【実施例】
【0136】
以下の例は、本発明のポリエステル及び/又はポリエステル組成物の製造方法及び評価方法を更に示す。これらは、本発明の単なる代表例であって、本発明の範囲を限定するものではない。特に断らない限り、部は重量部であり、温度は℃で表すか又は室温であり、圧力は大気圧又はほぼ大気圧である。
【0137】
測定方法
ポリエステルのインヘレント粘度は、25℃において60/40(wt/wt)フェノール/テトラクロロエタン中で0.5g/100mlの濃度で、測定した。
【0138】
特に断らない限り、ガラス転移温度(Tg)は、Thermal Analyst Instruments製のTA DSC 2920計測器を用いてASTM D3418に従って20℃/分の走査速度で測定した。
【0139】
組成物のグリコール含量及びシス/トランス比は、プロトン核磁気共鳴(NMR)分光分析法によって測定した。全てのNMRスペクトルを、ポリマーについてはクロロホルム−トリクロロ酢酸(容量/容量70−30)を又はオリゴマーサンプルについては60/40(wt/wt)フェノール/テトラクロロエタン(ロックのために重水素化クロロホルムが添加されている)を用いて、JOEL Eclipse Plus 600MHz核磁気共鳴分光計上に記録した。2,2,4,4−テトラメチル−1,3−シクロブタンジオールの共鳴のピーク指定は、モデルとなる、2,2,4,4−テトラメチル−1,3−シクロブタンジオールのモノ安息香酸エステル及びジ安息香酸エステルと比較することによって行った。これらのモデル化合物はポリマー及びオリゴマー中に見られる共鳴位置に非常に似ている。
【0140】
半結晶化時間t
1/2は、温度制御された高温ステージ上でレーザー又は光検知器によってサンプルの光透過率を時間の関数として測定することによって算出した。この測定は、ポリマーを温度T
maxに暴露し、次いでそれを所望の温度まで冷却することによって行った。次に、サンプルを、高温ステージによって所望の温度に保持しながら、透過率測定を時間の関数として行った。最初はサンプルは目視によって明澄であって高い光透過率を有し、サンプルが結晶化するにつれて不透明になった。半結晶化時間は、光透過率が初期透過率と最終透過率との中間である時間として記録した。T
maxはサンプルの結晶性ドメインを溶融させる(結晶性ドメインが存在するならば)のに必要な温度と定義する。以下の例中に報告したT
maxは、半結晶化時間の測定前にサンプルを状態調整(condition)するために各サンプルを加熱した温度を表す。T
max温度は組成によって異なり、典型的にはポリエステル毎に異なる。例えば、PCTは、結晶性ドメインを溶融させるためには、290℃より若干高い温度まで加熱することが必要な可能性がある。
【0141】
密度は、23℃において密度勾配カラム(gradient density column)を用いて測定した。
【0142】
ここに報告した溶融粘度はRheometrics Dynamic Analyzer(RDA II)を用いることによって測定した。溶融粘度は、報告した温度において1〜400rad/secの範囲の周波数において剪断速度の関数として測定した。ゼロ剪断溶融粘度(η
0)は、当業界における既知のモデルによってデータを外挿することによって推定されたゼロ剪断速度における溶融粘度である。この工程は、Rheometrics Dynamic Analyzer(RDA II)ソフトウェアによって自動的に実施される。
【0143】
ポリマーを、真空オーブン中で80〜100℃の範囲の温度において24時間乾燥させ、Boy 22S成形機上で射出成形して、1/8×1/2×5インチ及び1/4×1/2×5インチの曲げバー(flexure bar)を生成した。これらのバーを長さ2.5インチに切断し、ASTM D256に従って幅1/2インチに10milのノッチ(切り欠き)を入れた。23℃における平均アイゾッド衝撃強度を、5つの試験片に関する測定値から算出した。
【0144】
更に、脆性−延性遷移温度を測定するために、5つの試験片を5℃刻みで温度を増加させて種々の温度において試験した。脆性−延性遷移温度は、ASTM D256によって示されるように試験片の50%が脆性破壊する温度と定義する。
【0145】
ここに報告したカラー値は、Hunter Associates Lab Inc., Reston,Va.製のHunter Lab Ultrascan Spectra Colorimeterを用いて測定した。カラー測定値は、ポリエステルのペレット又はそれらから射出成形若しくは押出されたプラック若しくは他の成形品について測定された値の平均値であった。これらは、CIE(International Commission on Illumination)のL
*a
*b
*表色系(translated)によって測定した。L
*は明度座標を表し、a
*は赤/緑座標を表し、b
*は黄/青座標を表す。
【0146】
更に、10milのフィルムを、Carverプレスを用いて240℃において圧縮成形した。
【0147】
特に断らない限り、以下の例中で用いる1,4−シクロヘキサンジメタノールのシス/トランス比は約30/70であり、35/65〜25/75の範囲であることができた。特に断らない限り、以下の例中で用いる2,2,4,4−テトラメチル−1,3−シクロブタンジオールのシス/トランス比は約50/50であった。
【0148】
実施例及び図の全体を通じて、以下の略語を適用する。
【0149】
【表1】
【0150】
例1
この例は、2,2,4,4−テトラメチル−1,3−シクロブタンジオールが、PCTの結晶化速度の低下において、エチレングリコール又はイソフタル酸よりも有効であることを示す。更に、この例は、ガラス転移温度及び密度に対する2,2,4,4−テトラメチル−1,3−シクロブタンジオールのメリットを示す。
【0151】
種々のコポリエステルを下記のようにして製造した。これらのコポリエステルは全て、結晶化の研究の間における核生成に対する触媒の型及び濃度の影響を最小限に抑えるために、触媒として200ppmのジブチル錫オキシドを用いて生成した。1,4−シクロヘキサンジメタノールのシス/トランス比は31/69とした。2,2,4,4−テトラメチル−1,3−シクロブタンジオールのシス/トランス比は表Iに報告してある。
【0152】
この例に関しては、サンプルは充分に類似したインヘレント粘度を有し、その結果、これは結晶化速度測定における変数としては効果的に排除された。
【0153】
メルトからの半結晶化時間の測定は、10℃ずつ温度を増加させながら140〜200℃の温度において行った。この測定値を表Iに報告する。各サンプルについて最も速い半結晶化時間は、温度の関数としての半結晶化時間の最小値とし、これは典型的には約170〜180℃に現れた。サンプルに関する最も速い半結晶化時間を、PCTへのコモノマー改質のモル%の関数として
図1にプロットしてある。
【0154】
データは、結晶化速度の低下(即ち、半結晶化時間の増加)において、2,2,4,4−テトラメチル−1,3−シクロブタンジオールが、エチレングリコール及びイソフタル酸よりも有効であることを示している。更に、2,2,4,4−テトラメチル−1,3−シクロブタンジオールはTgを増加させ、密度を低下させる。
【0155】
【表2】
【0156】
前記表中、
Aは、イソフタル酸であり;
Bは、エチレングリコールであり;
Cは、2,2,4,4−テトラメチル−1,3−シクロブタンジオール(シス/トランス約50/50)であり;
Dは、2,2,4,4−テトラメチル−1,3−シクロブタンジオール(シス/トランス98/2)であり;
Eは、2,2,4,4−テトラメチル−1,3−シクロブタンジオール(シス/トランス5/95)である。
【0157】
表I及び
図1に示される通り、2,2,4,4−テトラメチル−1,3−シクロブタンジオールは、半結晶化時間の増加、即ち、ポリマーが最大結晶化度の半分に達するのに必要な時間の増加において、エチレングリコール及びイソフタル酸のような他のコモノマーよりも有効である。PCTの結晶化速度を減少させる(半結晶化時間を増加させる)ことによって、ここに記載した2,2,4,4−テトラメチル−1,3−シクロブタンジオール改質PCTを基材とする非晶質物品は、当業界で知られた方法によって、二次加工することができる。表Iに示されるように、これらの材料は、他の改質PCTコポリエステルよりも高いガラス転移温度及び低い密度を示すことができる。
【0158】
表Iに示したポリエステルの製造について、以下に記載する。
【0159】
例1A
この例は、目標組成がテレフタル酸ジメチル残基80モル%、イソフタル酸ジメチル残基20モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス28/72)100モル%であるコポリエステルの製造を示す。
【0160】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル56.63g、1,4−シクロヘキサンジメタノール55.2g、イソフタル酸ジメチル14.16g及びジブチル錫オキシド0.0419gの混合物を入れた。このフラスコを、既に210℃に加熱してあるWood金属浴に入れた。撹拌速度は、実験全体を通して200RPMに設定した。フラスコの内容物を210℃で5分間加熱し、次いで温度を30分にわたって290℃まで徐々に上昇させた。反応混合物を290℃に60分間保持し、次いで、フラスコ内部の圧力が100mmHgに達するまで次の5分間にわたって徐々に真空を適用した。フラスコ内部の圧力を、次の5分間にわたって、0.3mmHgまで更に低下させた。0.3mmHgの圧力を合計90分間保持して、過剰の未反応ジオールを除去した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は87.5℃、インヘレント粘度は0.63dL/gであった。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基100モル%及びイソフタル酸ジメチル残基20.2モル%から成ることを示した。
【0161】
例1B
この例は、目標組成がテレフタル酸ジメチル残基100モル%、エチレングリコール残基20モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス32/68)80モル%であるコポリエステルの製造を示す。
【0162】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル77.68g、1,4−シクロヘキサンジメタノール50.77g、エチレングリコール27.81g及びジブチル錫オキシド0.0433gの混合物を入れた。このフラスコを、既に200℃に加熱してあるWood金属浴に入れた。撹拌速度は、実験全体を通して200RPMに設定した。フラスコの内容物を200℃で60分間加熱し、次いで温度を5分にわたって210℃まで徐々に上昇させた。反応混合物を210℃に120分間保持し、次いで30分で280℃まで昇温させた。280℃に達したら、フラスコ内部の圧力が100mmHgに達するまで次の5分間にわたって徐々に真空を適用した。フラスコ内部の圧力を、次の10分間にわたって0.3mmHgまで更に低下させた。0.3mmHgの圧力を合計90分間保持して、過剰の未反応ジオールを除去した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は87.7℃、インヘレント粘度は0.71dL/gであった。NMR分析は、ポリマーがエチレングリコール残基19.8モル%から成ることを示した。
【0163】
例1C
