特許第5769260号(P5769260)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ NECネットワーク・センサ株式会社の特許一覧

特許5769260海底突起物検出システム、海底突起物検出方法、およびプログラム
<>
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000002
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000003
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000004
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000005
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000006
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000007
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000008
  • 特許5769260-海底突起物検出システム、海底突起物検出方法、およびプログラム 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5769260
(24)【登録日】2015年7月3日
(45)【発行日】2015年8月26日
(54)【発明の名称】海底突起物検出システム、海底突起物検出方法、およびプログラム
(51)【国際特許分類】
   G01S 15/89 20060101AFI20150806BHJP
   G01S 7/521 20060101ALI20150806BHJP
【FI】
   G01S15/89 A
   G01S7/521 Z
【請求項の数】8
【全頁数】14
(21)【出願番号】特願2012-160008(P2012-160008)
(22)【出願日】2012年7月18日
(65)【公開番号】特開2014-20934(P2014-20934A)
(43)【公開日】2014年2月3日
【審査請求日】2013年11月7日
(73)【特許権者】
【識別番号】599161890
【氏名又は名称】NECネットワーク・センサ株式会社
(74)【代理人】
【識別番号】100106909
【弁理士】
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100134544
【弁理士】
【氏名又は名称】森 隆一郎
(74)【代理人】
【識別番号】100150197
【弁理士】
【氏名又は名称】松尾 直樹
(72)【発明者】
【氏名】島津 定生
【審査官】 目黒 大地
(56)【参考文献】
【文献】 特開昭61−044382(JP,A)
【文献】 特開2000−227475(JP,A)
【文献】 特開2001−289935(JP,A)
【文献】 実開昭63−128481(JP,U)
【文献】 特開2004−224312(JP,A)
【文献】 特開2011−033584(JP,A)
【文献】 特開平08−211150(JP,A)
【文献】 特開2012−112922(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S1/72−1/82
3/80−3/86
5/18−5/30
7/52−7/64
15/00−15/96
(57)【特許請求の範囲】
【請求項1】
航空機から海に投下された音響センサであって、海底から予め決められた高さに位置された状態において、入力する探信音を示す信号に基づき指向性を有する探信音を出力するとともに、前記探信音の反響音を検出する前記音響センサと、前記航空機に搭載された海上側制御装置とを有し、
前記海上側制御装置が、
前記音響センサから出力される前記探信音の指向性の範囲から海底が除外されるように前記探信音の指向性を制御するための前記探信音を示す信号を生成する送信波形生成部と、
前記音響センサが検出した前記反響音に基づき海底探索物を検出する方位計算処理部と、
を備え、
前記送信波形生成部は、前記音響センサの垂直指向性が所定の仰俯角である場合に、前記音響センサからの探信音の進行方向を、水平面からの仰角に制御することを特徴とする海底突起物検出システム。
【請求項2】
前記音響センサは、
