特許第5768818号(P5768818)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧

<>
  • 特許5768818-複合成形体およびその製造方法 図000002
  • 特許5768818-複合成形体およびその製造方法 図000003
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5768818
(24)【登録日】2015年7月3日
(45)【発行日】2015年8月26日
(54)【発明の名称】複合成形体およびその製造方法
(51)【国際特許分類】
   B29C 65/02 20060101AFI20150806BHJP
   B29C 65/40 20060101ALI20150806BHJP
   B29K 77/00 20060101ALN20150806BHJP
   B29K 81/00 20060101ALN20150806BHJP
【FI】
   B29C65/02
   B29C65/40
   B29K77:00
   B29K81:00
【請求項の数】8
【全頁数】12
(21)【出願番号】特願2012-549169(P2012-549169)
(86)(22)【出願日】2012年2月23日
(86)【国際出願番号】JP2012054345
(87)【国際公開番号】WO2012137554
(87)【国際公開日】20121011
【審査請求日】2015年2月17日
(31)【優先権主張番号】特願2011-83597(P2011-83597)
(32)【優先日】2011年4月5日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(74)【代理人】
【識別番号】100091384
【弁理士】
【氏名又は名称】伴 俊光
(74)【代理人】
【識別番号】100125760
【弁理士】
【氏名又は名称】細田 浩一
(72)【発明者】
【氏名】石橋 壮一
(72)【発明者】
【氏名】越 政之
【審査官】 鏡 宣宏
(56)【参考文献】
【文献】 特開昭60−239224(JP,A)
【文献】 特開平9−164595(JP,A)
【文献】 特許第3906319(JP,B2)
【文献】 特開2007−313778(JP,A)
【文献】 特開平3−248832(JP,A)
【文献】 特開昭58−222815(JP,A)
【文献】 特表2010−513098(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 65/00−65/82
B29C 70/00−70/68
(57)【特許請求の範囲】
【請求項1】
繊維強化熱可塑性樹脂を用いて予め成形した予備成形体aと、繊維強化熱可塑性樹脂を用いて予め成形した予備成形体bとを接合して複合成形体を成形する方法であって、
(1)予備成形体aおよびbの少なくとも片方に重量平均繊維長1mm以上の強化繊維を含み、該重量平均繊維長1mm以上の強化繊維を含む予備成形体の少なくとも表層部が、連続繊維からなる強化繊維を一方向に配向した層を含むものからなり、
(2)予備成形体aには熱可塑性樹脂Aを使用し、予備成形体bには熱可塑性樹脂Aまたは熱可塑性樹脂Bを使用し、
(3)予備成形体aまたはbのいずれか、あるいは予備成形体aおよびbの両方の表面に熱可塑性樹脂Cの薄膜を形成し、
(4)熱可塑性樹脂Cの薄膜を接合の境界面に配置した状態で、加熱により熱可塑性樹脂Cおよび、予備成形体aおよびbの一部を溶融させ、該溶融による接合により複合成形体を成形することを特徴とする、複合成形体の製造方法。
【請求項2】
繊維強化熱可塑性樹脂を用いて予め成形した予備成形体aと、繊維強化熱可塑性樹脂を用いて予め成形した予備成形体bとを接合して複合成形体を成形する方法であって、
(1)予備成形体aおよびbの少なくとも片方に重量平均繊維長1mm以上の強化繊維を含み、
(2)予備成形体aには熱可塑性樹脂Aを使用し、予備成形体bには熱可塑性樹脂Aまたは熱可塑性樹脂Bを使用し、
(3)予備成形体aまたはbのいずれか、あるいは予備成形体aおよびbの両方の表面に熱可塑性樹脂Cの薄膜を形成し、
