(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
次に、図面を参照しながら、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0012】
(燃料電池10の構成)
燃料電池10の構成について、図面を参照しながら説明する。
図1は、燃料電池10の構成を示す拡大断面図である。
【0013】
燃料電池10は、いわゆる固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)である。燃料電池10は、縦縞型、横縞型、燃料極支持型、電解質平板型、或いは円筒型などの形態を取ることができる。燃料電池10は、
図1に示すように、燃料極20、固体電解質層30、バリア層40および空気極50を備える。
【0014】
燃料極20は、燃料電池10のアノードとして機能する。燃料極20は、多孔質の板状焼成体である。燃料極20は、
図1に示すように、燃料極集電層21と燃料極活性層22を有する。
【0015】
燃料極集電層21は、ガス透過性に優れる多孔質体である。燃料極集電層21を構成する材料としては、従来SOFCの燃料極集電層に用いられてきた材料を用いることができ、例えばNiO(酸化ニッケル)-8YSZ(8mol%のイットリアで安定化されたジルコニア)やNiO‐Y
2O
3(イットリア)が挙げられる。ただし、燃料極集電層21がNiOを含んでいる場合、NiOの少なくとも一部はNiに還元されていてもよい。燃料極集電層21の厚みは、0.2mm〜5.0mmとすることができる。
【0016】
燃料極活性層22は、燃料極集電層21上に配置される。燃料極活性層22は、燃料極集電層21よりは緻密質な多孔質体である。燃料極活性層22を構成する材料としては、従来SOFCの燃料極活性層に用いられてきた材料を用いることができ、例えばNiO‐8YSZが挙げられる。ただし、燃料極活性層22がNiOを含んでいる場合、NiOの少なくとも一部はNiに還元されていてもよい。燃料極活性層22の厚みは5.0μm〜30μmとすることができる。
【0017】
固体電解質層30は、燃料極20上に配置される。固体電解質層30は、ジルコニア系材料を主成分として含有し、セリア系材料を副成分として含有している。ジルコニア系材料としては、8YSZ、10YSZ(10mol%のイットリアで安定化されたジルコニア)、或いはScSZ(スカンジアで安定化されたジルコニア)などを用いることができる。セリア系材料としては、セリア(CeO
2)及びCeO
2に固溶した希土類金属酸化物を含むGDC(ガドリニウムドープセリア)やSDC(サマリウムドープセリア)などを用いることができる。
【0018】
固体電解質層30は、燃料極20との間に界面Pを形成する。界面Pは、燃料極20と固体電解質層30の成分濃度をマッピングした場合に濃度分布が急激に変化するラインや、燃料極20と固体電解質層30の間で気孔率が急激に変化するラインに基づいて規定することができる。固体電解質層30の構成については後述する。
【0019】
本実施形態において、組成物Xが物質Yを「主成分として含有する」とは、組成物X全体のうち、物質Yが好ましくは60重量%以上を占め、より好ましくは70重量%以上を占め、さらに好ましくは90重量%以上を占めることを意味する。組成物Xが物質Zを「副成分として含有する」とは、組成物X全体のうち、物質Zが好ましくは40重量%以下を占め、より好ましくは30重量%以下を占め、さらに好ましくは10重量%以下を占めることを意味する。
【0020】
バリア層40は、固体電解質層30と空気極50の間に配置される。バリア層40は、固体電解質層30と空気極50の間に高抵抗層が形成されることを抑制する。バリア層40は、緻密質の焼成体であることが好ましい。バリア層40の材料としては、セリア(CeO
2)及びCeO
2に固溶した希土類金属酸化物を含むGDCやSDCなどを用いることができる。バリア層40の厚みは、3μm〜20μmとすることができる。なお、燃料電池10は、バリア層40を備えていなくてもよい。
【0021】
空気極50は、バリア層40上に配置される。空気極50は、燃料電池10のカノードとして機能する。空気極50は、多孔質の焼成体である。空気極50は、一般式ABO
3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型複合酸化物を主成分として含有する。このようなペロブスカイト型複合酸化物としては、(La,Sr)(Co,Fe)O
3、(La,Sr)FeO
3、(La,Sr)CoO
3、LaSrMnO
