【実施例】
【0068】
[電子顕微鏡観察]
走査電子顕微鏡(S−4800、株式会社日立ハイテクノロジーズ製)を用い、100倍率で写真を撮影した。
【0069】
[アルデヒド分解試験]
25℃でテドラーバッグに、試料を収納すると共に、ホルムアルデヒドを1000ppmの濃度で含有する空気3Lを注入し、暗室下で放置した。3時間及び24時間後、テドラーバッグ内のホルムアルデヒド濃度と、当該ホルムアルデヒドが分解されることにより発生した二酸化炭素の濃度と、を測定した。ホルムアルデヒドの濃度及び二酸化炭素の濃度は、ホルムアルデヒド用検知管及び二酸化炭素用検知管(株式会社ガステック製)でそれぞれ測定した。
【0070】
そして、ホルムアルデヒド分解率(%)を次の式;ホルムアルデヒド分解率(%)=[3時間後又は24時間後の二酸化炭素濃度(ppm)−大気中の二酸化炭素量(ppm)]/初期のホルムアルデヒド濃度(ppm)×100;により求めた。また、ホルムアルデヒド消失率(%)を次の式;ホルムアルデヒド消失率(%)=[(初期のホルムアルデヒド濃度(ppm)−3時間後又は24時間後のホルムアルデヒド濃度(ppm))/初期のホルムアルデヒド濃度(ppm)]×100;により求めた。さらに、ホルムアルデヒド吸着率(%)を次の式;ホルムアルデヒド吸着率(%)=ホルムアルデヒド消失率(%)−ホルムアルデヒド分解率(%);により求めた。
【0071】
[劣化試験]
25℃のテドラーバッグに、試料を収納すると共に、空気3Lを注入した。次いで、紫外線ランプ(ブラックライト蛍光ランプFL15BLB-A:ピーク波長352nm、東芝ライテック株式会社製)を用いて、テドラーバッグに対して、0.1mW/cm
2の強度で紫外線の照射を開始した。
【0072】
24時間後、テドラーバッグ内の基材が分解されることにより発生した二酸化炭素及び一酸化炭素の濃度を、二酸化炭素及び一酸化炭素用検知管(株式会社ガステック製)で測定した。
【0073】
24時間後におけるテドラーバッグ内の二酸化炭素及び一酸化炭素の濃度は、測定された濃度から大気中の濃度を減じた値として算出した。また、試験前後の基材の黄変化の有無を目視により確認した。
【0074】
[実施例1]
1.5gのポリアクリロニトリル−ポリメタクリル酸共重合体(PAN/PMA)を30mLのジメチルホルムアミドに溶解させ、さらに1.5gの2−メチルイミダゾールと、1.5gの塩化コバルト六水和物(CoCl
2・6H
2O)(関東化学株式会社製)と、を加え、室温で2時間攪拌した。こうして得られた混合物に、ケッチェンブラック(ECP600JD、ライオン株式会社製)を、溶媒を除いた成分中の含有量が30重量%となるように加え、乳鉢を用いて混合した。得られた混合物を、60℃で12時間、真空乾燥した。
【0075】
さらに、この混合物を大気中で加熱して、30分間で室温から150℃まで昇温し、続いて2時間かけて150℃から220℃まで昇温した。その後、混合物を220℃で3時間保持し、当該混合物の不融化を行った。こうして原料を調製した。
【0076】
次に、上述のようにして得られた原料を石英管に入れ、イメージ炉にて、20分間窒素パージし、窒素雰囲気中で加熱により18分かけて室温から900℃まで昇温した。その後、この原料を900℃で1時間保持した。こうして原料の炭素化を行った。
【0077】
さらに、遊星ボールミル(P−7、フリッチュジャパン株式会社製)内に直径が10mmのジルコニアボールをセットし、当該遊星ボールミルによって炭素材料を回転速度650rpmで5分間粉砕する処理を10サイクル行った。こうして炭素材料を粉砕した。その後、粉砕した炭素材料を取り出し、目開き106μmの篩にかけた。そして、篩を通過した炭素材料を、粉砕された微粒子状の炭素触媒1(PCo)として得た。
【0078】
次に、上述のようにして得た炭素触媒1(PCo)を紙基材に担持した。すなわち、針葉樹晒クラフトパルプ50質量部と広葉樹クラフトパルプ50質量部とを水に離解し、3.5%のパルプスラリーを調製した。このパルプスラリーを叩解して400mlc.s.fに調整した。
【0079】
そこに、湿潤紙力増強剤を固形分で0.5質量%添加し、乾燥紙力増強剤を固形分で1質量%添加して分散し、さらに炭素触媒1(PCo)を固形分で40質量%添加して攪拌した。