(4)前記熱可塑性樹脂A、熱可塑性樹脂Bおよび熱可塑性樹脂Cが、結晶性の熱可塑性樹脂を主成分とし、かつ以下の関係を満足し、
熱可塑性樹脂Cの結晶化温度<熱可塑性樹脂Aの結晶化温度、および、
熱可塑性樹脂Cの結晶化温度<熱可塑性樹脂Bの結晶化温度
(5)熱可塑性樹脂Cの薄膜を接合の境界面に配置した状態で、加熱により熱可塑性樹脂Cおよび、予備成形体aおよびbの一部を溶融させ、該溶融による接合により複合成形体を成形することを特徴とする、複合成形体の製造方法。
【請求項3】
前記熱可塑性樹脂Aおよび熱可塑性樹脂Bが、特定のモノマーを重合したホモポリマーからなる熱可塑性樹脂であり、かつ、前記熱可塑性樹脂Cが、2種類以上の異なったモノマーの共重合によるコポリマーで、その2種類以上のモノマーのひとつに熱可塑性樹脂Aまたは熱可塑性樹脂Bにおけるモノマーと同一のモノマーを含んだコポリマーからなる熱可塑性樹脂、またはそのコポリマーがブレンドされた樹脂組成物である、請求項1または2に記載の複合成形体の製造方法。
【請求項4】
前記熱可塑性樹脂Aおよび熱可塑性樹脂Bが、ポリフェニレンサルファイドを主成分とし、前記熱可塑性樹脂Cが、共重合ポリフェニレンサルファイドからなる、請求項1〜のいずれかに記載の複合成形体の製造方法。
【請求項5】
前記共重合ポリフェニレンサルファイドが、p−フェニレンサルファイド単位にm−フェニレンサルファイド単位が共重合されたポリマーからなる、請求項に記載の複合成形体の製造方法。
【請求項6】
前記熱可塑性樹脂Aおよび熱可塑性樹脂Bが、ポリアミドを主成分とし、前記熱可塑性樹脂Cが、共重合ポリアミドからなる、請求項1〜のいずれかに記載の複合成形体の製造方法。
【請求項7】
前記予備成形体aおよびbの少なくともひとつに強化繊維として炭素繊維を含む、請求項1〜のいずれかに記載の複合成形体の製造方法。
【請求項8】
請求項1〜のいずれかに記載の方法により製造された複合成形体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複合成形体およびその製造方法に関し、とくに予め成形した所定形状の熱可塑性樹脂を用いた繊維強化樹脂からなる予備成形体に対し、加熱により予備成形体の一部を溶融させ、該溶融部位で予備成形体同士の接合を行って複合成形体を成形する、複合成形体の製造方法およびその方法により製造された複合成形体に関する。
【背景技術】
【0002】
熱硬化性樹脂の繊維強化樹脂と熱可塑性樹脂の繊維強化樹脂とを接合し、全体として繊維強化樹脂からなる複合成形体を製造する方法は知られている(例えば、特許文献1、2)。熱可塑性樹脂自体および熱可塑性樹脂を用いた繊維強化樹脂は、射出成形を比較的容易に行うことができること等から、熱硬化性樹脂およびそれを用いた繊維強化樹脂に比べ、成形性や量産性に優れている。そのため、とくに大量生産品等の製造において、熱可塑性樹脂を用いた繊維強化樹脂同士を効率よく接合できる複合成形体の製造方法が求められている。
【0003】
このような複合成形体の製造方法として、例えば次のような方法が考えられる。すなわち、プレス成形や射出成形で賦形した熱可塑性樹脂を用いた繊維強化樹脂製品(例えば、ポリフェニレンサルファイド(PPS)を用いた繊維強化樹脂製品、これを予備成形体あるいは一次成形品と呼ぶ)を少なくとも2種類準備し、直接加熱、振動、超音波など何らかの手段により加熱しながら予備成形体同士を圧着することにより、予備成形体の一部を溶融させ、該溶融による接合により複合成形体を形成する方法が考えられる。このようないわゆる融着により、例えば中空構造体や、リブ等が配置された強度・剛性を兼ね揃えた最終成形品としての複合成形体を得ることが可能である。
【0004】
しかし、例えば上記のような通常のPPSグレードを用いた予備成形体では、PPS樹脂の結晶化速度が比較的速いため、結果として溶融状態からの冷却時の固化が速い。その結果、ある熱量を与えて予備成形体の表面が溶かされたとしても、圧着など良好な融着を達成する手順を進める前にすみやかに固化が生じるため、期待したほどの接合強度が得られない。そのため、最終成形品としての複合成形体の強度・剛性が目標値に達しないおそれがある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3906319号公報