錘および浮きと連結されており、前記錘によって海底側に引っ張られ、前記浮きによって海面側に引っ張られた状態で、予め決められた、海底に鎮座している水中航走体を検出する範囲の高さに位置されることを特徴とする請求項1に記載の海底突起物検出システム。
【請求項3】
前記送信波形生成部は、
前記探信音の指向性の範囲が仰俯角0°以上となるように前記探信音の指向性を制御するための前記探信音を示す信号を生成することを特徴とする請求項1に記載の海底突起物検出システム。
【請求項4】
前記送信波形生成部は、
前記探信音の進行方向が仰俯角0°以上となるように前記探信音の指向性を制御するための前記探信音を示す信号を生成することを特徴とする請求項2あるいは3に記載の海底突起物検出システム。
【請求項5】
前記音響センサは、
錘および浮きと連結されており、前記錘によって海底側に引っ張られ、前記浮きによって海面側に引っ張られた状態で、海底から予め決められた範囲の高さに位置されていることを特徴とする請求項1、3、4のうちいずれか一項に記載の海底突起物検出システム。
【請求項6】
前記音響センサは、
前記音響センサの姿勢を検出する姿勢センサを備え、
前記送信波形生成部は、
前記姿勢センサの検出結果に基づき、前記音響センサが基準姿勢あるいは基準姿勢に近い状態であるか否かを判定し、前記音響センサが基準姿勢あるいは基準姿勢に近い状態であると判定した場合、前記探信音を示す信号を前記音響センサに出力することを特徴とする請求項1から5のうちいずれか一項に記載の海底突起物検出システム。
【請求項7】
航空機に搭載された海上側制御装置が、前記航空機から海に投下された音響センサから出力される探信音の指向性の範囲から海底が除外されるように前記探信音の指向性を制御するための探信音を示す信号を出力するステップと、
海底から予め決められた高さに位置される前記音響センサ、前記探信音を示す信号に基づく指向性を有する探信音を出力するステップと、
前記海上側制御装置が、前記音響センサから前記探信音の反響音を受信するステップと、
前記海上側制御装置が、受信した前記反響音に基づき海底突起物を検出するステップと、
を備え、
前記海上側制御装置は、前記探信音を示す信号を出力するステップにおいて、前記音響センサの垂直指向性が所定の仰俯角である場合に、前記音響センサからの探信音の進行方向を、水平面からの仰角に制御することを特徴とする海底突起物検出方法。
【請求項8】
航空機に搭載された海上側制御装置のコンピュータを、
前記航空機から海に投下された音響センサから出力される探信音の指向性の範囲から海底が除外されるように前記探信音の指向性を制御するための探信音を示す信号を生成する手段、
海底から予め決められた高さに位置される前記音響センサから、前記探信音を示す信号に基づく指向性を有する探信音を出力させる手段、
前記音響センサから前記探信音の反響音を受信する手段、
受信した前記反響音に基づき海底突起物を検出する手段、
として機能させ、
前記探信音を示す信号を出力する手段は、前記音響センサの垂直指向性が所定の仰俯角である場合に、前記音響センサからの探信音の進行方向を、水平面からの仰角に制御する、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、海底突起物検出システム、海底突起物検出方法、およびプログラムに関する。
【背景技術】
【0002】
潜水艦等の水中航走体は航走する際に音波を放出するため、その音波を検出して水中航走体を検出することが可能である。
しかし、大陸棚などの浅い海の海底に水中航走体が鎮座している場合がある。この場合、水中航走体から音波が放射されないため、水中航走体を検出することが困難であった。
また、ソナーの音響センサを用いた場合、海底に鎮座した水中航走体からの反響音と海底からの反響音とを区別することが困難であるため、海底に鎮座した水中航走体を発見することが極めて困難であった。
【0003】
例えば、海底に横たわる物体に対応するエコーと水中に浮遊する物体に対応するエコーとの識別を可能にするため、ソナーの俯角方向の放射パターンを変更するものがある(例えば、特許文献1参照)
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平01‐320486号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、検出した反響音に、海底突起物からの反響音以外である海底からの残響が含まれている場合、反響音に基づき検出される海底突起物の検出精度が低くなるおそれがあった。
【0006】