この例は、目標組成がテレフタル酸ジメチル残基100モル%、2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基20モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス31/69)80モル%であるコポリエステルの製造を示す。
【0164】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル77.68g、1,4−シクロヘキサンジメタノール48.46g、2,2,4,4−テトラメチル−1,3−シクロブタンジオール17.86g及びジブチル錫オキシド0.046gの混合物を入れた。このポリエステルを、例1Aに記載したのと同様な方法で製造した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は100.5℃、インヘレント粘度は0.73dL/gであった。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基80.5モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基19.5モル%から成ることを示した。
【0165】
例1D
この例は、目標組成がテレフタル酸ジメチル残基100モル%、イソフタル酸ジメチル残基40モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス28/72)100モル%であるコポリエステルの製造を示す。
【0166】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル42.83g、1,4−シクロヘキサンジメタノール55.26g、イソフタル酸ジメチル28.45g及びジブチル錫オキシド0.0419gの混合物を入れた。このフラスコを、既に210℃に加熱してあるWood金属浴に入れた。撹拌速度は、実験全体を通して200RPMに設定した。フラスコの内容物を210℃で5分間加熱し、次いで温度を30分にわたって290℃まで徐々に上昇させた。反応混合物を290℃に60分間保持し、次いで、フラスコ内部の圧力が100mmHgに達するまで次の5分間にわたって徐々に真空を適用した。フラスコ内部の圧力を、次の5分間にわたって0.3mmHgまで更に低下させた。0.3mmHgの圧力を合計90分間保持して、過剰の未反応ジオールを除去した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は81.2℃、インヘレント粘度は0.67dL/gであった。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基100モル%及びイソフタル酸ジメチル残基40.2モル%から成ることを示した。
【0167】
例1E
この例は、目標組成がテレフタル酸ジメチル残基100モル%、エチレングリコール残基40モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス31/69)60モル%であるコポリエステルの製造を示す。
【0168】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル81.3g、1,4−シクロヘキサンジメタノール42.85g、エチレングリコール34.44g及びジブチル錫オキシド0.0419gの混合物を入れた。このフラスコを、既に200℃に加熱してあるWood金属浴に入れた。撹拌速度は、実験全体を通して200RPMに設定した。フラスコの内容物を200℃で60分間加熱し、次いで温度を5分にわたって210℃まで徐々に上昇させた。反応混合物を210℃に120分間保持し、次いで30分で280℃まで昇温させた。280℃に達したら、フラスコ内部の圧力が100mmHgに達するまで次の5分間にわたって徐々に真空を適用した。フラスコ内部の圧力を、次の10分間にわたって0.3mmHgまで更に低下させた。0.3mmHgの圧力を合計90分間保持して、過剰の未反応ジオールを除去した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は82.1℃、インヘレント粘度は0.64dL/gであった。NMR分析は、ポリマーがエチレングリコール残基34.5モル%から成ることを示した。
【0169】
例1F
この例は、目標組成がテレフタル酸ジメチル残基100モル%、2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基40モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス31/69)60モル%であるコポリエステルの製造を示す。
【0170】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル77.4g、1,4−シクロヘキサンジメタノール36.9g、2,2,4,4−テトラメチル−1,3−シクロブタンジオール32.5g及びジブチル錫オキシド0.046gの混合物を入れた。このフラスコを、既に210℃に加熱してあるWood金属浴に入れた。撹拌速度は、実験全体を通して200RPMに設定した。フラスコの内容物を210℃で3分間加熱し、次いで温度を30分にわたって260℃まで徐々に上昇させた。反応混合物を260℃に120分間保持し、次いで、30分で290℃まで昇温させた。290℃に達したら、フラスコ内部の圧力が100mmHgに達するまで次の5分間にわたって徐々に真空を適用した。フラスコ内部の圧力を、次の5分間にわたって0.3mmHgまで更に低下させた。0.3mmHgの圧力を合計90分間保持して、過剰の未反応ジオールを除去した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は122℃、インヘレント粘度は0.65dL/gであった。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基59.9モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基40.1モル%から成ることを示した。
【0171】
例1G
この例は、目標組成がテレフタル酸ジメチル残基100モル%、2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基(シス/トランス98/2)20モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス31/69)80モル%であるコポリエステルの製造を示す。
【0172】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル77.68g、1,4−シクロヘキサンジメタノー48.46g、2,2,4,4−テトラメチル−1,3−シクロブタンジオール20.77g及びジブチル錫オキシド0.046gの混合物を入れた。このフラスコを、既に210℃に加熱してあるWood金属浴に入れた。撹拌速度は、実験全体を通して200RPMに設定した。フラスコの内容物を210℃で3分間加熱し、次いで温度を30分にわたって260℃まで徐々に上昇させた。反応混合物を260℃に120分間保持し、次いで、30分で290℃まで昇温させた。290℃に達したら、フラスコ内部の圧力が100mmHgに達するまで次の5分間にわたって徐々に真空を適用し、撹拌速度も100RPMまで低下させた。フラスコ内部の圧力を、次の5分間にわたって0.3mmHgまで更に低下させ、撹拌速度を50RPMまで低下させた。0.3mmHgの圧力を合計60分間保持して、過剰の未反応ジオールを除去した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は103℃、インヘレント粘度は0.65dL/gであった。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基85.7モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基14.3モル%から成ることを示した。
【0173】
例1H
この例は、目標組成がテレフタル酸ジメチル残基100モル%、2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基(シス/トランス5/95)20モル%及び1,4−シクロヘキサンジメタノール残基(シス/トランス31/69)80モル%であるコポリエステルの製造を示す。
【0174】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル77.68g、1,4−シクロヘキサンジメタノー48.46g、2,2,4,4−テトラメチル−1,3−シクロブタンジオール20.77g及びジブチル錫オキシド0.046gの混合物を入れた。このフラスコを、既に210℃に加熱してあるWood金属浴に入れた。撹拌速度を、実験の初めに200RPMに設定した。フラスコの内容物を210℃で3分間加熱し、次いで温度を30分にわたって260℃まで徐々に上昇させた。反応混合物を260℃に120分間保持し、次いで、30分で290℃まで昇温させた。290℃に達したら、次の5分間にわたって真空を整定値100mmHgで徐々に適用し、撹拌速度も100RPMまで低下させた。フラスコ内部の圧力を、次の5分間にわたって0.3mmHgの整定値まで更に低下させ、撹拌速度を50RPMまで低下させた。この圧力を合計60分間保持して、過剰の未反応ジオールを除去した。真空系は前記整定値に達しなかったが、溶融粘度が高く、目視によって明澄で且つ無色の、99℃のガラス転移温度及び0.73dL/gのインヘレント粘度を有するポリマーを生成するのに充分な真空を生じることが認められた。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基85モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基15モル%から成ることを示した。
【0175】
例2
この例は、2,2,4,4−テトラメチル−1,3−シクロブタンジオールが、PCTをベースとするコポリエステル(テレフタル酸及び1,4−シクロヘキサンジメタノールを含むポリエステル)の靭性を改善することを示す。
【0176】
2,2,4,4−テトラメチル−1,3−シクロブタンジオールをベースとするコポリエステルを下記のようにして製造した。1,4−シクロヘキサンジメタノールのシス/トランス比は、全てのサンプルについて約31/69であった。エチレングリコール及び1,4−シクロヘキサンジメタノールをベースとするコポリエステルは市販ポリエステルであった。例2A(Eastar PCT 5445)のコポリエステルは、Eastman Chemical Co.から入手した。例2Bのコポリエステルは、Eastman Chemical Co.から商品名Spectarとして入手した。例2C及び2Dは、例1Aに記載した方法を手直しした後で、パイロットプラント規模で(それぞれ15 lbのバッチ)製造し、以下の表IIに記載したインヘレント粘度及びガラス転移温度を有していた。例2Cは、300ppmの目標錫量(ジブチル錫オキシド)を用いて製造した。最終生成物は295ppmの錫を含んでいた。例2Cのポリエステルに関するカラー値は、L
*=77.11;a
*=−1.50;及びb
*=5.79であった。例2Dは、300ppmの目標錫量(ジブチル錫オキシド)を用いて製造した。最終生成物は307ppmの錫を含んでいた。例2Dのポリエステルに関するカラー値は、L
*=66.72;a
*=−1.22;及びb