【特許文献2】特許第4543696号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
そこで本発明の課題は、成形性や量産性に優れた熱可塑性樹脂を用いた繊維強化樹脂の複合成形体を製造するに際し、予め成形された予備成形体同士を十分に高い接合強度で融着させ、強度・剛性に優れた最終成形品としての複合成形体を効率よく製造できる方法、およびその方法により製造された複合成形体を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明に係る複合成形体の製造方法は、繊維強化熱可塑性樹脂を用いて予め成形した予備成形体aと、繊維強化熱可塑性樹脂を用いて予め成形した予備成形体bとを接合して複合成形体を成形する方法であって、
(1)予備成形体aおよびbの少なくとも片方に重量平均繊維長1mm以上の強化繊維を含み、該重量平均繊維長1mm以上の強化繊維を含む予備成形体の少なくとも表層部が、連続繊維からなる強化繊維を一方向に配向した層を含むものからなり、
(2)予備成形体aには熱可塑性樹脂Aを使用し、予備成形体bには熱可塑性樹脂Aまたは熱可塑性樹脂Bを使用し、
(3)予備成形体aまたはbのいずれか、あるいは予備成形体aおよびbの両方の表面に熱可塑性樹脂Cの薄膜を形成し、
(4)熱可塑性樹脂Cの薄膜を接合の境界面に配置した状態で、加熱により熱可塑性樹脂Cおよび、予備成形体aおよびbの一部を溶融させ、該溶融による接合により複合成形体を成形することを特徴とする方法からなる。
また、もう一つの本発明に係る複合成形体の製造方法は、繊維強化熱可塑性樹脂を用いて予め成形した予備成形体aと、繊維強化熱可塑性樹脂を用いて予め成形した予備成形体bとを接合して複合成形体を成形する方法であって、
(1)予備成形体aおよびbの少なくとも片方に重量平均繊維長1mm以上の強化繊維を含み、
(2)予備成形体aには熱可塑性樹脂Aを使用し、予備成形体bには熱可塑性樹脂Aまたは熱可塑性樹脂Bを使用し、
(3)予備成形体aまたはbのいずれか、あるいは予備成形体aおよびbの両方の表面に熱可塑性樹脂Cの薄膜を形成し、
(4)前記熱可塑性樹脂A、熱可塑性樹脂Bおよび熱可塑性樹脂Cが、結晶性の熱可塑性樹脂を主成分とし、かつ以下の関係を満足し、
熱可塑性樹脂Cの結晶化温度<熱可塑性樹脂Aの結晶化温度、および、
熱可塑性樹脂Cの結晶化温度<熱可塑性樹脂Bの結晶化温度
(5)熱可塑性樹脂Cの薄膜を接合の境界面に配置した状態で、加熱により熱可塑性樹脂Cおよび、予備成形体aおよびbの一部を溶融させ、該溶融による接合により複合成形体を成形することを特徴とする方法からなる。
【0008】
上記重量平均繊維長1mm以上の強化繊維を含む予備成形体としては、例えば、
(1)重量平均繊維長が1mm〜50mmの範囲の強化繊維が実質上ランダム配向したマット状基材と熱可塑性樹脂の組み合わせによる成形体、
(2)予備成形体の任意の2端部間にわたって連続繊維が配置されるように強化された成形体、
のいずれか、または、これらが組み合わされた成形体を採用できる。すなわち、熱可塑性樹脂を用いた繊維強化樹脂の成形品では、例えば構造材として求められる高い力学的特性の発現を実現するためには、強化繊維長が長いことが必要となるので、重量平均繊維長1mm以上の強化繊維、とくに成形性等を考慮して、重量平均繊維長が1mm〜50mmの範囲の強化繊維の強化繊維基材を用いた成形品であることが好ましく、この範囲の繊維長の強化繊維が実質上ランダム配向したマット状基材と熱可塑性樹脂の組み合わせによるものが好ましい。あるいは、予備成形体の任意の2端部間(例えば、対向する2辺となる2端部間)にわたって連続繊維に形成された強化繊維が配置されるように強化された成形体も好ましい。さらには、これらが組み合わされた形態の成形体も採用できる。
【0009】
上記のように、予備成形体として、任意の2端部間にわたって連続繊維が配置されるよう強化された成形体を用いることは本発明の好ましい形態のひとつである。このような形態においては、繊維の分断がなく、ある強化繊維を用いた場合に最も高い力学的特性を得ることができる。該連続繊維強化の予備成形体を、構造の骨格材のように配置すれば、本発明における複合一体成形品において、高い力学的特性と、複雑な形状を両立することができる。