本発明は、上記の事情を考慮してなされたものであり、上記の課題を解決することができる海底突起物検出装置、海底突起物検出方法、およびプログラムを提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明の一実施形態に係る海底突起物検出システムは、航空機から海に投下された音響センサであって、海底から予め決められた高さに位置された状態において、入力する探信音を示す信号に基づき指向性を有する探信音を出力するとともに、前記探信音の反響音を検出する前記音響センサと、前記航空機に搭載された海上側制御装置とを有し、前記海上側制御装置が、前記音響センサから出力される前記探信音の指向性の範囲から海底が除外されるように前記探信音の指向性を制御するための前記探信音を示す信号を生成する送信波形生成部と、前記音響センサが検出した前記反響音に基づき海底探索物を検出する方位計算処理部と、を備え、前記送信波形生成部は、前記音響センサの垂直指向性が所定の仰俯角である場合に、前記音響センサからの探信音の進行方向を、水平面からの仰角に制御することを特徴とする。
【0008】
また、本発明の一実施形態に係る海底突起物検出方法は、航空機に搭載された海上側制御装置が、前記航空機から海に投下された音響センサから出力される探信音の指向性の範囲から海底が除外されるように前記探信音の指向性を制御するための探信音を示す信号を出力するステップと、海底から予め決められた高さに位置される前記音響センサが、前記探信音を示す信号に基づく指向性を有する探信音を出力するステップと、前記海上側制御装置が、前記音響センサから前記探信音の反響音を受信するステップと、前記海上側制御装置が、受信した前記反響音に基づき海底突起物を検出するステップと、を備え、前記海上側制御装置は、前記探信音を示す信号を出力するステップにおいて、前記音響センサの垂直指向性が所定の仰俯角である場合に、前記音響センサからの探信音の進行方向を、水平面からの仰角に制御することを特徴とする。
【0009】
また、本発明のプログラムは、航空機に搭載された海上側制御装置のコンピュータを、前記航空機から海に投下された音響センサから出力される探信音の指向性の範囲から海底が除外されるように前記探信音の指向性を制御するための探信音を示す信号を生成する手段、海底から予め決められた高さに位置される前記音響センサから、前記探信音を示す信号に基づく指向性を有する探信音を出力させる手段、前記音響センサから前記探信音の反響音を受信する手段、受信した前記反響音に基づき海底突起物を検出する手段、として機能させ、前記探信音を示す信号を出力する手段は、前記音響センサの垂直指向性が所定の仰俯角である場合に、前記音響センサからの探信音の進行方向を、水平面からの仰角に制御する、プログラムである
【発明の効果】
【0010】
本発明によれば、反響音に基づき検出される検出対象の検出精度を向上させることができる。
【図面の簡単な説明】
【0011】
図1】本発明の一実施形態に係る海底突起物検出システムの概要を説明するための図である。
図2】本発明の一実施形態に係る海底突起物検出システムの機能構成の一例を示すブロック図である。
図3】本発明の一実施形態に係る海底突起物検出システムにおける探信音の指向性の範囲の一例について説明するための図である。
図4】本発明の一実施形態に係る海底突起物検出システムにおいて表示部に表示される画像の一例を示す図である。
図5】本発明の一実施形態に係る海底突起物検出方法の一例を示すシーケンス図である。
図6】本発明の第2実施形態に係る海底突起物検出システムの機能構成の一例を示すブロック図である。
図7】本発明の第3実施形態に係る海底突起物検出システムの概要を説明するための図である。
図8】本発明係る海底突起物検出システムの実施形態の基本構成を示すブロック図である。
【発明を実施するための形態】
【0012】
以下、図面を参照して本発明による海底突起物検出システム1の一実施形態について説明する。図1は、本発明の一実施形態に係る海底突起物検出システム1の概要を説明するための図である。
図1に示す通り、本実施形態に係る海底突起物検出システム1は、海底側に配置される音響センサ10とブイ11を含む。この音響センサ10とブイ11は、例えば、事前に航空機12から海上に投下されている。ブイ11と音響センサ10を接続するケーブルの長さは使用する海域の水深に合わせて調整する。これにより、音響センサ10は、海底から予め決められた範囲の高さ位置に位置される。本実施形態において、音響センサ10は、海底から数mの高さに位置されることが好ましい。
この音響センサ10は、探信音を発信するとともに、対象物から反射した探信音である反響音を検出する。
