(58)【調査した分野】(Int.Cl.,DB名)
前記ワイヤ本体は、前記管状体の先端部に接続され、金属材料で構成された芯材を有する第1ワイヤと、前記管状体の基端部に接続され、金属材料で構成された芯材を有する第2ワイヤとを備える請求項1に記載のガイドワイヤ。
【発明を実施するための最良の形態】
【0021】
以下、本発明のガイドワイヤおよびカテーテル組立体を添付図面に示す好適な実施形態に基づいて詳細に説明する。
【0022】
<第1実施形態>
図1は、本発明のカテーテル組立体を示す側面図、
図2および
図3は、それぞれ、
図1に示すカテーテル組立体の使用状態を順に示す部分縦断面図、
図4は、本発明のガイドワイヤの第1実施形態を示す側面図、
図5〜
図7は、それぞれ、
図4に示すガイドワイヤの製造方法を順に示す縦断面図、
図9は、
図1に示すカテーテル組立体を用いて撮像した血管壁を示す模式図である。なお、以下では、説明の都合上、
図1〜
図7中(
図8も同様)の右側を「基端」、左側を「先端」と言う。また、
図4〜
図7(
図8も同様)中では、見易くするため、ガイドワイヤの長さ方向を短縮し、ガイドワイヤの太さ方向を誇張して模式的に図示しており、長さ方向と太さ方向の比率は実際とは大きく異なる。
【0023】
図1に示すカテーテル組立体10は、カテーテル1とガイドワイヤ6とを備え、これらを組み立てた状態で用いられるものである。そして、カテーテル組立体10は、この組立状態で生体管腔内に挿入される。なお、生体管腔としては、特に限定されないが、本実施形態では血管500とする(
図9参照)。
【0024】
カテーテル1は、可撓性を有するチューブで構成されたカテーテル本体2と、カテーテル本体2の先端部に設置され、ガイドワイヤ6が挿通可能なガイドワイヤ挿通部3と、カテーテル本体2内に収納され、その長手方向に沿って移動可能な線状のドライブシャフト4と、カテーテル本体2の基端部に設置されたコネクタ5とを備えている。このカテーテル1は、前述したようにガイドワイヤ挿通部3にガイドワイヤ6を挿通した状態で血管500内に挿入されるものであり、ガイドワイヤ6の抜き差しを迅速に行なうことができる、いわゆる「ラピッドエクスチェンジタイプ(ショートモノレールタイプ)」のカテーテルである。
【0025】
図2、
図3に示すように、カテーテル本体2は、その長手方向に沿って延在するルーメン21を有している。このルーメン21内に、後述する回転駆動体であるドライブシャフト4を挿入することができる。なお、カテーテル本体2は、その先端が閉塞したものである。これにより、ドライブシャフト4がカテーテル本体2の先端から突出するのが防止される。
【0026】
また、
図2、
図3に示すように、カテーテル本体2の管壁23は、その少なくとも先端側の部分が透明性を有する窓部234となっている。カテーテル1は、光信号による画像、特に、光干渉断層画像診断装置(OCT)、その改良型である波長掃引を利用した光干渉断層画像診断装置(OFDI)に用いられるカテーテルであり、この窓部234を介して、後述するドライブシャフト4(撮像手段)の先端部に設けられた送受信部から出射される近赤外線を生体組織へ照射し、生体組織からの反射光を参照光と干渉させることで干渉光を生成した後、当該干渉光に基づいて、血管500の断面画像を描出することができる。
【0027】
また、カテーテル本体2の先端部には、その壁部にコイル22が埋設されている。コイル22は、金属製(例えばステンレス鋼)の素線で構成され、カテーテル本体2の先端部を補強する機能や、カテーテル本体2の先端部に弾性を担持させる機能を有するものである。
【0028】
図2、
図3に示すように、カテーテル本体2の先端部には、ガイドワイヤ6が挿通するルーメン32を有する管状をなすガイドワイヤ挿通部3が設置されている。ガイドワイヤ挿通部3の中心軸は、カテーテル本体2の中心軸に対し偏心している。
【0029】
ガイドワイヤ挿通部3は、その先端が開口した先端開口部37と、基端が開口した基端開口部36とを有している。図示の構成では、ガイドワイヤ挿通部3の基端部とカテーテル本体2の先端部とが重複した状態で固定されている。この固定方法は、特に限定されないが、例えば、端部同士を熱融着する方法を用いることができる。
【0030】