3などが挙げられる。空気極50の厚みは、5μm〜50μmとすることができる。なお、燃料電池10がバリア層40を備えていない場合、空気極50は、固体電解質層30上に配置される。
【0022】
(固体電解質層30の構成)
固体電解質層30は、
図1に示すように、第1領域31と第2領域32を有する。第1領域31は、燃料極20上に配置される。第2領域32は、第1領域31上に配置される。
【0023】
第1領域31は、立方晶系ジルコニアと正方晶系ジルコニアを含有している。第1領域31において、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合は、3%以上である。
【0024】
また、第1領域31は、セリア系材料を含有していてもよい。セリア系材料としては、GDCやSDCなどが挙げられるがこれに限られるものではない。第1領域31において、ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合は、0.5%以下である。第1領域31は、セリア系材料を含有していなくてもよい。ただし、第1領域31が微量のセリア系材料を含有していたとしても、ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合が0.1%以下であれば、第1領域31はセリア系材料を実質的に含有していないと言うことができる。このように、第1領域31におけるセリアの割合を制限することによって、焼成後の還元処理において第1領域31が過剰に膨張することを抑制することができる。
【0025】
第2領域32は、ジルコニア系材料を含有する。ジルコニア系材料としては、8YSZ、10YSZ、或いはScSZなどを用いることができる。第2領域32において、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合は、0.1%以下である。第2領域32は、正方晶系ジルコニアを含有していなくてもよい。ただし、第2領域32が微量の正方晶系ジルコニアを含有していたとしても、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合が0.1%以下であれば、第2領域32は正方晶系ジルコニアを実質的に含有していないと言うことができる。なお、第2領域32の第1領域側表面32Sは、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合が0.1%となるラインに規定することができる。
【0026】
また、第2領域32は、セリア系材料を含有している。セリア系材料としては、GDCやSDCなどが挙げられるがこれに限られるものではない。第2領域32において、ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合は、1.0%以上である。このように、第2領域32におけるセリア系材料の割合を確保することによって、第2領域32における正方晶系ジルコニアの割合を抑制することができる。
【0027】
本実施形態において、「立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合」とは、断面におけるラマンスペクトル分析から求められるラマンスペクトル強度比の概念である。「立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合」はラマンスペクトル強度比から直接求められるものであるが、本実施形態では単に“%”と表記する。例えば、ラマンスペクトル強度比は、ラマン分光法によって取得される固体電解質層30のラマンスペクトルを各材料固有のラマンスペクトル(既知のスペクトルデータ)を用いて解析することによって算出することができる。この際、第1領域31及び第2領域32それぞれの任意の10箇所で取得したラマンスペクトルを解析することによって、各材料に由来する割合の平均値を算出することが好ましい。
【0028】
ラマンスペクトルの取得には、堀場製作所製の顕微レーザラマン分光装置(型式:LabRAM ARAMIS)を用いることができる。取得したラマンスペクトルを既知のスペクトルデータに基づいて解析する手法としては、複数のラマンスペクトルから化学種を推定するための周知の手法であるCLS法を用いることができる。
【0029】
「立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合」は、製造工程におけるセリア系材料粉末の仕込み量を調整することによって制御することができる。
【0030】