【0080】
その後、このパルプスラリーを用いて、JIS P 8222に準拠した抄紙方法により、炭素触媒1(PCo)を紙基材に担持してなるシート状の有害物質分解材として、坪量70g/m
2のペーパーシートを製造した。
【0081】
こうして得られたペーパーシートの走査型電子顕微鏡観察を行った。また、200mgの炭素触媒1(PCo)を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。
【0082】
[実施例2]
5gの黒鉛AG.B(伊藤黒鉛工業株式会社製)、5gのコハク酸ジヒドラジド(株式会社日本ファインケム製)、5gの塩化コバルト六水和物(CoCl
2・6H
2O)を50mLの蒸留水に混合溶解した。こうして得られた溶液を100℃で12時間、乾燥させ、さらに乳鉢で粉砕して、原料を得た。
【0083】
次に、上述のようにして得られた原料を石英管に入れ、管状炉にて20分間窒素パージし、窒素雰囲気中で加熱により90分かけて室温から900℃まで昇温した。その後、この原料を900℃で1時間保持した。こうして原料の炭素化を行った。
【0084】
さらに、こうして得られた炭素材料を乳鉢により粉砕した。その後、粉砕した炭素材料を取り出し、目開き106μmの篩にかけた。そして、篩を通過した炭素材料を、粉砕された微粒子状の炭素触媒2(AGBCo)として得た。
【0085】
炭素触媒1(PCo)に代えて炭素触媒2(AGBCo)を使用した以外は上述の実施例1と同様にして、当該炭素触媒2(AGBCo)を紙基材に担持してなるシート状の有害物質分解材として、坪量70g/m
2のペーパーシートを製造した。そして、200mgの炭素触媒2(AGBCo)を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0086】
[実施例3]
上述の実施例1と同様にして炭素触媒1(PCo)を得た。次いで、この炭素触媒1(PCo)を有機繊維不織布に担持した。すなわち、5.16gのポリビニルアルコール系水性バインダー(PVA R1130、株式会社クラレ製)を78.4gの水道水で溶解させた後、分散機で撹拌させながら、徐々に13.94gの炭素触媒1(PCo)を添加した。全ての成分を混合した後、混合液を1000rpmで10分間、撹拌した。撹拌後、混合液をコットン不織布(オイコス:目付け40g/m
2、日清紡テキスタイル株式会社製)に浸透させ、100℃の熱風乾燥機にて1分間乾燥させることにより、炭素触媒1(PCo)を有機繊維不織布基材に担持してなるシート状の有害物質分解材を製造した。そして、200mgの炭素触媒1(PCo)を含む不織布(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0087】
[実施例4]
1gの黒鉛AG.B(伊藤黒鉛工業株式会社製)、5gの20重量%ポリアクリルアミド系紙力剤(星光PMC株式会社製)、1gの硫酸コバルト七水和物(CoSO
4・7H
2O)を混合し、得られた粘調溶液を80℃で12時間、乾燥させた。
【0088】
次に、原料の炭素化を行った。すなわち、上述のようにして得られた原料を石英管に入れ、イメージ炉にて20分間窒素パージし、加熱により90分かけて室温から900℃まで昇温した。その後、この原料を900℃で1時間保持し、炭素化材料を得た。
【0089】
さらに、炭素化材料を乳鉢により粉砕した。その後、粉砕した炭素化材料を取り出し、目開き106μmの篩いを通過した炭素化材料を、粉砕された微粒子状の炭素触媒3(AASCo)として得た。
【0090】
炭素触媒1(PCo)に代えて炭素触媒3(AASCo)を使用した以外は上述の実施例1と同様にして、当該炭素触媒3(AASCo)を紙基材に担持してなるシート状の有害物質分解材として、坪量70g/m
2のペーパーシートを製造した。そして、200mgの炭素触媒3(AASCo)を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0091】
[比較例1]