また、ガイドワイヤ挿通部3の管壁31には、補強部材34と、補強部材34よりも先端側に配置され、造影性を有するマーカ35とが埋設されている。
【0031】
補強部材34は、例えばポリエチレン等のような樹脂材料で構成された管状をなすものである。この補強部材34により、ガイドワイヤ挿通部3にガイドワイヤ6を挿通させた際に、ガイドワイヤ6でガイドワイヤ挿通部3の管壁31を不本意に割いてしまうのを確実に防止することができる。
【0032】
マーカ35は、例えばプラチナのようなX線不透過性金属材料で構成された素線を螺旋状に巻回して形成されたものである。このマーカ35により、X線透視下においてガイドワイヤ挿通部3の位置を確実に把握することができる。
【0033】
なお、カテーテル本体2の管壁23およびガイドワイヤ挿通部3の管壁31の構成材料としては、特に限定されず、例えば、スチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリイミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー等が挙げられ、これらのうちの1種または2種以上を組合せたもの(ポリマーアロイ、ポリマーブレンド、積層体等)を用いることができる。
【0034】
図2、
図3に示すように、カテーテル本体2内に挿入される医療用具であるドライブシャフト4は、例えば、長尺状をなす本体部42と、本体部42の先端421に設置されたプリズム43と、プリズム43を収納するハウジング44とを備えている。
【0035】
本体部42は、例えば光ファイバの周囲を多層巻コイルで覆ったもので構成されている。この本体部42は、その基端部がコネクタ5に接続されており、プリズム43を介して光600(信号)を、後述するコネクタ5に設置されたスキャナ51側から送信し、生体からの反射光を受信することができる。
【0036】
また、本体部42の先端部には、ガイドワイヤ6との位置決めを行なう際に視認されるセンサマーカ(医療用具側位置決め用マーカ)45が設けられている。センサマーカ45は、例えばプラチナのような金属材料で構成されたリングを本体部42の外周部に設置したものである。このセンサマーカ45により、X線透視下においてドライブシャフト4の先端部の位置を確実に把握することができる。また、ガイドワイヤ6との位置決めを確実に行なうことができる。この位置決めについては、後述する。
【0037】
プリズム43は、直角プリズムであり、本体部42の先端421(光ファイバの先端)に固定されている。なお、固定方法としては、特に限定されず、例えば、接着剤による接着が挙げられる。
【0038】
ハウジング44は、有底筒状をなし、その内側にプリズム43を収納、保護する部材である。また、ハウジング44は、本体部42の先端421に固定されている。なお、固定方法としては、前述した接着剤による接着の他に半田付けによる固定方法を用いることができる。
【0039】
カテーテル組立体10では、プリズム43と、螺旋状金属線で覆われた光ファイバで構成された本体部42と、スキャナ51とで、血管壁501の撮像する撮像手段が構成されている。
【0040】
図1に示すように、カテーテル本体2の基端部には、コネクタ5が接続されている。このコネクタ5は、例えば光ファイバコネクタ(図示せず)を有し、内部に光ファイバを有するドライブシャフト4を高速回転させるためのスキャナ51に接続することができる。このような構成のスキャナ51は、プリズム43からの光信号を本体部42内に設置された光ファイバを通じて伝達し、専用の解析装置に通信させることができる。そして、この通信状態で、前記解析装置より構築された血管壁501の画像を、例えばモニタで表示することができる。
【0041】
図4に示すように、ガイドワイヤ6は、可撓性を有する長尺なワイヤ本体61を有するものである。ガイドワイヤ6は、さらに、ワイヤ本体61の先端部を覆うように設置され、素線を螺旋状に形成してなるコイルを有するものであってもよい。
【0042】
ガイドワイヤ6(ワイヤ本体61)は、第1ワイヤ7と、第1ワイヤ7の基端側に配置された第2ワイヤ8と、第1ワイヤ7と第2ワイヤ8との間に配置され、これらのワイヤ同士を連結する連結部材として機能する光透過部材9とを有している。以下、各部の構成について説明する。
【0043】