また、本実施形態において、「ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合」とは、断面における成分分析から求められる含有率の概念である。「ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合」の単位は“mol%”であるが、本実施形態では単に“%”と表記する場合がある。成分分析としては、EDX(Energy Dispersive X−ray Spectroscopy:エネルギー分散型X線分光法)によって取得されるEDXスペクトルを利用した元素分析を用いることができる。
【0031】
「ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合」は、製造工程におけるジルコニア系材料粉末とセリア系材料粉末の仕込み量を調整することによって制御することができる。
【0032】
なお、第1領域31の厚みは、1μm〜10μmとすることができる。第2領域32の厚みは、3μm〜20μmとすることができる。燃料極20との界面Pから第2領域32の第1領域側表面32Sまでの距離Lは、1μm〜20μmとすることができ、10μm以下であることが好ましい。また、距離Lは、固体電解質層30の全厚みの1/2以下であることが好ましく、1/3以下であることがより好ましく、1/4以下であることが更に好ましい。
【0033】
(燃料電池10の製造方法)
次に、燃料電池10の製造方法の一例について説明する。
【0034】
まず、金型プレス成形法で燃料極集電層用粉末を成形することによって、燃料極集電層21の成形体を形成する。
【0035】
次に、燃料極活性層用粉末と造孔剤(例えばPMMA)との混合物にバインダーとしてPVA(ポリビニルブチラール)を添加して燃料極活性層用スラリーを作製する。そして、印刷法などによって燃料極活性層用スラリーを燃料極集電層21の成形体上に印刷することによって、燃料極活性層22の成形体を形成する。以上によって、燃料極20の成形体が形成される。
【0036】
次に、立方晶系ジルコニアを含有するジルコニア系材料粉末にテルピネオールとバインダーを混合して第1領域用スラリーを作製する。この際、ジルコニア系材料粉末に加えてセリア系材料を混合してもよいが、ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合が0.5%以下となるように制限する。これによって、第1領域31における立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合を3%以上とすることができる。
【0037】
次に、印刷法などによって第1領域用スラリーを燃料極20の成形体上に印刷することによって、固体電解質層30のうち第1領域31の成形体を形成する。
【0038】
次に、立方晶系ジルコニアを含有するジルコニア系材料粉末とセリア系材料粉末にテルピネオールとバインダーを混合して第2領域用スラリーを作製する。この際、ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合が1.0%以上となるように各材料を秤量する。これによって、第2領域31における立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合を0.1%以下とすることができる。
【0039】
次に、印刷法などによって第2領域用スラリーを第1領域31の成形体上に印刷することによって、固体電解質層30のうち第2領域32の成形体を形成する。以上によって、固体電解質層30の成形体が形成される。
【0040】
次に、バリア層用粉末にテルピネオールとバインダーを混合してスラリーを作製する。そして、スクリーン印刷法などによってスラリーを固体電解質層30の成形体上に塗布することによって、バリア層40の成形体を形成する。
【0041】
以上により作製された成形体の積層体を共焼成(1300〜1600℃、2〜20時間)することによって、燃料極20、固体電解質層30およびバリア層40の共焼成体を形成する。
【0042】
次に、空気極用粉末にテルピネオールとバインダーを混合してスラリーを作製する。そして、スクリーン印刷法などを用いてスラリーをバリア層40上に塗布することによって、空気極活性層52の成形体を形成する。そして、空気極50の成形体を焼成(1000〜1100℃、1〜10時間)する。
【0043】
(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
【0044】