【0010】
予備成形体の強化繊維として不連続強化繊維を使用する場合には、その重量平均繊維長が上記の如く1mm〜50mmの強化繊維からなることが好ましい。重量平均繊維長が1mm未満では、強化繊維の特性が引き出せず求められる高い力学的特性を発揮することができない。重量平均繊維長が50mmを超えると、不連続強化繊維とした場合のひとつの特徴である良好な賦形性が損なわれてしまう。
【0011】
また、特に耐衝撃性などの力学的特性を重視する場合には、上記重量平均繊維長1mm以上の強化繊維を含む予成形体における、強化繊維の重量平均繊維長が20mm〜50mmの範囲をより望ましい範囲として示すことができる。これは後述の図2に示すように耐衝撃性をはじめとした力学的特性向上への寄与につき、繊維長が大きく影響するためである。
【0012】
該不連続繊維の配向などは特に限定されず、実質上ランダム配向したものを使用することができる。この実質上ランダムという範囲としては、面内に等方性分散した、あるいはゆるやかな一定の配向を有するシート状のマットを例示することができ、これは抄紙法やカーディング法、エアレイ法など既存の繊維マット製造法によるものを使用できる。
【0013】
また、本発明の好ましい形態のひとつとして、前述したように、上記重量平均繊維長1mm以上の強化繊維を含む予備成形体の少なくとも表層部が、連続繊維からなる強化繊維を一方向に配向した層を含むものからなる形態を挙げることもできる。
【0014】
上記熱可塑性樹脂A、熱可塑性樹脂Bおよび熱可塑性樹脂Cには、互いに異なる処方の熱可塑性樹脂(つまり、同種の熱可塑性樹脂であるが、物性や特性が互いに異なるように互いに異なる処方で調製された熱可塑性樹脂)が用いられる。熱可塑性樹脂同士の接合形態であるから、本質的に、容易に良好な接合状態が得られやすく、また、成形品全体を粉砕して再利用(リサイクル)も行いやすい。本発明では、熱可塑性樹脂同士の接合ではあっても、予備成形体が予め先に成形されているので、予備成形体の表層部を形成する熱可塑性樹脂Cと、熱可塑性樹脂Aまたは熱可塑性樹脂Bとの間に高い接合強度を持たせることを狙っており、とくにこれを達成するために、本発明では、前述したように、以下のような形態を採ることができる。例えば上記熱可塑性樹脂A、熱可塑性樹脂Bおよび熱可塑性樹脂Cが結晶性の熱可塑性樹脂を主成分とし、かつ以下の関係を満足する形態である。
熱可塑性樹脂Cの結晶化温度<熱可塑性樹脂Aの結晶化温度、および、
熱可塑性樹脂Cの結晶化温度<熱可塑性樹脂Bの結晶化温度
【0015】
このように結晶化温度に高低の差をつける形態を採用することにより、とくに、接合の境界面に位置する熱可塑性樹脂Cの結晶化温度を相対的に低くして結晶化速度を遅くすることが可能になり結晶化温度が高いものほど結晶化速度が速い)、接合面を振動付与などにより加熱した際に、境界面の熱可塑性樹脂Cを結晶化前に十分に溶融させ、予備成形体同士を圧着などして境界面がなじむ時間を得ることができる。これにより熱可塑性樹脂Aや熱可塑性樹脂Bを用いた予備成形体同士の組み合わせにおいて、高い接合強度をもって接合した複合成形体の製造が可能になる。なお、この結晶化温度(Tc)の測定に関しては、対象樹脂を、示差走査熱量計(DSC)により溶融状態から一定速度(10℃/分)で冷却し、結晶化発熱ピーク温度〔結晶化温度(Tc)〕を測定することにより、上記結晶化速度を評価する(結晶化温度(Tc)が高いものほど結晶化速度が速い。)。
【0016】
また、上記のような結晶化温度特性を満たすために、あるいは、上記結晶化温度特性とは別に、上記熱可塑性樹脂Aおよび熱可塑性樹脂Bが、特定のモノマーを重合したホモポリマーからなる熱可塑性樹脂であり、かつ、上記熱可塑性樹脂Cが、2種類以上の異なったモノマーの共重合によるコポリマー(共重合体)で、その2種類以上のモノマーのひとつに熱可塑性樹脂Aまたは熱可塑性樹脂Bと同一のモノマーを含んだコポリマーからなる熱可塑性樹脂、またはそのコポリマーがブレンドされた樹脂組成物である形態を採用することができる。このような形態においては、熱可塑性樹脂C側の結晶化温度を熱可塑性樹脂Aや熱可塑性樹脂B側に比較して低くすることが可能となり、その結晶化速度が遅い熱可塑性樹脂Cが、より長い時間にわたって熱可塑性樹脂Aおよび熱可塑性樹脂Bと溶融状態で接することなり、熱可塑性樹脂Aや熱可塑性樹脂Bとの(予備成形体aと予備成形体bの間の)高強度接合を狙うことが可能となる。すなわち高い接合強度をもって接合した複合成形体の製造が可能となる。