図7(
図4〜
図6についても同様)に示すように、第1ワイヤ7は、芯材となる素線71と、素線71の外周部を被覆する被覆層72とを有している。また、第2ワイヤ8は、芯材となる素線81と、素線81の外周部を被覆する被覆層82とを有している。
【0044】
素線71および81は、それぞれ、可撓性を有する線材であって、その構成材料としては、特に限定されず、各種金属材料、各種プラスティックを使用することができるが、ステンレス鋼、ピアノ線、コバルト系合金等であるのが好ましい。なお、素線71の構成材料と素線81の構成材料とは、同じであってもよいし、異なっていてもよい。
【0045】
また、素線71の構成材料としては、上記材料の他に、超弾性合金を用いることもできる。この場合、ガイドワイヤ6は、先端側での柔軟性と、基端側での剛性とが共に優れたものとなる。その結果、ガイドワイヤ6は、優れた押し込み性やトルク伝達性を得て良好な操作性を確保しつつ、先端側においては良好な柔軟性、復元性を得て血管への追従性、安全性が向上する。超弾性合金の好ましい組成としては、49〜52原子%NiのTi−Ni合金等のTi−Ni系合金、38.5〜41.5重量%ZnのCu−Zn合金、1〜10重量%XのCu−Zn−X合金(Xは、Be、Si、Sn、Al、Gaのうちの少なくとも1種)、36〜38原子%AlのNi−Al合金等が挙げられる。このなかでも特に好ましいものは、上記のTi−Ni系合金である。
【0046】
また、素線71および81の直径は、それぞれ、0.10〜1.00mm(0.005’’〜0.038’’)であるのが好ましく、0.25〜0.65mm(0.010’’〜0.025’’)であるのがより好ましい。
【0047】
被覆層72および82は、それぞれ、種々の目的で形成することができるが、その一例として、ガイドワイヤ6の摩擦(摺動抵抗)を低減し、摺動性を向上させることによってガイドワイヤ6の操作性を向上させることがある。
【0048】
このような目的のためには、被覆層72および82は、それぞれ、摩擦を低減し得る材料で構成されているのが好ましい。これにより、ガイドワイヤ6とともに用いられるカテーテル1のガイドワイヤ挿通部3の管壁31との摩擦抵抗(摺動抵抗)が低減されて摺動性が向上し、ガイドワイヤ挿通部3内でのガイドワイヤ6の操作性がより良好なものとなる。また、ガイドワイヤ6の摺動抵抗が低くなることで、ガイドワイヤ6をガイドワイヤ挿通部3内で変位させた際に、ガイドワイヤ6のキンク(折れ曲がり)やねじれ、特に溶接部付近におけるキンクやねじれをより確実に防止することができる。
【0049】
このような摩擦を低減し得る材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリエステル(PET、PBT等)、ポリアミド、ポリイミド、ポリウレタン、ポリスチレン、ポリカーボネート、シリコーン樹脂、フッ素系樹脂(PTFE、ETFE等)、またはこれらの複合材料が挙げられる。
【0050】
また、第1ワイヤ7は、素線71の基端部が被覆層72から露出しており、当該露出した部分が、光透過部材9の先端部91に挿入、接続される接続部711となる。また、第2ワイヤ8も、素線81の先端部が被覆層82から露出しており、当該露出した部分が、光透過部材9の基端部92に挿入、接続される接続部811となる。
【0051】
そして、第1ワイヤ7の接続部711の根元部には、ドライブシャフト4との位置決めを行なう際に視認される位置決め用マーカ75が設置されている。位置決め用マーカ75は、例えばプラチナのような金属材料で構成されたリングを接続部711の外周部に設置したものである。
【0052】
図4に示すように、第1ワイヤ7は、その先端部に湾曲した柔軟部73を有している。柔軟部73は、図示の構成では一方向に湾曲した「J」字状をなす部分であるが、これに限定されず、例えば、一方向に屈曲した「U」字状をなす部分、互いに反対方向に複数箇所で湾曲または屈曲した部分であってもよい。また、柔軟部73が省略されて、直線状であってもよい。
【0053】
また、第1ワイヤ7の柔軟部73の基端側近傍には、X線透視下においてガイドワイヤ6の先端部の位置を把握するためのマーカ74が設置されている。マーカ74は、位置決め用マーカ75と同様に、プラチナのような金属材料で構成された線材を第1ワイヤ7の被覆層72上に設置したものである。