有害物質分解材として炭素触媒1(PCo)の粉末をそのまま用いた。200mgの炭素触媒1(PCo)の粉末を試料として用いて、アルデヒド分解試験を行った。
【0092】
[比較例2]
有害物質分解材として炭素触媒2(AGBCo)の粉末をそのまま用いた。200mgの炭素触媒2(AGBCo)の粉末を試料として用いて、アルデヒド分解試験を行った。
【0093】
[比較例3]
炭素触媒1(PCo)を使用しない以外は、実施例1と同様の方法により、ペーパーシート(すなわち、実施例1に係る有害物質分解材の紙基材のみ)を製造した。得られたペーパーシートの電子顕微鏡観察を行った。また、このペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。
【0094】
[比較例4]
炭素触媒に代えて高性能活性炭(関西熱化学株式会社製、MSC−30)を用いた以外は上述の実施例1と同様の方法により、当該活性炭を紙基材に担持してなるペーパーシートを製造した。そして、200mgの活性炭を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0095】
[比較例5]
炭素触媒に代えてY型ゼオライト(HISIV6000、ユニオン昭和株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該Y型ゼオライトを紙基材に担持してなるペーパーシートを製造した。そして、200mgのY型ゼオライトを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0096】
[比較例6]
炭素触媒に代えてA型ゼオライト(モレキュラシーブ4Aパウダー、ユニオン昭和株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該A型ゼオライトを紙基材に担持してなるペーパーシートを製造した。そして、200mgのA型ゼオライトを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0097】
[比較例7]
炭素触媒に代えてX型ゼオライト(ゼオラムF−9、東ソー株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該X型ゼオライトを紙基材に担持してなるペーパーシートを製造した。そして、200mgのX型ゼオライトを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0098】
[比較例8]
炭素触媒に代えて光触媒A(石原産業株式会社製、ST-01)を用いた以外は上述の実施例1と同様の方法により、当該光触媒Aを紙基材に担持してなるペーパーシートを製造した。そして、200mgの光触媒Aを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。
【0099】
なお、アルデヒド分解試験及び劣化試験においては、紫外線ランプ(ブラックライト蛍光ランプFL15BLB-A:ピーク波長352nm、東芝ライテック株式会社製)を用いて、ペーパーシートに対して0.1mW/cm
2の強度で紫外線を照射した。
【0100】
[比較例9]
上述の比較例8と同様の方法で得た200mgの光触媒Aを含むペーパーシート(10cm×10cm)を試料として用いて、紫外線を照射しない以外は上述の比較例8と同様の方法でアルデヒド分解試験を行った。
【0101】
[比較例10]
炭素触媒に代えて光触媒B(TP-S201、住友化学株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該光触媒Bを紙基材に担持してなるペーパーシートを製造した。そして、200mgの光触媒Bを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。
【0102】
なお、アルデヒド分解試験及び劣化試験においては、紫外線ランプ(ブラックライト蛍光ランプFL15BLB-A:ピーク波長352nm、東芝ライテック株式会社製)を用いて、ペーパーシートに対して0.1mW/cm
2の強度で紫外線を照射した。
【0103】
[比較例11]