このブイ11には、海中側制御装置110が搭載されている。この海中側制御装置110は、音響センサ10と電気的に接続され、この音響センサ10に送信する探信音の電気信号を増幅する。
【0013】
また、本実施形態に係る海底突起物検出システム1は、例えば、海上側の航空機12に搭載される海上側制御装置120を含む。この航空機12は、ヘリコプター等も含む。この海上側制御装置120は、飛行中の航空機12が海中側制御装置110と無線通信可能な通信エリアに入った場合、この海中側制御装置110と無線通信する。本実施形態において、海上側制御装置120は、探信音の波形を表わすアナログ信号(以下、探信音信号)を、海中側制御装置110に送信する。また、海上側制御装置120は、音響センサ10が検出したアナログ信号(以下、反響音信号)を海中側制御装置110から受信する。
【0014】
本実施形態において、海底突起物検出システム1は、音響センサ10が検出する反響音に基づき、海底に鎮座している水中航走体15を検出するためのシステムである。この水中航走体15は、走行せずに海底に鎮座している場合、音波を放射しないため、検出することが困難であった。また、探信音の反響音に基づき水中航走体15を検出する場合、その反響音には水中航走体15からの反響音と海底からの反響音とが含まれて可能性が高い。このように、検出された反響音が、水中航走体15からの反響音であるか、あるいは、海底からの環境音であるのかを判定することは困難であった。本実施形態に係る海底突起物検出システム1は、海底に着底した水中航走体15の反響音を海底からの残響から分離することにより、海底突起物検出システム1の検出精度を高めることができる。
【0015】
次に、図2を参照して、本実施形態に係る海底突起物検出システム1の機能構成の一例について説明する。図2は、本実施形態に係る海底突起物検出システム1の機能構成の一例を示すブロック図である。
上述の通り、本実施形態に係る海底突起物検出システム1は、音響センサ10と、海中側制御装置110と、海上側制御装置120とを含む。
【0016】
音響センサ10は、複数の圧電素子101と、送受信切替部102を備える。この音響センサ10は、電気信号を水中の音波に変換するとともに、水中の音波を電気信号に変換する。
この送受信切替部102は、海中側制御装置110と電気的に接続される。送受信切替部102は、海中側制御装置110から入力される探信音信号の有無に応じて、圧電素子101からの探信音の送信を切り替える。
具体的に説明すると、送受信切替部102は、指向性の範囲が制御された探信音信号を海中側制御装置110から入力した場合、増幅器112から入力した探信音信号を圧電素子101に出力する。これにより、圧電素子101は、探信音を海中に送信する。
また、送受信切替部102は、指向性の範囲が制御された探信音信号を海中側制御装置110から入力していない場合、探信音信号を圧電素子101に出力しない。よって、圧電素子101は、探信音を海中に送信しない。この場合、圧電素子101は反響音を受信し、反響音のアナログデータである反響音信号を送受信切替部102に出力する。そして、送受信切替部102は、圧電素子101から入力した反響音信号を海中側無線通信部111に出力する。
【0017】
圧電素子101は、例えば、この探信音を表わす探信音信号に基づき、指向性を有する探信音を海中に送信する。本実施形態において、圧電素子101は、音響センサ10が基準姿勢に位置されている状態において、例えば仰俯角3度の指向性を有する音波を発信する発信部である。また、指向性の範囲が制御された探信音を表す探信音信号には、海上側制御装置120によって制御された探信音の進行方向を示す特性を有する。つまり、海上側制御装置120によって制御された進行方向に向かって圧電素子101が音波を発信することにより、圧電素子101からの探信音の指向性は合成される。本実施形態において、圧電素子101の進行方向を中心として仰俯角3度の範囲が、探信音の強く発信される範囲、つまり、指向性の範囲(ビーム幅)である。
【0018】
また、圧電素子101は、検出した音波を電気信号(アナログ信号)に変換して、送受信切替部102に出力する。この圧電素子101は、探信音の反射音である反響音を含む海中の音波信号を電気信号に変換し、反響音を含むアナログ信号を送受信切替部102に出力する。
【0019】
海中側制御装置110は、海中側無線通信部111と、増幅器112とを備える。
海中側無線通信部111は、海上側制御装置120と無線通信を行う。この海中側無線通信部111は、海上側制御装置120から探信音信号を受信する。