【0017】
なお、熱可塑性樹脂A、熱可塑性樹脂Bおよび熱可塑性樹脂Cの全ての樹脂の結晶化温度を下げて、系全体の結晶化速度を遅くすることは可能である。しかしながら結晶化速度を下げる特別な手法を系全体に採用すればコストアップが避けられず、この方法は工業的に有利な方法とは言えない。結晶化温度が相対的に低い熱可塑性樹脂Cを接合の境界面のみに使用することで、両者の十分な接合強度を得ると共に、大きなコストアップを避けることができる。
【0018】
上記接合部の境界層(中間層)としては、熱可塑性樹脂Cを使用した、例えばフィルムや、あるいはメルトブローやスパンボンドなどによる不織布を使用することができる。これは、予備成形体aまたは予備成形体bのいずれか、あるいは予備成形体aおよび予備成形体bの両方の表面に配置する。例えばプレスなどで事前に予備成形体を得る際に、表面に配置しておき、あらかじめ一体化しておくのが望ましい。この場合、熱可塑性樹脂Cと、熱可塑性樹脂Aまたは熱可塑性樹脂Bが部分的に混合されてしまっても、熱可塑性樹脂Cが表面に一部でも露出していればかまわない。
【0019】
本発明に係る複合成形体の製造方法における、予備成形体aと予備成形体bの接合方法としては、例えば次のような手法を用いることができる。バイブレーション溶着(2種類の予備成形体の接合界面で発生する摩擦熱を利用して、樹脂を溶融させて溶着する方法)、熱板融着(溶着したい予備成形体を、予め熱した熱板にて接触あるいは非接触により加熱し、接合面が溶融状態になった後に、2種の予備成形体を加圧し溶着する技術)、インパルス融着(ヒーター線に低電圧、大電流を短時間通電し発熱させて熱源とする融着方法)、高周波融着(高周波の誘電加熱作用を利用して接合物(導電体)に内部発熱を起こさせ溶着する工法)、超音波融着(予備成形体に縦方向の超音波振動を与えることで発生する摩擦熱により局所的瞬間的に昇温させる手法)などを挙げることができる。この他、電磁誘導加熱により導電体(例えば炭素繊維)に誘導電流を流しジュール熱で発熱させる方法、導電体(例えば炭素繊維)に直接通電しジュール熱で発熱させる方法や、熱風、トーチ、レーザーによる方法など既存の加熱方法を使用することができる。
【0020】
本発明に係る複合成形体の製造方法における、より具体的な熱可塑性樹脂Aおよび熱可塑性樹脂Bと、熱可塑性樹脂Cの組み合わせとして、例えば、次のような組み合わせを挙げることができる。例えば、熱可塑性樹脂Aおよび熱可塑性樹脂Bが、p−ポリフェニレンサルファイドを主成分とし、熱可塑性樹脂Cが共重合ポリフェニレンサルファイドからなる組み合わせを挙げることができる。この場合、共重合ポリフェニレンサルファイドとしては、p−フェニレンサルファイド単位にm−フェニレンサルファイド単位が共重合されたポリマーを用いることができる。
【0021】
ポリフェニレンサルファイドを用いた形態は本発明の最も好ましい形態のひとつである。ポリフェニレンサルファイドは、剛直な骨格を有するポリマーで高い剛性を有し、炭素繊維などの強化繊維との組み合わせで高い力学的特性を発現する。このため、たとえ強化繊維の重量平均繊維長が1mm〜20mmと短めであったとしても比較的高い力学的特性を示す。さらに繊維長がより長かったり、連続強化繊維であった場合には、さらに高い特性を示す。また難燃性であり、各種電子機器や自動車用電装部品などの難燃性が求められる用途に好適である。さらに、通常のp−ポリフェニレンサルファイドを主体とするポリフェニレンサルファイドは結晶化速度が速く、通常複合一体成形が難しい系であるが、本発明を適用し、例えば熱可塑性樹脂Cに結晶化温度を低くした(結晶化速度を遅くした)樹脂系を用いることにより接合強度の高い複合成形体を得ることができる。
【0022】
また、別の組み合わせとして、熱可塑性樹脂Aおよび熱可塑性樹脂Bが、ポリアミドからなり、熱可塑性樹脂Cが、共重合ポリアミドからなる形態も採用できる。
【0023】