*=16.28であった。
【0177】
材料をバーに射出成形し、続いてアイゾッド試験のためにノッチ(切り欠き)を入れた。ノッチ付きアイゾッド衝撃強度を温度の関数として得た。これも表IIに報告する。
【0178】
所定のサンプルについて、アイゾッド衝撃強度は短い温度幅で主要な遷移を受ける。例えば、エチレングリコール38モル%をベースとするコポリエステルのアイゾッド衝撃強度は、15〜20℃においてこの遷移を受ける。この遷移温度は破壊モードの変化と関連し;脆性/低エネルギー破壊はより低温において、延性/高エネルギー破壊はより高温において起こる。遷移温度は脆性−延性遷移温度T
bdと示され、靭性の尺度である。T
bdを表IIに報告し、
図2にコモノマーのモル%に対してプロットしてある。
【0179】
データは、PCTへの2,2,4,4−テトラメチル−1,3−シクロブタンジオールの添加は、PCTのT
bdを増加させるエチレングリコールに比較して、T
bdを低下させ且つ靭性を改善することを示している。
【0180】
【表3】
【0181】
例3
この例は、2,2,4,4−テトラメチル−1,3−シクロブタンジオールが、PCTをベースとするコポリエステル(テレフタル酸及び1,4−シクロヘキサンジメタノールを含むポリエステル)の靭性を改善できることを示す。この例において製造したポリエステルは全て、25モル%より多く且つ40モル%未満の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を含む。
【0182】
表IIIに示した組成及び性質を有する、テレフタル酸ジメチル、2,2,4,4−テトラメチル−1,3−シクロブタンジオール及び1,4−シクロヘキサンジメタノール(シス/トランス31/69)をベースとするコポリエステルを下記のようにして製造した。表III中のポリエステルのジオール成分の100モル%までの残りは、1,4−シクロヘキサンジメタノール(シス/トランス31/69)であった。
【0183】
材料は厚さ3.2mm及び6.4mmの2つのバーに射出成形し、続いてアイゾッド衝撃試験のためにノッチを入れた。ノッチ付きアイゾッド衝撃強度を23℃において得た。これを表IIIに報告する。密度、Tg及び半結晶化時間を成形バーについて測定した。290℃において溶融粘度をペレットについて測定した。
【0184】
【表4】
【0185】
例3A
テレフタル酸ジメチル21.24 lb(49.71グラム−モル)、1,4−シクロヘキサンジメタノール11.82 lb(37.28グラム−モル)及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール6.90 lb(21.77グラム−モル)を、200ppmの触媒ブチル錫トリス(2−エチルヘキサノエート)の存在下で一緒に反応させた。反応は、凝縮カラム、真空系及びHELICONE型撹拌機を装着した18ガロンステンレス鋼圧力容器中で窒素ガスパージ下において実施した。撹拌機を25RPMで作動させながら、反応混合物の温度を250℃まで増加させ、圧力を20psigまで増加させた。反応混合物を250℃及び圧力20psigに2時間保持した。次いで、圧力を、3psig/分の速度で0psigまで低下させた。次いで、反応混合物の温度を270℃まで増加させ、圧力を90mmHgまで低下させた。270℃及び90mmHgに1時間保持後、撹拌機速度を15RPMまで低下させ、反応混合物温度を290℃まで増加させ、圧力を<1mmHgまで低下させた。撹拌機へのパワードロー(power draw)がもはや増加しなくなるまで(50分)、反応混合物を290℃及び圧力<1mmHgに保持した。次いで、圧力容器の圧力を、窒素ガスを用いて1気圧まで増加させた。次に、溶融ポリマーを圧力容器から押出した。冷却した押出ポリマーを、6mmの篩を通るように粉砕した。ポリマーは、0.714dL/gのインヘレント粘度及び113℃のTgを有していた。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基73.3モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基26.7モル%から成ることを示した。
【0186】
例3B
例3Bのポリエステルは、例3Aについて記載したのと同様な方法に従って製造した。このポリエステルの組成及び性質を表IIIに示す。
【0187】
例4
この例は、2,2,4,4−テトラメチル−1,3−シクロブタンジオールが、PCTをベースとするコポリエステル(テレフタル酸及び1,4−シクロヘキサンジメタノールを含むポリエステル)の靭性を改善できることを示す。この例において製造したポリエステルは、2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を40モル%又はそれ以上の量で含む。
【0188】
表IVに示した組成及び性質を有する、テレフタル酸ジメチル、2,2,4,4−テトラメチル−1,3−シクロブタンジオール及び1,4−シクロヘキサンジメタノールをベースとするコポリエステルを下記のようにして製造した。表IV中のポリエステルのジオール成分の100モル%までの残りは、1,4−シクロヘキサンジメタノール(シス/トランス31/69)であった。
【0189】
ポリエステルは厚さ3.2mm及び6.4mmの2つのバーに射出成形し、続いてアイゾッド衝撃試験のためにノッチを入れた。ノッチ付きアイゾッド衝撃強度を23℃において得た。これを表IVに報告する。密度、Tg及び半結晶化時間を成形バーについて測定した。290℃において溶融粘度をペレットについて測定した。
【0190】
【表5】
【0191】
例4A
テレフタル酸ジメチル21.24 lb(49.71グラム−モル)、1,4−シクロヘキサンジメタノール8.84 lb(27.88グラム−モル)及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール10.08 lb(31.77グラム−モル)を、200ppmの触媒ブチル錫トリス(2−エチルヘキサノエート)の存在下で一緒に反応させた。反応は、凝縮カラム、真空系及びHELICONE型撹拌機を装着した18ガロンステンレス鋼圧力容器中で窒素ガスパージ下において実施した。撹拌機を25RPMで作動させながら、反応混合物の温度を250℃まで増加させ、圧力を20psigまで増加させた。反応混合物を250℃及び圧力20psigに2時間保持した。次いで、圧力を、3psig/分の速度で0psigまで低下させた。次に、撹拌機速度を15RPMまで減少させ、次いで反応混合物の温度を290℃まで増加させ、圧力を2mmHgまで低下させた。撹拌機へのパワードローがもはや増加しなくなるまで(80分)、反応混合物を290℃及び圧力2mmHgに保持した。次いで、圧力容器の圧力を、窒素ガスを用いて1気圧まで増加させた。次に、溶融ポリマーを圧力容器から押出した。冷却した押出ポリマーを、6mmの篩を通るように粉砕した。ポリマーは、0.657dL/gのインヘレント粘度及び119℃のTgを有していた。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基56.3モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基43.7モル%から成ることを示した。ポリマーは、L
*=75.04、a
*=−1.82及びb
*=6.72のカラー値を有していた。
【0192】
例4B〜例4D
例4B〜例4Dに記載したポリエステルは、例4Aについて記載したのと同様な方法に従って製造した。これらのポリエステルの組成及び性質を表IVに示す。
【0193】
例4E
テレフタル酸ジメチル21.24 lb(49.71グラム−モル)、1,4−シクロヘキサンジメタノール6.43 lb(20.28グラム−モル)及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール12.49 lb(39.37グラム−モル)を、200ppmの触媒ブチル錫トリス(2−エチルヘキサノエート)の存在下で一緒に反応させた。反応は、凝縮カラム、真空系及びHELICONE型撹拌機を装着した18ガロンステンレス鋼圧力容器中で窒素ガスパージ下において実施した。撹拌機を25RPMで作動させながら、反応混合物の温度を250℃まで増加させ、圧力を20psigまで増加させた。反応混合物を250℃及び圧力20psigに2時間保持した。次いで、圧力を、3psig/分の速度で0psigまで低下させた。次いで、撹拌機速度を15RPMまで減少させてから、反応混合物の温度を290℃まで増加させ、圧力を2mmHgまで低下させた。撹拌機へのパワードローがもはや増加しなくなるまで(50分)、反応混合物を290℃及び圧力<1mmHgに保持した。次いで、圧力容器の圧力を、窒素ガスを用いて1気圧まで増加させた。次に、溶融ポリマーを圧力容器から押出した。冷却した押出ポリマーを、6mmの篩を通るように粉砕した。ポリマーは、0.604dL/gのインヘレント粘度及び139℃のTgを有していた。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基40.8モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基59.2モル%から成ることを示した。ポリマーは、L
*=80.48、a
*=−1.30及びb
*=6.82のカラー値を有していた。
【0194】
例4F
テレフタル酸ジメチル21.24 lb(49.71グラム−モル)、1,4−シクロヘキサンジメタノール8.84 lb(27.88グラム−モル)及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール10.08 lb(31.77グラム−モル)を、200ppmの触媒ブチル錫トリス(2−エチルヘキサノエート)の存在下で一緒に反応させた。反応は、凝縮カラム、真空系及びHELICONE型撹拌機を装着した18ガロンステンレス鋼圧力容器中で窒素ガスパージ下において実施した。撹拌機を25RPMで作動させながら、反応混合物の温度を250℃まで増加させ、圧力を20psigまで増加させた。反応混合物を250℃及び圧力20psigに2時間保持した。次いで、圧力を、3psig/分の速度で0psigまで低下させた。次に、反応混合物の温度を270℃まで増加させ、圧力を90mmHgまで低下させた。270℃及び90mmHgに1時間保持後、撹拌機速度を15RPMまで減少させ、圧力を4mmHgまで低下させた。反応混合物が270℃及び圧力が4mmHgになったら、圧力容器の圧力を窒素ガスを用いて直ちに1気圧まで上昇させた。次いで、溶融ポリマーを圧力容器から押出した。冷却した押出ポリマーを、6mmの篩を通るように粉砕した。ポリマーは、0.475dL/gのインヘレント粘度及び121℃のTgを有していた。NMR分析は、ポリマーが1,4−シクロヘキサンジメタノール残基55.5モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基44.5モル%から成ることを示した。ポリマーは、L
*=85.63、a
*=−0.88及びb
*=4.34のカラー値を有していた。
【0195】
例5(比較例)