増幅器112は、海中側無線通信部111から入力する探信音信号を増幅し、増幅された探信音信号を音響センサ10に出力する。
【0020】
海上側制御装置120は、海上側無線通信部121と、操作部122と、送信波形生成部123と、D/A変換部124と、A/D変換部125と、方位計算処理部126と、表示部127とを備える。
海上側無線通信部121は、海中側制御装置110と無線通信を行う。この海上側無線通信部121は、D/A変換部124から出力された探信音信号を、海中側制御装置110に送信する。また、海上側無線通信部121は、海中側制御装置110から反響音信号を受信する。
【0021】
送信波形生成部123は、探信音の波形を表すディジタルデータ(以下、探信音波形データという)を生成し、海上側無線通信部121に出力する。
この送信波形生成部123は、操作部122の設定に基づき、操作部122から指示された仰俯角とビーム幅の指向性を有する探信音波形データを生成する。具体的には説明すると、送信波形生成部123は、音響センサ10を構成する複数の圧電素子101に位相を変化させた探信音を送信させるような探信音波形データを生成する。
音響センサ10は、この探信音波形データに基づき、アレイ状に配列された複数の圧電素子101から位相を制御した音波を送信することにより、仰俯角とビーム幅が制御された探信音を送信する。
例えば、指向性の範囲(ビーム幅)が3度の場合、海底を避けて探信音を送信するには、探信音の中心進行方向の仰俯角を+1.5度に制御すると、探信音は仰俯角0〜+3度の方向に進行し、海底に向かって進行しないため、海底残響の影響を軽減することができる。
D/A変換部124は、送信波形生成部123が出力したディジタルデータである探信音波形データをアナログ信号である探信音信号に変換する。
【0022】
A/D変換部125は、海中側制御装置110から受信したアナログ信号である反響音信号をディジタルデータに変換する。
方位計算処理部126は、A/D変換部125から受信した反響音のディジタルデータについて、一定周期ごとに最大の値となる方位を計算する。例えば、方位計算処理の周期が2ミリ秒の場合、水中での音速が1秒あたり約1500mであることから、音響センサ10からの距離が1.5m毎の海底突起物と思われる反響音の方位を検出することができる。なお、方位とは、音響センサ10に対する海底突起物の方向について、音響センサ10を中心とする方位角で示す情報である。この方位計算処理部126による処理としては、一般的な方位計算の技術を利用可能である。
また、方位計算処理部126は、海中側制御装置110から入力する反響音のディジタルデータに基づき、検出された対象物までの距離を計算する。なお、対象物までの距離とは、音響センサ10と海底探索物までの距離を示す情報である。この方位計算処理部126は、例えば、音響センサ10が受信した反響音の時間差に水中音速(約1500m/秒)を乗算して算出する。
このように、方位計算処理部126は、音響センサ10からの海底探索物の方向を示す方位と、音響センサ10から海底突起物までの距離に基づき、音響センサ10を中心とした場合の海底突起物の位置を示す情報を取得することができる。
【0023】
表示部127は、方位計算処理部126によって計算された計算結果を表示する。この表示部127は、例えば、音響センサ10を中心として、方位計算処理部126によって計算された海底突起物の位置を濃淡または色彩で表現する。
【0024】
次に、図3を参照して、海中側制御装置110の送信波形生成部123によって制御される探信音の指向性の範囲の一例について説明する。図3は、探信音の指向性の範囲の一例について説明するための図である。この図3は、音響センサ10が基準姿勢に位置されている状態において発信する探信音の指向性を示す。
【0025】
この音響センサ10の垂直指向性は、音響センサ10が基準姿勢に位置されている状態において、例えば仰俯角3度である。例えば、この音響センサ10の圧電素子101からの探信音の進行方向が仰俯角0°(つまり水平方向)に制御された場合、探信音の指向性の範囲は、仰俯角+1.5°〜−1.5°の範囲である。つまり、水平面からの仰角が1.5度であって、かつ、水平面からの俯角が1.5度の範囲となる。
一方、この音響センサ10の圧電素子101からの探信音の進行方向が、図3に示す通り、仰俯角+1.5度に制御された場合、探信音の指向性の範囲は、仰俯角0°〜+3°の範囲となる。言い換えると、探信音の指向性の範囲は、水平面を0度として、0度〜+3度の範囲となる。この場合、探信音の指向性の範囲が、水平面から下側の範囲から除外される。よって、仰俯角0度未満の方向にある海底は、探信音の指向性の範囲から外れる。
