3層との間、また、上記第2電極と上記第4層との間に配置されている。
【0042】
本実施形態は、電圧制限のためのダイオードを用いることよりも、むしろ電界効果コランジスタを用いるという点で前述の各実施形態とは異なる。上記第2電極における電圧がこの電界効果トランジスタの閾値電圧を越えて上昇すると、上記第1絶縁層に近い部位の上記第4層内に導電性チャンネルが誘導され、形成される。
【0043】
この場合の閾値電圧は、上記第1絶縁層の厚さ、上記第1絶縁層の材料、および上記第4層のドーピングに依存する。上記横型HEMTにおいて発生する電圧を制限し得る電流が流れる。次に、これによって半導体コンポーネントは高いアバランシュブレークダウン強度を有することができる。
【0044】
一実施形態では、上記第1層は、GaNを有する。さらに、上記第2層は、AlGaNを有してもよく、上記第4層に加えて上記第3層は、Siを有してもよい。上記基板は、SiまたはSiCを有してもよい。
【0045】
一実施形態では、上記第2層はドープされない。
【0046】
さらに、上記横型HEMTは、バッファ層を有してもよく、上記バッファ層は、上記基板と上記第1層との間に配置されている。1つの好ましい改良において、上記バッファ層は、AlN、GaN、またはAlGaNを有する。
【0047】
AlNは、電気的に絶縁性であり、一方、GaNは電気的に導電性であり、AlGaNは、Alの含有量が低いと、すなわち、10%よりも低いと、電気的導電性が小さくなる。このため、上記横型HEMTに対する要件に基づいて、適切なバッファ層を設けることができる。
【0048】
さらなる実施形態では、上記横型HEMTは、パッシベーション層を有し、上記パッシベーション層は、少なくとも部分的に上記第2層の上に配置されている。例として、上記パッシベーション層は、Si
xN
y、SiO
2、またはAl
2O
3を有してもよい。
【0049】
さらに、上記横型HEMTは、さらなる絶縁層を有してもよく、上記さらなる絶縁層は、少なくとも部分的に上記パッシベーション層の上に配置されている。
【0050】
ダイオードおよび電界効果トランジスタに加えて、バイポーラトランジスタ、IGBT、バリスタ、およびESD保護構造もまた電圧制限素子として用いられてもよく、この場合、各電圧制限素子は、上記横型HEMTに、それぞれダイオードおよび電界効果トランジスタと対応するように組み込まれる。
【0051】
上記の各実施形態の全てにおける横型HEMTは、MOSFET、MESFET(金属半導体電界効果トランジスタ)、HFET(ヘテロ構造電界効果トランジスタ)、およびPI-HEMT(偏光誘起光電子移動度トランジスタ)の形態であってもよい。
【0052】
横型HEMTの製造のための本発明に係る方法は、以下の工程を有する。基板、第1層、第2層、およびパッシベーション層が設けられ、上記第1層は、第1導電型の半導体物質を有し、少なくとも部分的に上記基板の上に配置され、上記第2層は半導体物質を有し、少なくとも部分的に上記第1層の上に配置されている。さらに、上記パッシベーション層は、少なくとも部分的に上記第2層の上に配置されている。
【0053】
さらなる工程では、上記第1層、上記第2層、および上記パッシベーション層は、部分的に除去される。さらに、第3層が上記第1層の上で成長させられ、上記第3層は、上記第1導電型に対して相補的な第2導電型の半導体物質を有する。第1電極、第2電極、および、ゲート電極が製造され、上記第1電極は、上記第2層から上記第3層まで垂直方向に延び、上記第2電極は、上記第2層から部分的に上記基板の中まで垂直方向に延びている。
【0054】
上記第1層の部分的除去、上記第2層の部分的除去、および上記パッシベーション層の部分的除去は、構造化されたマスクを用いてエッチング処理を行うことによって行われ得る。
【0055】
横型HEMTの製造のための本発明に係るさらなる方法は、以下の工程を有する。基板と第1層が設けられ、上記第1層は第1導電型の半導体物質を有し、少なくとも部分的に上記基板の上に配置されている。さらなる工程では、第3層が上記第1層の上に成長させられ、上記第3層は、上記第1導電型に対して相補的な第2導電型の半導体物質を有する。
【0056】
上記第1層および上記第3層は、部分的に除去される。さらに、第4層および第2層が上記第1層の上に成長させられ、上記第4層は、上記第1導電型の半導体物質を有し、上記第2層は、半導体物質を有する。パッシベーション層は、少なくとも部分的に上記第4層上に設けられ、第1電極、第2電極、およびゲート電極が製造され、上記第1電極は、上記第2層から上記第3層まで垂直方向に延び、上記第2電極は、上記第2層から部分的に上記基板の中まで垂直方向に延びている。
【0057】
上記第1層の部分的除去および上記第3層の部分的除去は、構造化されたマスクを用いてエッチング処理を行うことによって行われ得る。
【0058】
横型HEMTの製造のための本発明に係るさらなる方法は、以下の工程を有する。基板および第1層が設けられ、上記第1層は、第1導電型の半導体物質を有し、少なくとも部分的に上記基板の上に配置されている。
【0059】
さらなる工程では、構造化されたマスクが上記第1層上に設けられる。第3層は、上記第1層の上に成長させられ、上記第3層は、上記第1導電型に対して相補的な第2導電型の半導体物質を有する。上記第1層および上記第3層は、部分的に除去される。上記第3層は、部分的に除去され、さらに、上記マスクが除去される。
【0060】
さらなる工程では、第4層および第2層が上記第1層の上に成長させられ、上記第4層は、上記第1導電型の半導体物質を有し、上記第2層は、半導体物質を有する。パッシベーション層は、少なくとも部分的に上記第4層上に設けられ、第1電極、第2電極、およびゲート電極が製造され、上記第1電極は、上記第2層から上記第3層まで垂直方向に延び、上記第2電極は、上記第2層から部分的に上記基板の中まで延びている。
【0061】
上記第3層の部分的除去は、CMP処理(化学機械研磨)によって行われ得る。
【0062】
本発明に係る方法における1つの有利な改良では、バッファ層が、基板と第1層との間に設けられている。
【0063】
本発明に係る方法におけるさらに有利な実施形態では、絶縁層が、少なくとも部分的に上記パッシベーション層上に設けられている。
【0064】
本発明に係る方法のさらに有利な実施形態では、上記第2層は、ドープされていない。
【0065】
ここで、添付の図面を参照し、本発明をより詳細に説明する。