この例は、表V中の比較材料に関するデータを示す。PCは、ビスフェノールA残基100モル%及び炭酸ジフェニル残基100モル%の公称組成を有する、Bayer製のMakrolon 2608であった。Makrolon 2608は、300℃において1.2kgの加重を用いて測定した場合に20g/10分の公称メルトフローレートを有している。PETは、テレフタル酸100モル%、シクロヘキサンジメタノール(CHDM)3.5モル%及びエチレングリコール96.5モル%の公称組成を有する、Eastman Chemical Company製のEastar 9921であった。PETGは、テレフタル酸100モル%、シクロヘキサンジメタノール(CHDM)31モル%及びエチレングリコール69モル%の公称組成を有する、Eastman Chemical Company製のEastar 6763であった。PCTGは、テレフタル酸100モル%、シクロヘキサンジメタノール(CHDM)62モル%及びエチレングリコール38モル%の公称組成を有する、Eastman Chemical Company製のEastar DN001であった。PCTAは、テレフタル酸65モル%、イソフタル酸35モル%及びシクロヘキサンジメタノール(CHDM)100モル%の公称組成を有する、Eastman Chemical Company製のEastar AN001であった。Polysulfoneは、ビスフェノールA残基100モル%及び4,4−ジクロロスルホニルスルホン残基100モル%の公称組成を有する、Solvay製のUdel 1700であった。Udel 1700は、343℃において2.16kgの加重を用いて測定した場合に6.5g/10分の公称メルトフローレートを有している。SANは、スチレン76重量%及びアクリロニトリル24重量%の公称組成を有する、Lanxess製のLustran 31であった。Lustran 31は、230℃において3.8kgの加重を用いて測定した場合に7.5g/10分の公称メルトフローレートを有している。本発明の例は、全ての他の樹脂と比較して、厚さ6.4mmのバーにおいて改善された靭性を示す。
【0196】
【表6】
【0197】
例6
この例は、本発明のポリエステルの製造に用いた2,2,4,4−テトラメチル−1,3−シクロブタンジオールの量の、ポリエステルのガラス転移温度への影響を示す。
【0198】
例6A
この例のポリエステルは、エステル交換反応と重縮合反応を別の段階で実施することによって製造した。エステル交換の実験は、連続温度上昇(CTR)反応器中で行った。CTRは、単一軸羽根撹拌機を装着し、電気加熱マントルで覆い且つ加熱充填還流凝縮カラム(reflux condenser column)を装着した3000mlガラス反応器であった。反応器に、テレフタル酸ジメチル777g(4モル)、2,2,4,4−テトラメチル−1,3−シクロブタンジオール230g(1.6モル)、シクロヘキサンジメタノール460.8g(3.2モル)及びブチル錫トリス−2−エチルヘキサノエート1.12g(最終ポリマー中の錫金属は200ppmとなるであろう)を装填した。加熱マントルを手動で出力100%に設定した。整定値及びデータ収集は、Camileプロセス制御システムによって容易にした。反応体が溶融したら、撹拌を開始し、ゆっくりと250rpmまで増加させた。反応器の温度が、実行時間につれて徐々に上昇した。収集したメタノールの重量をはかりによって記録した。メタノールの発生が停止した時点で又は事前に選択した260℃のより低い温度において反応を停止させた。オリゴマーを窒素パージによって排出し、室温に冷却した。オリゴマーを液体窒素によって凍結させ、500mlの丸底フラスコ中に量り入れるのに充分に小さい断片に破壊した。
【0199】
重縮合反応においては、500mlの丸底フラスコに、前記で製造したオリゴマー約150gを装填した。フラスコにはステンレス鋼撹拌機及びポリマーヘッドを装着した。ガラス製品をハーフモルポリマーリグ(half mole polymer rig)上にセットし、Camileシーケンス(sequence)を開始した。オリゴマーが溶融したら、撹拌機をフラスコの底から1回転の位置に合わせた。この例に関する、Camileソフトウェアによって制御された温度/圧力/撹拌速度シーケンスを、以下の表に報告する。
【0200】
【表7】
【0201】
得られたポリマーをフラスコから回収し、油圧式チョッパーを用いて細断し、6mmの篩サイズに粉砕した。各粉砕ポリマーのサンプルを、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃における0.5g/100mlの濃度でのインヘレント粘度測定に、螢光X線による触媒レベル(Sn)測定に及び透過分光分析法によるカラー値(L
*,a
*,b
*)の測定に供した。ポリマー組成は、
1H NMRによって得た。サンプルを、Rheometrics Mechanical Spectrometer(RMS−800)を用いた熱安定性及び溶融粘度試験に供した。
【0202】
以下の表は、この例のポリエステルに関する実験データを示す。
図3はまた、Tgが組成及びインヘレント粘度に左右されることを示す。データは、一般に、2,2,4,4−テトラメチル−1,3−シクロブタンジオールのレベルの増加が、インヘレント粘度が一定の場合には、ガラス転移温度をほとんど直線的に増加させることを示す。
【0203】
【表8】
【0204】
例7
この例は、本発明のポリエステルの製造に使用した2,2,4,4−テトラメチル−1,3−シクロブタンジオールの量の、ポリエステルのガラス転移温度に対する影響を示す。この例において製造したポリエステルは全て、25モル%より多く且つ40モル%未満の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を含む。
【0205】
テレフタル酸ジメチル、1,4−シクロヘキサンジメタノール及び2,2,4,4−テトラメチル−1,3−シクロブタンジオールを、500mlの一口丸底フラスコ中に量り入れた。2,2,4,4−テトラメチル−1,3−シクロブタンジオール出発原料についてのNMR分析は、53/47のシス/トランス比を示した。この例のポリエステルは、グリコール/酸比1.2/1で製造し、過剰は全て2,2,4,4−テトラメチル−1,3−シクロブタンジオールによるものであった。最終ポリマー中の錫が300ppmとなるように、充分なジブチル錫オキシド触媒を加えた。フラスコを、真空低下機能を用いて0.2SCFC窒素パージ下に置いた。フラスコを200℃のBelmont金属浴中に浸漬し、反応体の溶融後に200RPMで撹拌した。約2.5時間後、温度を210℃に上昇させ、これらの条件を更に2時間保持した。温度を285℃まで上昇させ(約25分で)、圧力を5分にわたって0.3mmHgまで低下させた。粘度の増加につれて撹拌を減少させた。使用した最小撹拌は15RPMであった。目標インヘレント粘度を得るために、総重合時間を変えた。重合の完了後、Belmont金属浴を下げ、ポリマーをそのガラス転移温度未満まで冷却させた。約30分後、フラスコをBelmont金属浴中に再び浸漬し(温度はこの30分の待機の間に295℃まで増加していた)、ポリマー塊を、ガラスフラスコから離れるまで加熱した。ポリマー塊を、ポリマーが冷めるまでフラスコ中で中間レベルで撹拌した。ポリマーをフラスコから取り出し、3mmの篩を通るように粉砕した。32モル%の目標組成を有する下記のコポリエステルを製造するために、この方法に変更を行った。
【0206】
インヘレント粘度は、前述の「測定方法」の部分において記載したようにして測定した。ポリエステルの組成は、「測定方法」の部分において前に説明したようにして
1H NMRによって測定した。ガラス転移温度は、DSCによって、20℃/分の速度で急冷後の第2加熱を用いて測定した。
【0207】
以下の表は、この例のポリエステルに関する実験データを示す。
図3はまた、Tgが組成及びインヘレント粘度に左右されることを示す。データは、2,2,4,4−テトラメチル−1,3−シクロブタンジオールのレベルが増加すると、インヘレント粘度が一定の場合はガラス転移温度がほぼ直線的に上昇することを示す。
【0208】
【表9】
【0209】
例8
この例は、本発明のポリエステルの製造に使用した2,2,4,4−テトラメチル−1,3−シクロブタンジオールの量の、ポリエステルのガラス転移温度に対する影響を示す。この例において製造したポリエステルは、2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を40モル%又はそれ以上の量で含む。
【0210】
例A〜例AC
これらのポリエステルは、エステル交換反応と重縮合反応を別の段階で実施することによって製造した。エステル交換の実験は、連続温度上昇(CTR)反応器中で行った。CTRは、単一軸羽根撹拌機を装着し、電気加熱マントルで覆い且つ加熱充填還流凝縮カラム(reflux condenser column)を装着した3000mlガラス反応器であった。反応器に、テレフタル酸ジメチル777g、2,2,4,4−テトラメチル−1,3−シクロブタンジオール375g、シクロヘキサンジメタノール317g及びブチル錫トリス−2−エチルヘキサノエート1.12g(最終ポリマー中の錫金属は200ppmとなるであろう)を装填した。加熱マントルを手動で出力100%に設定した。整定値及びデータ収集は、Camileプロセス制御システムによって容易にした。反応体が溶融したら、撹拌を開始し、ゆっくりと250rpmまで増加させた。反応器の温度が、実行時間につれて徐々に上昇した。収集したメタノールの重量をはかりによって記録した。メタノールの発生が停止した時点で又は事前に選択した260℃のより低い温度において反応を停止させた。オリゴマーを窒素パージによって排出し、室温に冷却した。オリゴマーを液体窒素によって凍結させ、500mlの丸底フラスコ中に量り入れるのに充分に小さい断片に破壊した。
【0211】
重縮合反応においては、500mlの丸底フラスコに、前記で製造したオリゴマー150gを装填した。フラスコにはステンレス鋼撹拌機及びポリマーヘッドを装着した。ガラス製品をハーフモルポリマーリグ上にセットし、Camileシーケンスを開始した。オリゴマーが溶融したら、撹拌機をフラスコの底から1回転の位置に合わせた。これらの例に関する、Camileソフトウェアによって制御された温度/圧力/撹拌速度シーケンスを、以下の表に報告する(以下に特に断らない限り)。
【0212】
【表10】
【0213】
【表11】
【0214】
例B、D、Fの場合は、段階7において時間が80分である以外は、前記表中の同一シーケンスを用いた。例G及びJの場合は、段階7において時間が50分である以外は、前記表中の同一シーケンスを用いた。例Lの場合は、段階7において時間が140分である以外は、前記表中の同一シーケンスを用いた。
【0215】
【表12】
【0216】
例Iの場合は、段階6及び7において真空が8トルである以外は、前記表中の同一シーケンスを用いた。例Oの場合は、段階6及び7において真空が6トルである以外は、前記表中の同一シーケンスを用いた。例Pの場合は、段階6及び7において真空が4トルである以外は、前記表中の同一シーケンスを用いた。例Qの場合は、段階6及び7において真空が5トルである以外は、前記表中の同一シーケンスを用いた。
【0217】
【表13】
【0218】
例U及びAAの場合は、段階6及び7において真空が6トルである以外は、前記表中の同一シーケンスを用いた。例V及びXの場合は、段階6及び7において真空が6トルであり且つ撹拌速度が15rpmである以外は、前記表中の同一シーケンスを用いた。例Zの場合は、段階6及び7において撹拌速度が15rpmである以外は、前記表中の同一シーケンスを用いた。
【0219】
【表14】
【0220】
例Mの場合は、段階6及び7において真空が8トルである以外は、前記表中の同一シーケンスを用いた。例Nの場合は、段階6及び7において真空が7トルである以外は、前記表中の同一シーケンスを用いた。
【0221】
【表15】
【0222】