(A)上記実施形態では、燃料電池10がバリア層40を備えることとしたが、燃料電池10はバリア層40を備えていなくてもよい。この場合、固体電解質層30の第2領域32は、空気極50と接続されていてもよい。
【0045】
(B)上記実施形態では、固体電解質層30が第1領域31と第2領域32を有することとしたが、これに限られるものではない。第2領域32は、第1領域31と空気極50の間に配置されていればよく、固体電解質層30は、
図2に示すように、第1領域31と第2領域32の間に配置される第3領域33を有していてもよい。
【0046】
第3領域33は、ジルコニア系材料を含有する。第3領域33は、立方晶系ジルコニアと正方晶系ジルコニアを含有している。第3領域33において、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合は、0.1%より大きく3%未満である。また、第3領域33は、セリア系材料を含有していてもよい。セリア系材料としては、GDCやSDCなどが挙げられるがこれに限られるものではない。第3領域33において、ジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合は、0.5%より大きく1.0%未満である。なお、第3領域33は、セリア系材料を実質的に含有していなくてもよい。
【0047】
(C)上記実施形態では、固体電解質層30が第1領域31と第2領域32を有することとしたが、これに限られるものではない。第2領域32は、第1領域31と空気極50の間に配置されていればよく、固体電解質層30は、
図3に示すように、第2領域32上に配置される第4領域34を有していてもよい。
【実施例】
【0048】
(サンプルNo.1〜No.10の作製)
以下のようにして、サンプルNo.1〜No.10を作製した。
【0049】
まず、NiO粉末と8YSZ粉末と造孔材(PMMA)の調合粉末とIPAを混合したスラリーを窒素雰囲気下で乾燥させることによって混合粉末を作製した。
【0050】
次に、混合粉末を一軸プレス(成形圧50MPa)することで縦30mm×横30mm、厚み3mmの板を成形し、その板をCIP(成形圧:100MPa)でさらに圧密することによって燃料極集電層の成形体を作製した。
【0051】
次に、NiO‐8YSZとPMMAの調合粉末とIPAを混合したスラリーを燃料極集電層の成形体上に印刷した。
【0052】
次に、表1に示すジルコニア系材料(8YSZ又は10YSZ)にテルピネオールとバインダーを混合して第1領域用スラリーを作成した。この際、第1領域におけるセリア系材料の割合を調整するために、表1に示すセリア系材料(GDC又はSDC)の第1領域用スラリーにおける仕込み量を調整した。ただし、サンプルNo.5〜No.10の第1領域用スラリーにはセリア系材料を添加しなかった。次に、第1領域用スラリーを燃料極の成形体上に印刷することによって固体電解質層のうち第1領域の成形体を形成した。
【0053】
次に、表1に示すジルコニア系材料とセリア系材料にテルピネオールとバインダーを混合して第2領域用スラリーを作成した。この際、第2領域におけるセリア系材料の割合を調整するために、表1に示すセリア系材料の第2領域用スラリーにおける仕込み量を調整した。次に、第2領域用スラリーを第1領域の成形体上に印刷することによって固体電解質層のうち第2領域の成形体を形成した。
【0054】
次に、GDCスラリーを作製し、固体電解質層の成形体上にGDCスラリーを塗布することによってバリア層の成形体を作製した。
【0055】
次に、燃料極、固体電解質層及びバリア層の成形体を、1400℃で2時間共焼成した。
【0056】
次に、LSCFスラリーを作製し、共焼成体上にLSCFスラリーを塗布することによって空気極の成形体を作製した。次に、空気極の成形体を、1100℃で1時間焼成した。
【0057】
(ラマン分光法による立方晶系ジルコニアと正方晶系ジルコニアのラマンスペクトル強度比測定)
【0058】
サンプルNo.1〜No.10について、固体電解質層の断面においてラマン分光法による結晶相解析を実施した。具体的には、立方晶系ジルコニアと正方晶系ジルコニアのそれぞれに固有のラマンスペクトルを参照して、固体電解質層の断面において取得したラマンスペクトルを解析した。このラマンスペクトルの解析を厚み方向において連続的に行うことによって、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合が0.1%となるラインを定めて、このラインを境界として固体電解質層を第1領域と第2領域に区別した。第1領域及び第2領域それぞれの厚みは、表1に示すとおりであった。