なお、本発明における熱可塑性樹脂Aおよび熱可塑性樹脂Bと、熱可塑性樹脂Cの組み合わせは、上述の例に限らない。熱可塑性樹脂C側の結晶化温度が熱可塑性樹脂Aや熱可塑性樹脂B側に比較して低いものが望ましく、これを実現するための手法も限定されない。高分子の結晶化温度を変化させる手法として公知の技術を活用することができ、上述のコポリマーを使用した手法以外にもタルク、カオリン、有機リン化合物、特定のポリマーの少量添加など、各種結晶核剤を添加して結晶化温度を制御することができる。また、熱可塑性樹脂A、熱可塑性樹脂B、熱可塑性樹脂Cの主ポリマー鎖の末端を特定の基とすることによっても結晶化温度を変化させることが可能である。
【0024】
また、本発明に係る複合成形体の製造方法において、用いる強化繊維の種類としてはとくに限定されず、炭素繊維やガラス繊維、アラミド繊維などを使用でき、これらを組み合わせたハイブリッド構成とすることも可能である。複合成形体の製造の強度設計や製造の容易性等を狙う場合、とくに炭素繊維を含む形態が好ましい。特に連続繊維を用いた予備成形体の強化繊維に炭素繊維を用いるとその高い強化繊維の特徴を最も強く発揮させることができる。
【0025】
本発明では、上記のような方法により製造された複合成形体も提供される。製造される複合成形体の形状や構造はとくに限定されない。予備成形体aと予備成形体bの融着部は、その形状の許す限り広い面積を確保することが望ましい。嵌合形状とすることもできる。予備成形体の少なくとも片方は、通常の射出成形機を用いてペレット様材料を射出して得たものとすることを例示できる。さらに、これに類似する動作をする成形手法を用いることもできる。例えば射出とプレスの動作を組み合わせているいわゆる射出プレス成形を用いることもできる。射出成形やその類似技術に用いるペレットは、通常のコンパウンドペレットでもよいし、いわゆる長繊維ペレットであってもよい。
【発明の効果】
【0026】
このように、本発明に係る複合成形体の製造方法によれば、予備成形体aと予備成形体bを接合するに際し、予備成形体の表層部を形成する熱可塑性樹脂Cと、他に使用する熱可塑性樹脂Aまたは熱可塑性樹脂Bを、同種ではあるが互いに異なる処方の熱可塑性樹脂とし、熱可塑性樹脂Cの結晶化速度を相対的に遅くするようにしたので、その熱可塑性樹脂Cがより長い時間にわたって熱可塑性樹脂Aおよび熱可塑性樹脂Bと溶融状態で接することとなり、樹脂Aや樹脂Bとの(予備成形体aと予備成形体bの間の)高強度接合を達成できる。このように製造された複合成形体は、高い機械的強度や剛性を有し、また、同種の熱可塑性樹脂同士の接合体であることから、優れたリサイクル性能も兼ね備えたものとすることができる。
【図面の簡単な説明】
【0027】
図1】本発明の一実施態様に係る複合成形体の製造方法を示す概略構成図である。
図2】本発明に関連して強化繊維の繊維長とコンポジット特性および成形性との一般的な関係を示す特性図である。
【発明を実施するための形態】
【0028】
以下に、本発明の実施の形態について、図面を参照しながら説明する。
図1に、本発明の一実施態様に係る複合成形体の製造方法と本発明における予備成形体の構造例を示す。図1において、1は、予備成形体aを示し、2は予備成形体bを示している。また3は、相対的に結晶化温度がより低い熱可塑性樹脂C(例えば、低結晶化温度PPS[低結晶化温度共重合ポリフェニレンサルファイド])を用いた層を示している。予備成形体a(1)の片面にはあらかじめ熱可塑性樹脂Cによる層3が一体形成されている。予備成形体a(1)および予備成形体b(2)は、それぞれ熱可塑性樹脂Cよりも相対的に結晶化温度がより高い熱可塑性樹脂A、熱可塑性樹脂B(例えば、通常の結晶化温度のPPS)を用いた繊維強化樹脂からなる。
【0029】
上記のような予備成形体a(1)および予備成形体b(2)は、直接加熱、振動、超音波などの適当な手段により加熱しながら予備成形体同士を圧着することにより、予備成形体の一部を溶融させ、該溶融による接合により複合成形体4を作製する。このようないわゆる融着により、例えば中空構造体や、リブ等が配置された強度・剛性を兼ね揃えた最終成形品としての複合成形体4が得られる。
【0030】