このように、海上側制御装置120の送信波形生成部123の指向性合成処理により、探信音の進行方向を変更して、探信音の指向性の範囲を決定する仰俯角を制御することができる。
【0026】
ここで、図4を参照して、本実施形態に係る海上側制御装置120の表示部127に表示される画像の一例について説明する。図4は、海上側制御装置120の表示部127に表示される画像の一例を示す図である。
図4に示す通り、表示部127は、ブイ11を中心として海底突起物検出システム1が海底突起物を探索可能な領域である探索領域R1を示す。海底突起物が検出された場合、表示部127は、検出された海底突起物R2を探索領域R1内に表示する。なお、表示部127は、海底突起物R2が検出された部分を、探索領域R1とは異なる濃淡あるいは色彩で表現されている。なお、本実施形態において、水平面上において、音響センサ10の位置をブイ11の位置であるとして、表示部127に表示している。
つまり、探索領域R1上において、海上側制御装置120の方位計算処理部126によって反響音が検出された場合、表示部127は、探索領域R1において反響音が検出された方位と距離に、海底突起物R2を表示する。
【0027】
次に、図5を参照して、本実施形態に係る海底突起物検出方法の一例について説明する。図5は、本実施形態に係る海底突起物検出方法の一例を示すシーケンス図である。
(ステップST1)
例えば、操作部122を介して、探信音の指向性(進行方向の仰俯角とビーム幅)が指示されたとする。これにより、海上側制御装置120の送信波形生成部123が、操作部122の設定に基づき、探信音の指向性を有するディジタルデータ(探信音波形データ)を生成し、D/A変換部124に出力する。
(ステップST2)
D/A変換部124は、ディジタルデータである探信音音波データをアナログデータである探信音信号に変換して、海上側無線通信部121に出力する。
(ステップST3)
海上側無線通信部121は、入力した探信音信号を、海中側制御装置110に送信する。
【0028】
(ステップST4)
海中側制御装置110の海中側無線通信部111は、海上側制御装置120から探信音信号を受信して、増幅器112に出力する。
(ステップST5)
増幅器112は、海中側無線通信部111から入力する探信音信号を増幅して、増幅された探信音信号を音響センサ10に出力する。
【0029】
(ステップST6)
音響センサ10の送受信切替部102は、海中側制御装置110から探信音信号を入力し、圧電素子101に出力する。
そして、圧電素子101は、海上側制御装置120の送信波形生成部123の指向性合成処理によって制御された進行方向に向かって音響センサ10が音波を送信する。これにより、圧電素子101が送信する探信音の指向性が合成される。
(ステップST7)
そして、圧電素子101は、受信した音波を電気信号に変換して、送受信切替部102に出力する。つまり、圧電素子101は、探信音の反射音である反響音を含むアナログ信号である反響音信号を送受信切替部102に出力する。
送受信切替部102は、入力した反響音信号を海中側無線通信部111に出力する。
(ステップST8)
海中側無線通信部111は、送受信切替部102から入力した反響音信号を海上側制御装置120に送信する。
【0030】
(ステップST9)
海上側制御装置120の海上側無線通信部121は、受信した反響音信号をA/D変換部125に出力する。
(ステップST10)
A/D変換部125は、海上側無線通信部121から入力する反響音を含むアナログ信号である反響音信号をディジタルデータに変換して、方位計算処理部126に出力する。
方位計算処理部126は、入力する反響音ディジタルデータに基づいて、検出された海底突起物の方位を算出する。
また、方位計算処理部126は、A/D変換部125から入力する反響音ディジタルデータに基づき、検出された海底突起物までの距離を計算する。
(ステップST10)
表示部127は、方位計算処理部126によって計算された計算結果を表示する。この表示部127は、例えば、ブイ11(音響センサ10)を中心として、方位計算処理部126によって計算された海底探索物の位置を濃淡または色彩で表現する。
【0031】