得られたポリマーをフラスコから回収し、油圧式チョッパーを用いて細断し、6mmの篩サイズに粉砕した。各粉砕ポリマーのサンプルを、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃における0.5g/100mlの濃度でのインヘレント粘度測定に、螢光X線による触媒レベル(Sn)測定に及び透過分光分析法によるカラー値(L
*,a
*,b
*)の測定に供した。ポリマー組成は、
1H NMRによって得た。サンプルを、Rheometrics Mechanical Spectrometer(RMS−800)を用いた熱安定性及び溶融粘度試験に供した。
【0223】
例AD〜AK及びAS
これらの例のポリエステルは、例AD〜AK及びASの場合は最終ポリマー中の目標錫量が150ppmである以外は、例A〜ACに関して前述したようにして製造した。以下の表は、これらの例についてCamileソフトウェアによって制御された温度/圧力/撹拌速度シーケンスを記載する。
【0224】
【表16】
【0225】
ADの場合は、撹拌機速度を25rpmに変え、段階7に95分残した。
【0226】
【表17】
【0227】
例AKの場合は、段階7において時間が75分である以外は、前記表中の同一シーケンスを用いた。
【0228】
【表18】
【0229】
【表19】
【0230】
【表20】
【0231】
例AL〜AR
テレフタル酸ジメチル、1,4−シクロヘキサンジメタノール及び2,2,4,4−テトラメチル−1,3−シクロブタンジオールを、500mlの一口丸底フラスコ中に量り入れた。この例のポリエステルは、グリコール/酸比1.2/1で製造し、過剰は全て2,2,4,4−テトラメチル−1,3−シクロブタンジオールによるものであった。最終ポリマー中の錫が300ppmとなるように、充分なジブチル錫オキシド触媒を加えた。フラスコを、真空低下機能を用いて0.2SCFC窒素パージ下に置いた。フラスコを200℃のBelmont金属浴中に浸漬し、反応体の溶融後に200RPMで撹拌した。約2.5時間後、温度を210℃に上昇させ、これらの条件を更に2時間保持した。温度を285℃まで上昇させ(約25分で)、圧力を5分にわたって0.3mmHgまで低下させた。粘度の増加につれて撹拌を減少させた。使用した最小撹拌は15RPMであった。目標インヘレント粘度を得るために、総重合時間を変えた。重合の完了後、Belmont金属浴を下げ、ポリマーをそのガラス転移温度未満まで冷却させた。約30分後、フラスコをBelmont金属浴中に再び浸漬し(温度はこの30分の待機の間に295℃まで増加していた)、ポリマー塊を、ガラスフラスコから離れるまで加熱した。ポリマー塊を、ポリマーが冷めるまでフラスコ中で中間レベルで撹拌した。ポリマーをフラスコから取り出し、3mmの篩を通るように粉砕した。45モル%の目標組成を有する下記のコポリエステルを製造するために、この方法に変更を行った。
【0232】
インヘレント粘度は、前述の「測定方法」の部分において記載したようにして測定した。ポリエステルの組成は、「測定方法」の部分において前に説明したようにして
1H NMRによって測定した。ガラス転移温度は、DSCによって、20℃/分の速度で急冷後の第2加熱を用いて測定した。
【0233】
以下の表は、この例のポリエステルに関する実験データを示す。データは、2,2,4,4−テトラメチル−1,3−シクロブタンジオールのレベルが増加すると、インヘレント粘度が一定の場合はガラス転移温度がほぼ直線的に上昇することを示す。
図3はまた、Tgが組成及びインヘレント粘度に左右されることを示す。
【0234】
【表21】
【0235】
【表22】
【0236】
例9
この例は、2,2,4,4−テトラメチル−1,3−シクロブタンジオール異性体の型(シス又はトランス)の優位性の、ポリエステルのガラス転移温度に対する影響を示す。
【0237】
テレフタル酸ジメチル、1,4−シクロヘキサンジメタノール及び2,2,4,4−テトラメチル−1,3−シクロブタンジオールを、500mlの一口丸底フラスコ中に量り入れた。この例のポリエステルは、グリコール/酸比1.2/1で製造し、過剰は全て2,2,4,4−テトラメチル−1,3−シクロブタンジオールによるものであった。最終ポリマー中の錫が300ppmとなるように、充分なジブチル錫オキシド触媒を加えた。フラスコを、真空低下機能を用いて0.2SCFC窒素パージ下に置いた。フラスコを200℃のBelmont金属浴中に浸漬し、反応体の溶融後に200RPMで撹拌した。約2.5時間後、温度を210℃に上昇させ、これらの条件を更に2時間保持した。温度を285℃まで上昇させ(約25分で)、圧力を5分にわたって0.3mmHgまで低下させた。粘度の増加につれて撹拌を減少させた。使用した最小撹拌は15RPMであった。目標インヘレント粘度を得るために、総重合時間を変えた。重合の完了後、Belmont金属浴を下げ、ポリマーをそのガラス転移温度未満まで冷却させた。約30分後、フラスコをBelmont金属浴中に再び浸漬し(温度はこの30分の待機の間に295℃まで増加していた)、ポリマー塊を、ガラスフラスコから離れるまで加熱した。ポリマー塊を、ポリマーが冷めるまでフラスコ中で中間レベルで撹拌した。ポリマーをフラスコから取り出し、3mmの篩を通るように粉砕した。45モル%の目標組成を有する下記のコポリエステルを製造するために、この方法に変更を行った。
【0238】
インヘレント粘度は、前述の「測定方法」の部分において記載したようにして測定した。ポリエステルの組成は、「測定方法」の部分において前に説明したようにして
1H NMRによって測定した。ガラス転移温度は、DSCによって、20℃/分の速度で急冷後の第2加熱を用いて測定した。
【0239】
以下の表は、この例のポリエステルに関する実験データを示す。データは、シス2,2,4,4−テトラメチル−1,3−シクロブタンジオールが、インヘレント粘度が一定の場合には、ガラス転移温度の増加において、トランス2,2,4,4−テトラメチル−1,3−シクロブタンジオールの約2倍有効であることを示す。
【0240】
【表23】
【0241】
例10
この例は、テレフタル酸ジメチル残基100モル%、1,4−シクロヘキサンジメタノール残基55モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基45モル%を含むコポリエステルの製造を示す。
【0242】
窒素注入口、金属撹拌機及び短蒸留カラムを装着した500mlフラスコ中に、テレフタル酸ジメチル97.10g(0.5モル)、1,4−シクロヘキサンジメタノール52.46g(0.36モル)、2,2,4,4−テトラメチル−1,3−シクロブタンジオール34.07g(0.24モル)及びジブチル錫オキシド0.0863g(300ppm)の混合物を入れた。このフラスコを、既に200℃に加熱してあるWood金属浴に入れた。フラスコの内容物を200℃で1時間加熱し、次いで温度を210℃まで上昇させた。反応混合物を210℃に2時間保持し、次いで30分で290℃まで昇温させた。290℃に達したら、次の3〜5分にわたって、0.01psigの真空を徐々に適用した。全真空(0.01psig)を合計約45分間保持して、過剰の未反応ジオールを除去した。溶融粘度が高く、目視によって明澄で且つ無色のポリマーが得られ、ガラス転移温度は125℃、インヘレント粘度は0.64dL/gであった。
【0243】
例11(比較例)
この例は、100%の2,2,4,4−テトラメチル−1,3−シクロブタンジオールをベースとするポリエステルが遅い半結晶化時間を有することを示す。
【0244】
表Xに示した性質を有する、テレフタル酸及び2,2,4,4−テトラメチル−1,3−シクロブタンジオールのみをベースとするポリエステルを、例1Aに記載した方法と同様な方法で製造した。このポリエステルは、300ppmのジブチル錫オキシドを用いて生成した。2,2,4,4−テトラメチル−1,3−シクロブタンジオールのトランス/シス比は65/35であった。
【0245】
フィルムを、粉砕ポリマーから320℃においてプレスした。メルトからの半結晶化時間の測定を、10℃ずつ温度を増加させながら220〜250℃の温度において行った。この測定値を表Xに報告する。各サンプルについて最も速い半結晶化時間は、温度の関数としての半結晶化時間の最小値とした。このポリエステルの最も速い半結晶化時間は約1300分である。この値は、テレフタル酸及び1,4−シクロヘキサンジメタノールのみをベースとするポリエステル(PCT)(コモノマー改質なし)が、
図1に示すように極めて短い半結晶化時間(<1分)を有するという事実と対照をなす。
【0246】
【表24】
【0247】
例12(比較例)
テレフタル酸残基100モル%、1,4−シクロヘキサンジメタノール残基80モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基20モル%の目標組成で製造されたポリエステルを含むシートを、3.5インチ一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ177milに合わせ、次いで種々のシートを適当な大きさに切断した。インヘレント粘度及びガラス転移温度は1枚のシートについて測定した。シートのインヘレント粘度は0.69dl/gであることが測定された。シートのガラス転移温度は106℃であることが測定された。次いで、シートを相対湿度50%及び60℃において2週間状態調整した。続いて、シートをBrown熱成形機を用いて絞り比(draw ratio)2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞り(draw)を計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例G))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくてもシートが少なくとも95%の絞りを有し且つふくれがないことからわかるように、ガラス転移温度が106℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0248】
【表25】
【0249】
例13(比較例)
テレフタル酸残基100モル%、1,4−シクロヘキサンジメタノール残基80モル%及び2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基20モル%の目標組成で製造されたポリエステルを含むシートを、3.5インチ一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ177milに合わせ、次いで種々のシートを適当な大きさに切断した。インヘレント粘度及びガラス転移温度は1枚のシートについて測定した。シートのインヘレント粘度は0.69dl/gであることが測定された。シートのガラス転移温度は106℃であることが測定された。次いで、シートを相対湿度100%及び25℃において2週間状態調整した。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて60/40/40%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例G))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても少なくとも95%の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が106℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0250】
【表26】
【0251】
例14(比較例)