予備成形体b(2)に用いられる樹脂が熱可塑性樹脂Aとは異なる熱可塑性樹脂Bのケースも考えられる。また熱可塑性樹脂Cの層3は、あらかじめ予備成形体a(1)の表層に形成されていても、予備成形体b(2)の表層に形成されていても、融着面に熱可塑性樹脂Cが存在する形態であればどちらのケースも使用することができる。予備成形体a(1)および予備成形体b(2)の両方の表層に熱可塑性樹脂Cの層3が形成されていてもよい。
【0031】
上記の予備成形体a、bは、プレス成形や射出成形等といった成形法によって得られ、その成形方法には特に制限はない。プレス成形を使用する場合は、例えば織物などの連続繊維基材、一方向に繊維を配列したもの(一方向性基材[UD])、長繊維マットなどに熱可塑性樹脂を複合や含浸させた、いわゆる熱可塑性プリプレグを素材として用い、これを金型内に置いて加熱・加圧して所定の形状の予備成形体を成形すればよい。その際、例えば型の最下層または最上層にあらかじめ熱可塑性樹脂Cとなるフィルムや不織布等を配置してからプレスすることで一体化しておくことができる。また、射出成形の場合も、金型のキャビティ内にあらかじめ熱可塑性樹脂Cとなるフィルムや不織布等を配置したり、熱可塑プリプレグをあらかじめキャビティ内に配置してから、射出成形するインサート成形等の方法によっても成形することができる。この他、いわゆる射出プレス成形、真空成形、ブロー成形、オートクレーブ成形、ダイヤフラム成形などの既存の熱可塑性樹脂成形技術を、予備成形体を得るのに活用することができる。予備成形体は、通常1次成形後脱型するために冷却された後、再び加熱/接合されて複合成形体に加工される。予備成形体aと予備成形体bをそれぞれ別の成形機で成形しながら、次の工程で自動接合していく統合生産ラインなども例示することができる。むろん予備成形体aと予備成形体bの成形サイクルが異なれば、独立の接合加工ラインを構成すればよい。
【0032】
予備成形体同士を良好な接合強度にて自由に接合・複合できることにより、その最終形態である複合成形体の形状および設計の自由度は飛躍的に高まる。例えば通常の射出成形では得ることが困難な中空構造なども容易に実現できる。また、例えば緩やかな曲面を有する面板部は高い力学的特性を有する連続繊維強化プリプレグを用いて成形し(予備成形体a)、これに補強のためのリブ等を有する複雑形状射出成形品(予備成形体b)を接合することで、複雑な形状と高い力学的特性の両立をはかることができる。この際適切に中空部を形成するよう接合すればさらに軽量性も大幅に向上させることができる。予備成形体a、bとそれぞれの使用素材、形状はその使用可能な素材の適用範囲の中で自由に設定できる。重量平均繊維長20mm以上の長繊維もしくは連続繊維強化で、かつPPS樹脂のような高弾性率・高耐熱性樹脂をマトリックス樹脂のベースとして、予備成形体aを面板形状(例えばスキンパネル)、予備成形体bをLチャンネル、Cチャンネル、Iチャンネル、Ωチャンネルなどの形態(例えばストリンガー)とし、これら予備成形体同士を接合したインテグラルスキンパネル構造を構成すれば、航空機用構造材のような高い力学的特性と軽量性が要求される構造にも適用することが可能である。同様に面板形状(例えばアウターパネル)に補強部材(例えばインナーフレーム)を接合した自動車構造用途も容易に実現できる。なお、この際、広い面板形状の予備成形体aに対し、複数の補強材である予備成形体bが接合されるような構成であっても本発明に含まれる。
【0033】
繊維強化樹脂の組み合わせの接合強度への影響度を調べるために、図1に示したような予備成形体の組み合わせで振動融着試験を行った。予備成形体aおよび予備成形体bに熱可塑性樹脂A、Bとしていずれも通常結晶化温度のポリフェニレンサルファイドを用い、予備成形体aの片側表面に熱可塑性樹脂Cの層を一体形成させた。熱可塑性樹脂Cとしては、結晶化温度の低いポリフェニレンサルファイド樹脂を用いた。この場合には、接合強度は高く、接合強度のばらつきは小であった。これと比較するため熱可塑性樹脂Cを含まない他は、全く条件が同じの予備成形体aおよび予備成形体bを準備し、融着試験を行ったところ接合強度は低く、接合強度のばらつきは大であった。
【0034】