上述の通り、本実施形態に係る海底突起物検出システム1は、音響センサ10から発信される探信音の指向性の範囲から海底が除外されるように制御することによって、反響音に海底からの残響が含まれることを防止することができる。従って、海底に着底し鎮座した水中航走体15からの反響音を海底からの残響から効率よく分離することができる。よって、反響音に基づき検出対象までの距離や方位を計測するための計測精度を向上させ、海底突起物を効率よく検出することができる。
【0032】
また、本実施形態に係る海底突起物検出システム1は、例えば、大棚などの浅い海の海底に水中航走体15が鎮座し、船舶を待ち伏せしている場合であっても、水中航走体15を検出し、その位置を表示部127に表示させることができる。このため、待ち伏せしている水中航走体15からの攻撃や、この水中航走体15と船舶との接触を回避することに役立つ。
【0033】
[第2実施形態]
次に、図6を参照して、本発明の第2実施形態に係る海底突起物検出システム2の一例について説明する。図6は、本発明の第2実施形態に係る海底突起物検出システム2の機能構成の一例を示すブロック図である。
図6に示す通り、本実施形態にかかる海底突起物検出システム2は、音響センサ210と、海中側制御装置110と、海上側制御装置120とを備える。音響センサ210は、送受信切替部102と、圧電素子101と、姿勢センサ211とを備える。なお、本実施形態に係る海底突起物検出システム2は、音響センサ210が姿勢センサ211を備えている点を除けば第1実施形態に係る海底突起物検出システム1と同様の構成を有するため、同一の符号を付して詳細な説明は省略し、異なる部分だけを説明する。
【0034】
姿勢センサ211は、例えば、加速度センサ等であって、音響センサ210の姿勢を検出する。送受信切替部102は、姿勢センサ211が検出した姿勢データを、海中側無線通信部111に出力する。
海中側無線通信部111は、入力した姿勢データを海上側制御装置120の海上側無線通信部121に送信する。
【0035】
海上側無線通信部121は、音響センサ210から入力する姿勢センサ211が検出した姿勢データを送信波形生成部123に出力する。送信波形生成部123は、入力した姿勢データに基づき、音響センサ210が、基準姿勢、あるいは基準姿勢に近い状態であるか否かを判定する。なお、基準姿勢とは、指向性の範囲の中心方向の仰俯角が0度の探信音信号が入力された場合、音響センサ210の圧電素子101が水平方向に向かって音波を発信できる姿勢をいう。基準姿勢に近い状態とは、圧電素子101から発信される音波の進行方向が、誤差範囲程度ずれている状態をいう。
【0036】
音響センサ210が基準姿勢あるいは基準姿勢に近い状態であると判定した場合、送信波形生成部123は、音波の進行方向の仰俯角を制御した探信音波形データをD/A変換部124に出力する。
これにより、D/A変換部124が、ディジタルデータである探信音波形データをアナログ信号である探信音信号に変換し、海上側無線通信部121と海中側無線通信部111を経由して増幅器112に送信する。この増幅器112が、アナログ信号の探信音信号を増幅し、増幅された探信音信号を音響センサ210に出力する。
一方、音響センサ210が基準姿勢あるいは基準姿勢に近い状態でないと判定した場合、送信波形生成部123は、音波の進行方向の仰俯角を制御した探信音のディジタルデータをD/A変換部124に出力しない。
音響センサ210は、海中側制御装置110から探信音のアナログ信号が入力された場合(言い換えると、入力されている期間)に限り、この探信音のアナログ信号に基づく探信音を海中に送信する。つまり、海中側制御装置110から探信音のアナログ信号が入力されていない場合、音響センサ210は、探信音を海中に送信しない。
【0037】
よって、音響センサ210は、その姿勢が基準姿勢あるいは基準姿勢に近い状態であると判定された場合に探信音を送信することができる。つまり、ブイ11が波に揺られて音響センサ210の姿勢が基準姿勢でなくなるおそれがある場合であっても、海上側制御装置120は、音響センサ210が基準姿勢あるいは基準姿勢に近い状態である場合に発信された探信音の反響音に基づき、海底突起物を検出することができる。従って、音響センサ210が基準姿勢あるいは基準姿勢に近い状態でない場合は、海底からの残響が含まれる反響音を検出するおそれがあるが、本実施形態によれば、このような反響音を音響センサ210が検出する事態を回避することができる。よって、海底に着底し鎮座した水中航走体15からの反響音を海底からの残響から効率よく分離することができ、反響音に基づき検出対象までの距離や方位を計測するための計測精度を向上させことができる。
【0038】
[第3の実施形態]