上述の比較例10と同様の方法で得た200mgの光触媒Bを含むペーパーシート(10cm×10cm)を試料として用いて、紫外線を照射しない以外は上述の比較例10と同様の方法でアルデヒド分解試験を行った。
【0104】
[比較例12]
炭素触媒1に代えてZSM-5ゼオライト(ユニオン昭和株式会社製、HISIV3000)を用いた以外は上述の実施例3と同様の方法により、当該ZSM-5ゼオライトを有機繊維不織布基材に担持してなる不織布を製造した。そして、200mgのZSM-5ゼオライトを含む不織布(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
【0105】
[電子顕微鏡観察の結果]
図1A及び
図1Bには、上述の実施例1及び比較例3で得られた電子顕微鏡写真をそれぞれ示す。
図1Aに示すように、実施例1で製造されたペーパーシートにおいては、紙基材の紙繊維間に炭素触媒の微粒子が分散して担持されていることが確認された。また、炭素触媒は、その表面の大部分が露出した状態で、且つ紙基材に強固に付着していた。
【0106】
[アルデヒド分解試験の結果]
図2に、アルデヒド分解試験で得られた結果を示す。
図2には、実施例1〜4及び比較例1〜12の各々について、3時間後及び24時間後における、ホルムアルデヒド(HCHO)濃度(ppm)、二酸化炭素(CO
2)濃度(ppm)、ホルムアルデヒド分解率(%)、ホルムアルデヒド消失率(%)及びホルムアルデヒド吸着率(%)を評価した結果を示す。なお、二酸化炭素濃度は、テドラーバッグ内における測定値から、大気中(テドラーバッグ外)の測定値を減じた値である。
【0107】
図2に示すように、実施例1に係る炭素触媒1(PCo)を含むペーパーシート、実施例2に係る炭素触媒2(AGBCo)を含むペーパーシート、実施例3に係る炭素触媒1(PCo)を含む有機繊維不織布及び炭素触媒3(AASCo)を含むペーパーシートは、いずれも、24時間後において、100%のホルムアルデヒド分解率を達成した。すなわち、実施例1〜4に係る有害物質分解材は、優れたアルデヒド分解性能を有することが確認された。
【0108】
また、3時間後におけるアルデヒド分解率から明らかなように、これら実施例1〜4に係る有害物質分解材のアルデヒド分解速度は、比較例1に係る炭素触媒1(PCo)粉末や比較例2に係る炭素触媒2(AGBCo)粉末に比べて顕著に大きかった。すなわち、炭素触媒1(PCo)粉末、炭素触媒2(AGBCo)粉末及び炭素触媒3(AASCo)粉末は、紙基材や不織布といった繊維基材に担持されることによって、その有害物質分解速度が顕著に向上した。また、実施例1〜4に係る有害物質分解材は、ホルムアルデヒドを実質的に吸着しなかった。
【0109】
なお、比較例8及び比較例10に係る光触媒を含むペーパーシートからは、24時間の紫外線照射によって、アルデヒドの初期濃度1000ppm以上の大量のCO
2が発生した。したがって、光触媒を含むペーパーシートにおいては、紙基材の顕著な劣化が起こったと考えられた。
【0110】
[劣化試験の結果]
図3に、劣化試験で得られた結果を示す。
図3に示すように、実施例1に係る炭素触媒1(PCo)を紙基材に担持してなるペーパーシート及び比較例3に係る当該紙基材からなるペーパーシートからは、24時間の紫外線照射によっても、二酸化炭素(CO
2)及び一酸化炭素(CO)は全く発生しなかった。また、これらのペーパーシートにおいては、紫外線照射による外観上の黄変化も認められなかった。
【0111】
これに対し、比較例8及び比較例10に係る光触媒を含むペーパーシートからは、24時間の紫外線照射によって、大量の二酸化炭素及び一酸化炭素が発生した。この大量の二酸化炭素及び一酸化炭素の発生は、光触媒を含むペーパーシートにおいては、紙基材が劣化したことによるものと考えられた。さらに、光触媒を含むペーパーシートは、紫外線が照射されることによって、その外観に黄変化が見られた。
【0112】
このようなアルデヒド分解試験及び劣化試験により、実施例1〜4に係る炭素触媒を含む有害物質分解材は、基材を劣化させることなく、有害物質を効果的に分解することが確認された。
【0113】
[一酸化炭素の酸化分解試験]