【0054】
第1ワイヤ7と第2ワイヤ8とは、光透過部材9を介して連結されている。このように、光透過部材9は、ガイドワイヤ6の長手方向の途中に配置されたものとなっている。
【0055】
光透過部材9は、透明性を有し、その側面(外周面)94の一部から中心軸93を介して反対側まで視認することができる部材である。ここで「透明」には、無色透明の他、有色(着色)透明も含まれる。
【0056】
この光透過部材9は、光透過樹脂材料またはガラス材料からなる管状体で構成されている(
図7参照)。樹脂材料としては、特に限定されず、例えば、ポリエチレン等のポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6−12、ナイロン6−66)、ポリイミド、ポリカーボネート(PC)、アクリル系樹脂、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、等の各種熱可塑性エラストマー、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。また、ガラス材料としては、特に限定されず、例えば、石英ガラス、無アルカリガラス、ソーダガラス、結晶性ガラス、カリウムガラス、ホウ珪酸ガラス等が挙げられる。このような樹脂材料やガラス材料を用いることにより、光透過部材9全体または光透過部材9の一部は、確実に画像診断装置の照射する光信号に対する光透過性を有する、具体的には近赤外光を透過するものとなる。
【0057】
また、光透過部材9が管状体で構成されており、これにより、光透過部材9を介して第1ワイヤ7と第2ワイヤ8と連結してガイドワイヤ6を製造する際、その連結作業、すなわち、製造を容易に行なうことができる(
図5〜
図7参照)。
【0058】
そして、血管500内の画像を撮像した際、光600が光透過部材9を確実に透過する、すなわち、遮断されるのが確実に防止され、よって、当該画像にガイドワイヤ6によるバックシャドーが生じるのを確実に防止することができる。これについては、後述のカテーテル組立体10の使用方法で詳述する。
【0059】
また、光透過部材9は、柔軟部73よりも基端側に位置している、すなわち、柔軟部73にかかっていない。これにより、光透過部材9を前記構成材料で構成して比較的硬質のものとしても、柔軟性が要求される柔軟部73に影響を与えるのを防止することができる。
【0060】
前述したように、光透過部材9は、ガイドワイヤ6の長手方向の途中に配置されている。この配置領域としては、特に限定されないが、例えば、ガイドワイヤ6の先端76から光透過部材9の先端96までの距離L1が5〜200mmであるのが好ましく、10〜100mmであるのがより好ましい。
【0061】
また、光透過部材9の実際に光透過性を発揮する機能部95の長さL2は、特に限定されないが、例えば、100mm以上であるのが好ましく、100〜200mmであるのがより好ましい。
【0062】
このような数値範囲により、操作の安全性(先端柔軟性)とバックシャドー低減のための材料物性との両立が可能となる。
【0063】
次に、ガイドワイヤ6を製造する方法の一例について、
図5〜
図7を参照しつつ説明する。
【0064】
[1]
図5(a)に示すように、第1ワイヤ7、第2ワイヤ8、光透過部材9となる母材9’を用意する。
【0065】
なお、第1ワイヤ7、第2ワイヤ8としては、例えば、芯材と被覆層とで構成された1本の母材(ガイドワイヤ)を、その途中で切断し、各切断部をそれぞれ芯材が露出するように被覆層を研磨処理したものを使用することができる。各芯材が露出した部分がそれぞれ、第1ワイヤ7の接続部711、第2ワイヤ8の接続部811となる。そして、第1ワイヤ7の接続部711に位置決め用マーカ75を接合することができる。
【0066】
[2] 次に、
図5(b)に示すように、母材9’の先端部91に第1ワイヤ7の接続部711を挿入する。この挿入限界は、母材9’に第1ワイヤ7の被覆層72が当接するまでとすることができる。これと同様に、母材9’の基端部92に第2ワイヤ8の接続部811を挿入する。この挿入限界は、母材9’に第2ワイヤ8の被覆層82が当接するまでとすることができる。
【0067】
[3] 次に、