次に、図7を参照して、本発明の第3実施形態に係る海底突起物検出システム3の一例について説明する。図7は、本発明の第3実施形態に係る海底突起物検出システム3の概要を説明するための図である。
図7に示す通り、本実施形態に係る海底突起物検出システム3は、海底側に配置される音響センサ10、ブイ11、錘16、およびフロート17を含む。
この音響センサ10は、錘16およびフロート17とケーブル等で離間されて連結されている。また、錘16は、ブイ11とケーブル等で離間されて連結されている。この音響センサ10、ブイ11、錘16、およびフロート17は、例えば、事前に航空機12から海上に投下される。この場合、音響センサ10は、図示の通り、錘16によって海底側に引き下げられ、かつ、フロート17によって海面側に引き上げられた状態となる。よって、音響センサ10は、海底から予め決められた高さ位置に位置されることとなる。本実施形態において、音響センサ10は、海底から数mの高さに位置されることが好ましい。
【0039】
このように、本実施形態に係る海底突起物検出システム3において、音響センサ10は、錘16およびフロート17によって引っ張れることにより、海底から予め決められた高さ位置に位置されることとなる。よって、海流によって音響センサ10が流されやすい場合であっても、海底から予め決められた範囲の高さ位置に比較的よく位置されることができる。また、錘16およびフロート17によって引っ張られることにより、音響センサ10の姿勢も基準位置あるいは基準位置に近い状態で維持されやすくなる。よって、反響音に基づき検出対象までの距離や方位を計測するための計測精度を向上させ、海底突起物を効率よく検出することができる。
【0040】
なお、第1実施形態において、海中側制御装置110はブイ11に搭載される例について説明したが、本発明はこれに限られない。例えば、この海中側制御装置110は、錘16に搭載されるものであってよい。この場合、海上側制御装置120との通信機能はブイ11に搭載されることが好ましい。
【0041】
また、本発明に係る海底突起物検出システム1000の実施の形態の最小基本構成は、図8に示すような構成である。つまり、海底突起物検出システム1000は、海底から予め決められた高さに位置された状態において、入力する探信音を示す信号に基づき指向性を有する探信音を出力するとともに、探信音の反響音を検出する音響センサ1010と、音響センサ1010から出力される探信音の指向性の範囲から海底が除外されるように探信音の指向性を制御するための探信音を示す信号を出力する送信波形生成部1123と、上記音響センサ1010が検出した反響音に基づき海底突起物を検出する方位計算処理部1126と、を備える。
【0042】
なお、本実施の形態に係る音響センサ10、音響センサ210、海中側制御装置110、海上側制御装置120は、内部にコンピュータシステムを有している。そして、動作の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータシステムが読み出して実行することによって、上記処理が行われる。ここでいう「コンピュータシステム」とは、CPU及び各種メモリやOS、周辺機器等のハードウェアを含むものである。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
【0043】
また、各ステップを実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、また、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、検出対象物の形状情報の推定値を算出する処理を行ってもよい。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
【0044】
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムに既に記録されているプログラムとの組合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
【符号の説明】
【0045】
10…音響センサ、11…ブイ、12…航空機、15…水中航走体、101…圧電素子、102…送受信切替部、110…海中側制御装置、111…海中側無線通信部、112…増幅器、120…海上側制御装置、121…海上側無線通信部、122…操作部、123…送信波形生成部、124…D/A変換部、125…A/D変換部、126…方位計算処理部、127…表示部
図1
図2
図3
図4
図5
図6
図7
図8