Kelvx 201から成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。Kelvxは、PCTG(Eastman Chemical Co.製のEastar;テレフタル酸残基100モル%、1,4−シクロヘキサンジメタノール残基62モル%及びエチレングリコール残基38モル%を有する)69.85%;PC(ビスフェノールAポリカーボネート)30%;及びWeston 619(Crompton Corporationによって販売されている安定剤)0.15%から成るブレンドである。シートは連続的に押出し、厚さ177milに合わせ、次いで種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、100℃であった。次いで、シートを相対湿度50%及び60℃において2週間状態調整した。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例E))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても少なくとも95%の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が100℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0252】
【表27】
【0253】
例15(比較例)
Kelvx 201から成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ177milに合わせ、次いで種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、100℃であった。次いで、シートを相対湿度100%及び25℃において2週間状態調整した。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて60/40/40%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例H))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても95%超の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が100℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0254】
【表28】
【0255】
例16(比較例)
PCTG 25976(テレフタル酸残基100モル%、1,4−シクロヘキサンジメタノール残基62モル%及びエチレングリコール残基38モル%)から成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ118milに合わせ、次いで種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、87℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.17重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても95%超の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が87℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0256】
【表29】
【0257】
例17(比較例)
Teijin L−1250ポリカーボネート(ビスフェノール−Aポリカーボネート)20重量%、PCTG 25976 79.85重量%及びWeston 619 0.15重量%から成る混和性ブレンドを、1.25インチの一軸スクリュー押出機を用いて製造した。次いで、このブレンドから成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートを連続的に押出し、厚さ118milに合わせ、次いで種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、94℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.25重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても95%超の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が94℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0258】
【表30】
【0259】
例18(比較例)
Teijin L−1250ポリカーボネート30重量%、PCTG 25976 69.85重量%及びWeston 619 0.15重量%から成る混和性ブレンドを、1.25インチの一軸スクリュー押出機を用いて製造した。次いで、このブレンドから成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ118milに合わせ、次に種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、99℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.25重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても95%超の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が99℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0260】
【表31】
【0261】
例19(比較例)
Teijin L−1250ポリカーボネート40重量%、PCTG 25976 59.85重量%及びWeston 619 0.15重量%から成る混和性ブレンドを、1.25インチの一軸スクリュー押出機を用いて製造した。次いで、このブレンドから成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ118milに合わせ、次に種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、105℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.265重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例8A〜8E))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても95%超の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が105℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0262】
【表32】
【0263】
例20(比較例)
Teijin L−1250ポリカーボネート50重量%、PCTG 25976 49.85重量%及びWeston 619 0.15重量%から成る混和性ブレンドを、1.25インチの一軸スクリュー押出機を用いて製造した。シートを連続的に押出し、厚さ118milに合わせ、次に種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、111℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.225重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A〜D))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させなくても95%超の絞りを有し且つふくれがないシートが製造されることからわかるように、ガラス転移温度が111℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができることを示している。
【0264】
【表33】
【0265】
例21(比較例)
Teijin L−1250ポリカーボネート60重量%、PCTG 25976 39.85重量%及びWeston 619 0.15重量%から成る混和性ブレンドを、1.25インチの一軸スクリュー押出機を用いて製造した。次いで、このブレンドから成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ118milに合わせ、次に種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、117℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.215重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させることなしには95%超の絞りを有し且つふくれがないシートを製造できないことからわかるように、ガラス転移温度が117℃のこれらの熱可塑性シートが以下に示した条件下で熱成形することができないことを示している。
【0266】
【表34】
【0267】
例22(比較例)
Teijin L−1250ポリカーボネート65重量%、PCTG 25976 34.85重量%及びWeston 619 0.15重量%から成る混和性ブレンドを、1.25インチの一軸スクリュー押出機を用いて製造した。次いで、このブレンドから成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ118milに合わせ、次に種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、120℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.23重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させることなしには95%超の絞りを有し且つふくれがないシートを製造できないことからわかるように、ガラス転移温度が120℃のこれらの熱可塑性シートは以下に示した条件下で熱成形することができないことを示している。
【0268】
【表35】
【0269】
例23(比較例)
Teijin L−1250ポリカーボネート70重量%、PCTG 25976 29.85重量%及びWeston 619 0.15重量%から成る混和性ブレンドを、1.25インチの一軸スクリュー押出機を用いて製造した。次いで、このブレンドから成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ118milに合わせ、次に種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、123℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.205重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A及びB))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させることなしには95%超の絞りを有し且つふくれがないシートを製造できないことからわかるように、ガラス転移温度が123℃のこれらの熱可塑性シートは以下に示した条件下で熱成形することができないことを示している。