図6(c)に示すように、母材9’およびその周辺部までを熱収縮チューブ11で被覆する。
【0068】
[4] そして、
図6(c)に示す状態で加熱、加圧(締め付け)すると、
図6(d)に示すように、母材9’が溶融または軟化し、その外径および内径が縮径することとなり、母材9’の内周面97が変形する。これにより、当該変形した内周面97が第1ワイヤ7の接続部711および第2ワイヤ8の接続部811に押圧、密着し、それらの摩擦力により、接続部711および接続部811が母材9’に対し固定される。
【0069】
[5] 次に、
図7(e)に示すように、熱収縮チューブ11を除去して、ガイドワイヤ6が得られる。
以上のような一連の工程を経ることにより、ガイドワイヤ6を製造することができる。
【0070】
次に、カテーテル組立体10の使用方法の一例について、
図2、
図3および
図9を参照しつつ説明する。
【0071】
図2に示すように、ガイドワイヤ6を先行させつつ、カテーテル1のガイドワイヤ挿通部3にガイドワイヤ6を挿通し、当該カテーテル1を血管500の目的部位近傍まで移動させて留置する。そして、ガイドワイヤ6とドライブシャフト4との位置決めを行なう。この位置決めは、X線透視下でガイドワイヤ6の位置決め用マー75とドライブシャフト4のセンサマーカ45とを確認しつつ、互いを血管500の長手方向で同じ位置に合わせることで行なわれる。
【0072】
次に、
図3に示すように、ガイドワイヤ6の位置を固定したまま、ドライブシャフト4をその軸回りに回転させつつ、基端方向に移動させる。これにより、
図9に示す血管壁501の画像が得られる。また、前述したように光透過部材9が光透過性を有していることにより、ドライブシャフト4からの光600は、光透過部材9を透過して、血管壁501で反射し、その反射光は、再度、光透過部材9を透過してドライブシャフト4で受光される(
図3参照)。このように光600がガイドワイヤ6で遮断されるのが防止される。これにより、カテーテル組立体10を用いて血管壁501の画像を撮像した際には、前記遮断で起こるガイドワイヤ6のバックシャドーが画像に生じるのを確実に防止することができる(
図9参照)。
【0073】
また、
図2に示す状態では位置決め用マーカ75が光透過部材9の先端側近傍に位置している。これにより、次の動作である撮像動作を行なった際に、迅速に血管壁501の画像を撮像することができ、その画像はバックシャドーが防止されたものとなる。
【0074】
<第2実施形態>
図8は、本発明のガイドワイヤの第2実施形態を示す縦断面図である。
【0075】
以下、この図を参照して本発明のガイドワイヤおよびカテーテル組立体の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
【0076】
本実施形態は、第1ワイヤおよび第2ワイヤのそれぞれの接続部の形状が異なること以外は前記第1実施形態と同様である。
【0077】
図8に示すように、第1ワイヤの接続部711には、その長手方向の途中に、外径が拡径した拡径部712が形成されている。また、これと同様に、第2ワイヤの接続部811にも、その長手方向の途中に、外径が拡径した拡径部812が形成されている。このような拡径部712、812は、それぞれ、光透過部材9の内周面97に係合した状態となる。これにより、ガイドワイヤ6にその長手方向に沿った引張力が作用したとしても、第1ワイヤ7の接続部711や第2ワイヤ8の接続部811が光透過部材9から不本意に抜去されるのを確実に防止することができる。
【0078】
以上、本発明のガイドワイヤおよびカテーテル組立体を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、ガイドワイヤおよびカテーテル組立体を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
【0079】
また、本発明のガイドワイヤは、その一部が光透過性を有するものであるが、これに限定されず、例えば、全体が光透過性を有するものであってもよい。この場合、センサマーカを省略することができる。
【0080】
また、光透過部が管状体で構成されており、その中空部に、例えば、光透過部と屈折率が同じまたは異なるものが配置されていてもよい。