【0059】
次に、第1領域内の平面方向及び厚み方向における複数箇所(n=10)のラマンスペクトルデータを解析することによって、立方晶系ジルコニア及び正方晶系ジルコニアそれぞれに由来するラマンスペクトルの強度割合に基づいて正方晶系ジルコニアの割合の平均値を取得した。第1領域における正方晶系ジルコニアの割合の平均値は表1に示すとおりである。
【0060】
次に、第2領域内の平面方向及び厚み方向における複数箇所(n=10)のラマンスペクトルデータを解析することによって、立方晶系ジルコニア及び正方晶系ジルコニアそれぞれに由来するラマンスペクトルの強度割合に基づいて正方晶系ジルコニアの割合の平均値を取得した。第2領域における正方晶系ジルコニアの割合の平均値は表1に示すとおりである。
【0061】
(EDXによるジルコニア系材料とセリア系材料の含有率測定)
サンプルNo.1〜No.10について、EDXを用いて固体電解質層の断面における複数箇所(n=10)のEDXスペクトルを取得した。そして、EDXスペクトルに基づいて元素分析をすることによって、固体電解質層の第1領域及び第2領域それぞれにおけるセリア系材料の割合(mol%)の平均値を取得した。第1領域及び第2領域それぞれにおけるセリア系材料の割合(mol%)の平均値は表1に示すとおりである。
【0062】
(還元処理後のクラック観察)
次に、各サンプルに還元処理を施した。具体的には、各サンプルの燃料極側を4%水素雰囲気に維持した状態で常温から750℃まで400℃/hrで昇温した後、4%水素雰囲気から100%水素雰囲気に切り替えた。続いて、水素ガスを燃料極に供給した状態で750℃に100時間維持した後に、Arガスと水素ガス(Arに対して4%)の供給によって還元雰囲気を維持した状態で常温まで12時間かけて降温した。
【0063】
その後、燃料極と固体電解質層の第1領域の界面付近を顕微鏡で観察することによって、クラックの有無を確認した。確認結果は、表1に示すとおりであった。
【0064】
(固体電解質層の電気伝導度測定)
各サンプルに還元処理を施した後、各サンプルのIR抵抗を交流インピーダンス法によって測定した。測定結果は、表1に示すとおりであった。
【0065】
【表1】
表1に示すように、サンプルNo.1では、還元処理後において、燃料極と固体電解質層の第1領域との界面付近にクラックが観察された。これは、サンプルNo.1の固体電解質層の第1領域におけるセリアの割合が多かったことに起因して、還元処理時の第1領域の膨張量が燃料極に比べて大きくなったためである。また、正方晶系ジルコニアの強度は立方晶系ジルコニアの強度よりも大きいことが周知であるところ、第1領域における正方晶系ジルコニアの割合が低かったため、燃料極と第1領域との界面における十分な接続性を得られなかったことも原因の一つである。
【0066】
従って、第1領域31におけるジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合は0.5%以下が好ましく、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合は3%以上が好ましいことがわかった。
【0067】
また、表1に示すように、サンプルNo.1では、セルの電気伝導度が低下した。これは、サンプルNo.1の固体電解質層の第2領域における正方晶系ジルコニアの割合が高すぎたためである。
【0068】
従って、第2領域32におけるジルコニア系材料とセリア系材料の総量に対するセリア系材料の割合は1.0%以上が好ましく、立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合は0.1%以下が好ましいことがわかった。
【解決手段】燃料電池10は、燃料極20と、空気極50と、燃料極20と空気極50の間に配置される固体電解質層30とを備える。固体電解質層30は、ジルコニア系材料を主成分とし、セリア系材料を副成分とする。固体電解質層30は、燃料極20上に配置される第1領域31と、第1領域31と空気極50の間に配置される第2領域32とを有する。第1領域31におけるジルコニアとセリアの総量に対するセリアの割合は、0.5%以下である。第1領域31における立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合は、3%以上である。第2領域32におけるジルコニア系材料とセリア系材料の総量に対するセリ系材料の割合は、1.0%以上である。第2領域32における立方晶系ジルコニアと正方晶系ジルコニアの総量に対する正方晶系ジルコニアの割合は、0.1%以下である。