上記においては、PPSをベースとした熱可塑性樹脂A、熱可塑性樹脂Bおよび熱可塑性樹脂Cの組み合わせについて例示した。例えば、前述したように、この組み合わせは、熱可塑性樹脂Aおよび熱可塑性樹脂Bが、ポリフェニレンサルファイドからなり、熱可塑性樹脂Cが、共重合ポリフェニレンサルファイドからなる組み合わせを挙げることができ、共重合ポリフェニレンサルファイドとしては、例えば、p−フェニレンサルファイド単位にm−フェニレンサルファイド単位が共重合されたポリマーを用いることができる。本発明では、このようなPPSをベースとした熱可塑性樹脂A、熱可塑性樹脂B、熱可塑性樹脂Cの組み合わせ以外にも、例えば前述したように、熱可塑性樹脂Aおよび熱可塑性樹脂Bが、ポリアミドからなり、熱可塑性樹脂Cが、共重合ポリアミドからなる組み合わせ形態も採用できる。このような共重合ポリアミドを使用する場合、共重合し得るポリアミド形成性成分の例としては、6ーアミノカプロン酸(a−1の場合を除く)、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε−アミノカプロラクタム(a−1の場合を除く)、ω−ラウロラクタムなどのラクタム、テトラメチレンジアミン、ヘキサメレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン、メタキシレンジアミン、パラキシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられる。また、得たい成形品の要求特性に応じて、難燃剤、耐候性改良剤、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を樹脂中に添加しておくことができる。
【0035】
また、本発明では、予備成形体が、重量平均繊維長1mm以上の強化繊維を含む第1の繊維強化樹脂を用いて予め成形され、好ましくは、例えば、
(1)重量平均繊維長が1mm〜50mmの範囲の強化繊維が実質上ランダム配向したマット状基材と樹脂の組み合わせによるもの、
(2)該予備成形体の任意の2端部間にわたって連続繊維が配置されるように強化された成形体、
のいずれか、または、これらが組み合わされた成形体とされるが、これは、予備成形体自体、ひいては最終成形品としての複合成形体の、各種機械特性と成形性・賦型性とについて、双方とも良好な特性を満足させるために規定したものである。
【0036】
すなわち、図2に、繊維強化樹脂(コンポジット)における、成形材料に含まれる強化繊維の長さ(重量平均繊維長、単位:mm)と成形された繊維強化樹脂の各種特性の相対レベルとの一般的な関係について示すように、繊維長が短くなると弾性率、強度、耐衝撃性は低下するが成形性・賦型性は良くなり、逆に繊維長が長くなると弾性率、強度、耐衝撃性は高くなるが成形性・賦型性は悪化する。これら特性をバランスよく高く維持するためには、とくに重量平均繊維長が1mm〜50mmの範囲の強化繊維が含有されていることが好ましい。
【0037】
図2には、併せて、成形材料に含まれる強化繊維の長さ(重量平均繊維長)に対応する代表的な成形プロセス(射出成形、プレス成形、オートクレーブ成形、RTM成形[Resin Transfer Molding])を例示しているが(もちろん、これら成形プロセスには限定されない)、本発明における好ましい形態である、重量平均繊維長が1mm〜50mmの範囲の強化繊維が含有されている場合には、プレス成形が適している。
【産業上の利用可能性】
【0038】
本発明に係る複合成形体およびその製造方法は、あらゆる複合成形体の用途に適用可能であり、とくに比較的大量生産することが要求される複合成形体を効率よく優れた生産性をもって製造する場合に好適なものである。本発明に係る複合成形体の用途としては、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体及びトレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフト、ポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェリング、リブなどの航空機関連部品、部材および外板などが挙げられる。
【符号の説明】
【0039】
1 予備成形体a
2 予備成形体b
3 熱可塑性樹脂Cの層
4 複合成形体
図1
図2