【0270】
【表36】
【0271】
例24(比較例)
Teijin L−1250ポリカーボネートから成るシートを、3.5インチの一軸スクリュー押出機を用いて製造した。シートは連続的に押出し、厚さ118milに合わせ、次に種々のシートを適当な大きさに切断した。ガラス転移温度は1枚のシートについて測定し、149℃であった。次いで、シートを相対湿度50%及び60℃において4週間状態調整した。水分レベルは0.16重量%であることが測定された。続いて、シートをBrown熱成形機を用いて絞り比2.5:1の雌型中に熱成形した。熱成形オーブンヒーターは、上部加熱のみを用いて70/60/60%の出力に設定した。以下の表中に示すように、成形品の品質に対するシート温度の影響を判定するために、シートはオーブン中に種々の時間放置した。成形品の品質は、熱成形品の体積を測定し、絞りを計算し、熱成形品を目視検査することによって判定した。絞りは、(成形品の体積)÷(この一連の実験において得られる最大成形品体積(例A))として計算した。熱成形品を全てのふくれについて目視検査し、ふくれ度をなし(N)、低(L)又は高(H)と評価した。以下の結果は、熱成形前にシートを予備乾燥させることなしには95%超の絞りを有し且つふくれがないシートを製造できないことからわかるように、ガラス転移温度が149℃のこれらの熱可塑性シートは以下に示した条件下で熱成形することができないことを示している。
【0272】
【表37】
【0273】
前述の関連実施例におけるデータの比較から、本発明のポリエステルは、ガラス転移温度、密度、遅い結晶化速度、溶融粘度及び靭性に関して、市販のポリエステルよりも明らかに優れていることが明確にわかる。
【0274】
本発明を、本明細書中に開示した実施態様に関して詳述したが、当然のことながら、本発明の精神及び範囲内で変動及び変更が可能である。
【0275】
以下に、本発明及びその関連態様を記載する。
態様1.(a)i)テレフタル酸残基70〜100モル%;
ii)炭素数20以下の芳香族ジカルボン酸残基0〜30モル%;及び
iii)炭素数16以下の脂肪族ジカルボン酸残基0〜10モル%
を含むジカルボン酸成分;並びに
(b)i)2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基1〜99モル%;及び
ii)1,4−シクロヘキサンジメタノール残基1〜99モル%
を含むグリコール成分
(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)
を含む少なくとも1種のポリエステルを含んでなり、前記ポリエステルのインヘレント粘度が、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃において0.5g/100mlの濃度で測定した場合に、0.35dL/g〜0.70dL/g未満であり;且つ前記ポリエステルが110〜200℃のTgを有するポリエステル組成物。
態様2.前記ポリエステルのインヘレント粘度が0.35dL/g〜0.70dL/g未満である態様1に記載の組成物。
態様3.前記ポリエステルのインヘレント粘度が0.40〜0.70dL/gである態様1に記載の組成物。
態様4.前記ポリエステルのインヘレント粘度が0.50〜0.70dL/gである態様1に記載の組成物。
態様5.前記ポリエステルのインヘレント粘度が0.50〜0.75dL/gである態様1に記載の組成物。
態様6.前記ポリエステルのインヘレント粘度が0.58dL/g〜0.70dL/g未満である態様1に記載の組成物。
態様7.前記ポリエステルのインヘレント粘度が0.60dL/g〜0.70dL/g未満である態様1に記載の組成物。
態様8.前記ポリエステルが110〜200℃のTgを有する態様1に記載の組成物。
態様9.前記ポリエステルが110〜170℃のTgを有する態様1に記載の組成物。
態様10.前記ポリエステルが110〜160℃のTgを有する態様1に記載の組成物。
態様11.前記ポリエステルが110〜150℃のTgを有する態様1に記載の組成物。
態様12.前記ポリエステルが120〜160℃のTgを有する態様1に記載の組成物。
態様13.前記ポリエステルが120〜150℃のTgを有する態様1に記載の組成物。
態様14.前記ポリエステルが130〜160℃のTgを有する態様1に記載の組成物。
態様15.前記ポリエステルが130〜150℃のTgを有する態様1に記載の組成物。
態様16.前記ポリエステルが130〜145℃のTgを有する態様1に記載の組成物。
態様17.前記ポリエステルが140〜150℃のTgを有する態様1に記載の組成物。
態様18.前記ポリエステルが135〜145℃のTgを有する態様1に記載の組成物。
態様19.前記ポリエステルが148〜200℃のTgを有する態様1に記載の組成物。
態様20.前記ポリエステルが127〜200℃のTgを有する態様1に記載の組成物。
態様21.前記ポリエステルのグリコール成分が1〜80モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び20〜99モル%の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様22.前記ポリエステルのグリコール成分が50〜99モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び1モル%〜50モル%未満の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様23.前記ポリエステルのグリコール成分が40〜85モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び15〜60モル%の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様24.前記ポリエステルのグリコール成分が40〜80モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び20〜60モル%の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様25.前記ポリエステルのグリコール成分が40〜65モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び35〜55モル%の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様26.前記ポリエステルのグリコール成分が40〜55モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び45〜60モル%の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様27.前記ポリエステルのグリコール成分が45〜55モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び45〜55モル%の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様28.前記ポリエステルのグリコール成分が46〜55モル%の2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基及び45モル%〜55モル%未満の1,4−シクロヘキサンジメタノール残基を含む態様1に記載の組成物。
態様29.前記ジカルボン酸成分が80〜100モル%のテレフタル酸残基を含む態様1に記載の組成物。
態様30.前記ジカルボン酸成分が90〜100モル%のテレフタル酸残基を含む態様1に記載の組成物。
態様31.前記ジカルボン酸成分が95〜100モル%のテレフタル酸残基を含む態様1に記載の組成物。
態様32.前記ポリエステルが1,3−プロパンジオール残基、1,4−ブタンジオール残基又はそれらの混合物を含む態様1に記載の組成物。
態様33.前記ポリエステルが0.01〜15モル%のエチレングリコールを含む態様1に記載のポリエステル組成物。
態様34.前記ポリエステルが0.01〜10モル%のエチレングリコールを含む態様1に記載のポリエステル組成物。
態様35.前記2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基が50モル%より多いシス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基と50モル%未満のトランス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を含む混合物である態様1に記載の組成物。
態様36.前記2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基が55モル%より多いシス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基と45モル%未満のトランス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を含む混合物である態様1に記載の組成物。
態様37.前記2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基が30〜70モル%のシス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基と30〜70モル%のトランス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を含む混合物である態様1に記載の組成物。
態様38.前記2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基が40〜60モル%のシス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基と40〜60モル%のトランス−2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基を含む混合物である態様1に記載の組成物。
態様39.前記ポリエステル組成物が、ナイロン;他のポリエステル;ポリアミド;ポリスチレン;ポリスチレンコポリマー;スチレン・アクリロニトリルコポリマー;アクリロニトリル・ブタジエン・スチレンコポリマー;ポリ(メチルメタクリレート);アクリルコポリマー;ポリ(エーテル−イミド);ポリフェニレンオキシド、例えばポリ(2,6−ジメチルフェニレンオキシド);若しくはポリ(フェニレンオキシド)/ポリスチレンブレンド;ポリフェニレンスルフィド;ポリフェニレンスルフィド/スルホン;ポリ(エステル−カーボネート);ポリカーボネート;ポリスルホン;ポリスルホンエーテル;及び芳香族ジヒドロキシ化合物のポリ(エーテル−ケトン);又はそれらの混合物の少なくとも1つから選ばれた少なくとも1種のポリマーを含む態様1に記載の組成物。
態様40.前記ポリエステル組成物が少なくとも1種のポリカーボネートを含む態様1に記載の組成物。
態様41.前記ポリエステルがポリエステル用の少なくとも1種の分岐剤の残基を含む態様1に記載の組成物。
態様42.前記ポリエステルが少なくとも1種の分岐剤の残基を、酸又はグリコール残基の総モル百分率に基づき、0.01〜10重量%の量で含む態様1に記載の組成物。
態様43.前記ポリエステルの溶融粘度が、回転メルトレオメーターで290℃において1ラジアン/秒で測定した場合に、30,000ポアズ未満である態様1に記載の組成物。