実施例1に係る100mgの炭素触媒1(PCo)を含むペーパーシート(5cm×10cm)又は比較例1に係る100mgの炭素触媒1(PCo)粉末を、25℃のテドラーバッグに収納すると共に、当該テドラーバッグに、一酸化炭素を2100ppmの濃度で含有する空気3Lを注入し、暗室下で放置した。
【0114】
24時間後及び60時間後に、テドラーバッグ内の一酸化炭素濃度と、当該一酸化炭素が酸化分解されることにより発生した二酸化炭素の濃度と、を測定した。一酸化炭素の濃度及び二酸化炭素の濃度は、一酸化炭素用検知管及び二酸化炭素用検知管(株式会社ガステック製)で測定した。
【0115】
そして、一酸化炭素分解率(%)を次の式;一酸化炭素分解率(%)=[24時間後又は60時間後の二酸化炭素濃度(ppm)−大気中の二酸化炭素量(ppm)]/初期の一酸化炭素濃度(ppm)×100;により求めた。また、一酸化炭素消失率(%)を次の式;一酸化炭素消失率(%)=[(初期の一酸化炭素濃度(ppm)−24時間後又は60時間後の一酸化炭素濃度(ppm))/初期の一酸化炭素濃度(ppm)]×100;により求めた。さらに、一酸化炭素吸着率(%)を次の式;一酸化炭素吸着率(%)=一酸化炭素消失率(%)−一酸化炭素分解率(%);により求めた。
【0116】
図4に、一酸化炭素の酸化分解試験の結果を示す。
図4に示すように、実施例1に係るペーパーシートは、一酸化炭素を酸化分解することが確認され、且つ当該ペーパーシートは、比較例1に係る炭素触媒1(PCo)粉末そのものに比べて高い一酸化炭素酸化分解性能を有することが確認された。また、実施例1に係るペーパーシートは、比較例1に係る炭素触媒1(PCo)と同様、一酸化炭素を実質的に吸着しなかった。
【0117】
[抗菌性試験]
実施例1に係る炭素触媒1(PCo)を紙基材に担持してなるペーパーシート,比較例3に係る当該紙基材からなるペーパーシート及び比較例8に係る光触媒を紙基材に担持してなるペーパーシートの抗菌性を評価した。
【0118】
抗菌性は、JIS L 1902−2008により規定される繊維製品の抗菌性方法に準拠した定性試験(ハロー試験)における、ハロー(発育阻止帯)の有無及び幅により評価した。供試菌として、黄色ぶどう球菌(Staphylococcus aureus ATCC 6538P)又は大腸菌(Escherichia coil NBRC3301)を使用した。
【0119】
図5には、抗菌性試験の結果を示す。
図5に示すように、実施例1に係るペーパーシートを用いた場合にのみ、発育阻止帯が生成された。すなわち、実施例1に係るペーパーシートは抗菌性を示すことが確認された。
【0120】
[かび抵抗性試験]
実施例1に係る炭素触媒1(PCo)を紙基材に担持してなるペーパーシート,比較例3に係る当該紙基材からなるペーパーシート及び比較例8に係る光触媒を紙基材に担持してなるペーパーシートのかび抵抗性を評価した。
【0121】
かび抵抗性は、JIS Z 2911−2000(湿式法)のかび抵抗試験方法に準拠した試験により評価した。すなわち、平板培地上にペーパーシートの試験片(5cm×5cm)を密着させて貼付し、次いで、当該試験片にかび混合胞子懸濁液を吹き付け、28±2℃で1週間培養した。供試菌として、Aspergillus niger NBRC 6341、Penicillium citrnum NBRC 6352、Chaetomium globosum NBRC 6347又はMyrothecium verrucaria NBRC 6113を使用した。
【0122】
そして、試料に発育したかびの面積により、当該試料のかび抵抗性を評価した。具体的に、試料にかび胞子を接触させた部分に菌糸の発育が認められない場合には「0」と評価し、試料にかび胞子を接触させた部分に認められる菌糸の発育部分の面積が全面積の1/3を超えない場合には「1」と評価し、試料にかび胞子を接触させた部分に認められる菌糸の発育部分の面積が全面積の1/3を超える場合には「2」と評価した。
【0123】
図6には、かび抵抗性試験の結果を示す。
図6に示すように、実施例1に係るペーパーシートにおいてのみ、かび菌糸の発育が認められなかった。すなわち、実施例1に係るペーパーシートは、かび抵抗性を有することが確認された。