態様44.前記ポリエステルが170℃において5分より長い半結晶化時間を有する態様1に記載の組成物。
態様45.前記ポリエステルが170℃において1,000分より長い半結晶化時間を有する態様1に記載の組成物。
態様46.前記ポリエステルが170℃において10,000分より長い半結晶化時間を有する態様1に記載の組成物。
態様47.前記ポリエステル組成物が23℃において1.2g/ml未満の密度を有する態様1に記載の組成物。
態様48.前記ポリエステル組成物が少なくとも1種の熱安定剤又はその反応生成物を含む態様1に記載の組成物。
態様49.ASTM D−1925による前記ポリエステルの黄色度指数が50未満である態様1に記載の組成物。
態様50.前記ポリエステルが、ASTM D256に従って23℃においてノッチ10milで厚さ1/8インチのバーで測定した場合に、少なくとも3ft−lbs/inのノッチ付きアイゾッド衝撃強度を有する態様1に記載の組成物。
態様51.前記ポリエステルが、ASTM D256に従って23℃においてノッチ10milで厚さ1/8インチのバーで測定した場合に、少なくとも10ft−lbs/inのノッチ付きアイゾッド衝撃強度を有する態様1に記載の組成物。
態様52.前記ポリエステルが錫化合物又はその反応生成物を含む少なくとも1種の触媒の残基を含む態様1に記載の組成物。
態様53.(a)i)テレフタル酸残基70〜100モル%;
ii)炭素数20以下の芳香族ジカルボン酸残基0〜30モル%;及び
iii)炭素数16以下の脂肪族ジカルボン酸残基0〜10モル%
を含むジカルボン酸成分;並びに
(b)i)2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基40〜65モル%;及び
ii)1,4−シクロヘキサンジメタノール残基35〜60モル%
を含むグリコール成分
(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)
を含む少なくとも1種のポリエステルを含んでなり、前記ポリエステルのインヘレント粘度が、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃において0.5g/100mlの濃度で測定した場合に、0.35〜0.75dL/gであり;且つ前記ポリエステルが110〜200℃のTgを有するポリエステル組成物。
態様54.(I)(a)i)テレフタル酸、そのエステル又はそれらの混合物70〜100モル%;
ii)炭素数20以下の芳香族ジカルボン酸残基0〜30モル%;及び
iii)炭素数16以下の脂肪族ジカルボン酸残基0〜10モル%
を含むジカルボン酸成分;並びに
(b)i)2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基1〜99モル%;及び
ii)1,4−シクロヘキサンジメタノール残基1〜99モル%
を含むグリコール成分
(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)
を含む少なくとも1種のポリエステル;更に
(II)少なくとも1種の分岐剤の残基
を含んでなり、前記ポリエステルのインヘレント粘度が、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃において0.5g/100mlの濃度で測定した場合に、0.35〜1.2dL/gであり;且つ前記ポリエステルが110〜200℃のTgを有するポリエステル組成物。
態様55.前記ポリエステルのインヘレント粘度が0.40〜1.2dL/gである態様1、53又は54に記載の組成物。
態様56.前記ポリエステルのインヘレント粘度が0.40〜1.1dL/gである態様1、53又は54に記載の組成物。
態様57.前記ポリエステルのインヘレント粘度が0.40〜1dL/gである態様1、53又は54に記載の組成物。
態様58.前記ポリエステルのインヘレント粘度が0.40〜0.9dL/gである態様1、53又は54に記載の組成物。
態様59.前記ポリエステルのインヘレント粘度が0.40〜0.8dL/gである態様1、53又は54に記載の組成物。
態様60.前記ポリエステルのインヘレント粘度が0.50〜1.2dL/gである態様1、53又は54に記載の組成物。
態様61.前記ポリエステルのインヘレント粘度が0.50〜1.1dL/gである態様1、53又は54に記載の組成物。
態様62.前記ポリエステルのインヘレント粘度が0.50〜1dL/gである態様1、53又は54に記載の組成物。
態様63.前記ポリエステルのインヘレント粘度が0.50〜0.9dL/gである態様1、53又は54に記載の組成物。
態様64.前記ポリエステルのインヘレント粘度が0.50〜0.8dL/gである態様1、53又は54に記載の組成物。
態様65.前記ポリエステルのインヘレント粘度が0.60〜0.72dL/gである態様1、53又は54に記載の組成物。
態様66.前記ポリエステルのインヘレント粘度が0.76dL/g超〜1.2dL/gである態様1、53又は54に記載の組成物。
態様67.(I)(a)i)テレフタル酸残基70〜100モル%;
ii)炭素数20以下の芳香族ジカルボン酸残基0〜30モル%;及び
iii)炭素数16以下の脂肪族ジカルボン酸残基0〜10モル%
を含むジカルボン酸成分;並びに
(b)i)2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基1〜99モル%;及び
ii)1,4−シクロヘキサンジメタノール残基1〜99モル%
を含むグリコール成分
(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)
を含む少なくとも1種のポリエステル;更に
(II)少なくとも1種の熱安定剤又はその反応生成物
を含んでなり、前記ポリエステルのインヘレント粘度が、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃において0.5g/100mlの濃度で測定した場合に、0.35〜1.2dL/gであり;且つ前記ポリエステルが110〜200℃のTgを有するポリエステル組成物。
態様68.(a)i)テレフタル酸残基70〜100モル%;
ii)炭素数20以下の芳香族ジカルボン酸残基0〜30モル%;及び
iii)炭素数16以下の脂肪族ジカルボン酸残基0〜10モル%
を含むジカルボン酸成分;並びに
(b)i)2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基1〜99モル%;及び
ii)1,4−シクロヘキサンジメタノール残基1〜99モル%
を含むグリコール成分
(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)
を含む少なくとも1種のポリエステルを含んでなり、前記ポリエステルのインヘレント粘度が、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃において0.5g/100mlの濃度で測定した場合に、0.35〜1.2dL/gであり;且つ前記ポリエステルが148℃超〜200℃以下のTgを有するポリエステル組成物。
態様69.(a)i)テレフタル酸残基70〜100モル%;
ii)炭素数20以下の芳香族ジカルボン酸残基0〜30モル%;及び
iii)炭素数16以下の脂肪族ジカルボン酸残基0〜10モル%
を含むジカルボン酸成分;並びに
(b)i)2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基50モル%超〜99モル%以下;及び
ii)1,4−シクロヘキサンジメタノール残基1モル%〜50モル%未満
を含むグリコール成分
(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)
を含んでなり、前記ポリエステルのインヘレント粘度が、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃において0.5g/100mlの濃度で測定した場合に、0.35〜01.2dL/gであり;且つ前記ポリエステルが110〜200℃のTgを有するポリエステル組成物。
態様70.前記ポリエステルが120〜150℃のTgを有する態様67に記載の組成物。
態様71.前記ポリエステルが130〜145℃のTgを有する態様67に記載の組成物。
態様72.前記インヘレント粘度が0.60〜0.75dL/gである態様67に記載の組成物。
態様73.前記インヘレント粘度が0.60〜0.72dL/gである態様67に記載の組成物。
態様74.(a)i)テレフタル酸残基70〜100モル%;
ii)炭素数20以下の芳香族ジカルボン酸残基0〜30モル%;及び
iii)炭素数16以下の脂肪族ジカルボン酸残基0〜10モル%
を含むジカルボン酸成分;並びに
(b)i)2,2,4,4−テトラメチル−1,3−シクロブタンジオール残基1〜99モル%;及び
ii)1,4−シクロヘキサンジメタノール残基1〜99モル%
を含むグリコール成分
(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)
を含む少なくとも1種のポリエステルを含んでなり、前記ポリエステルのインヘレント粘度が、60/40(wt/wt)フェノール/テトラクロロエタン中で25℃において0.5g/100mlの濃度で測定した場合に、0.76dL/g超〜1.2dL/gであり;且つ前記ポリエステルが110〜200℃のTgを有するポリエステル組成物。
態様75.前記ポリエステルが非晶質である態様1に記載のポリエステル組成物。
態様76.態様1に記載のポリエステル組成物を含んでなる製造品。
態様77.態様1に記載のポリエステル組成物を含んでなるフィルム又はシート。
態様78.態様1に記載のポリエステル組成物を含んでなる液晶ディスプレイフィルム。
態様79.拡散シートを含む態様78に記載の液晶ディスプレイフィルム。
態様80.補償フィルムを含む態様78に記載の液晶ディスプレイフィルム。
態様81.保護フィルムを含む態様78に記載の液晶ディスプレイフィルム。
態様82.前記製造品が押出ブロー成形によって形成される態様76に記載の製造品。
態様83.前記製造品が押出延伸ブロー成形によって形成される態様76に記載の製造品。
態様84.前記製造品が射出成形によって形成される態様76に記載の製造品。
態様85.前記製造品が射出延伸ブロー成形によって形成される態様76に記載の製造品。
態様86.態様1に記載のポリエステル組成物を含んでなるフィルム又はシート。
態様87.前記フィルム又はシートが押出又はカレンダリングによって製造される態様86に記載のフィルム又はシート。
態様88.態様1に記載のポリエステル組成物を含んでなる射出成形品。
態様89.(a)態様1に記載の少なくとも1種のポリエステル5〜95重量%;及び
(b)少なくとも1種のポリマー成分5〜95重量%
を含んでなるブレンド。
態様90.前記の少なくとも1種のポリマー成分がナイロン;態様1に記載のポリエステル以外のポリエステル;ポリアミド;ポリスチレン;ポリスチレンコポリマー;スチレン・アクリロニトリルコポリマー;アクリロニトリル・ブタジエン・スチレンコポリマー;ポリ(メチルメタクリレート);アクリルコポリマー;ポリ(エーテル−イミド);ポリフェニレンオキシド、例えばポリ(2,6−ジメチルフェニレンオキシド);若しくはポリ(フェニレンオキシド)/ポリスチレンブレンド;ポリフェニレンスルフィド;ポリフェニレンスルフィド/スルホン;ポリ(エステル−カーボネート);ポリカーボネート;ポリスルホン;ポリスルホンエーテル;及び芳香族ジヒドロキシ化合物のポリ(エーテル−ケトン)の少なくとも1種から選ばれる態様89に記載のブレンド。