【実施例1】
【0017】
図1は、実施例1に係る排ガス処理システムの概略構成図である。
図1に例示される排ガス処理システム10は、例えば石炭を燃料として使用する石炭焚きボイラや重油を燃料として使用する重油焚きボイラ等のボイラ11からの排ガス18から、窒素酸化物(NO
x)、硫黄酸化物(SO
x)、水銀(Hg)等の有害物質を除去する装置である。
【0018】
排ガス処理システム10は、燃料Fを燃焼させるボイラ11と、前記ボイラ11からの排ガス18中の窒素酸化物を除去する脱硝装置12と、脱硝後の排ガス18の熱を回収するエアヒータ13と、熱回収後の排ガス18中の煤塵を除去する集塵機14と、除塵後の排ガス18中に含まれる硫黄酸化物を吸収液である石灰スラリー20で除去する脱硫装置15と、前記脱硫装置15から排出される脱硫排水30から石膏31を除去する脱水機32と、前記脱水機32からの脱水濾液33を噴霧する噴霧手段を備えた噴霧乾燥装置50(後述する噴霧乾燥装置50A、50B)と、前記噴霧乾燥装置50に排ガス18の一部を導入する排ガス導入ラインL
11とを具備するものである。これにより、石膏を除去した脱水濾液33を導入した排ガス18を用いて噴霧乾燥装置50において、噴霧乾燥するので、脱硫排水30の無排水化を安定して実施することができる。
【0019】
脱硝装置12は、ボイラ11からガス供給ラインL
1を介して供給される排ガス18中の窒素酸化物を除去する装置であり、その内部に脱硝触媒層(図示せず)を有している。脱硝触媒層の前流には還元剤注入器(図示せず)が配置され、この還元剤注入器から排ガス18に還元剤が注入される。ここで還元剤としては、例えばアンモニア、尿素、塩化アンモニウムなどが用いられる。脱硝装置12に導入された排ガス18中の窒素酸化物は、脱硝触媒層と接触することにより、排ガス18中の窒素酸化物が窒素ガス(N
2)と水(H
2O)に分解・除去される。また排ガス18中の水銀は、塩素(Cl)分が多くなると、水に可溶な2価の塩化水銀の割合が多くなり、後述する脱硫装置15で水銀が捕集しやすくなる。
【0020】
なお、上記の脱硝装置12は必須のものではなく、ボイラ11からの排ガス18中の窒素酸化物濃度や水銀濃度が微量、あるいは、排ガス18中にこれらの物質が含まれない場合には、脱硝装置12を省略することも可能である。
【0021】
エアヒータ13は、脱硝装置12で窒素酸化物が除去された後、排ガス供給ラインL
2を介して供給される排ガス18中の熱を回収する熱交換器である。脱硝装置12を通過した排ガス18の温度は300℃〜400℃程度と高温であるため、エアヒータ13により高温の排ガス18と常温の燃焼用空気との間で熱交換を行う。熱交換により高温となった燃焼用空気は、ボイラ11に供給される。一方、常温の燃焼用空気との熱交換を行った排ガス18は150℃程度まで冷却される。
【0022】
集塵機14は、熱回収後、ガス供給ラインL
3を介して供給される排ガス18中の煤塵を除去するものである。集塵機14としては慣性力集塵機、遠心力集塵機、濾過式集塵機、電気集塵機、洗浄集塵機等が挙げられるが、特に限定されない。
【0023】
脱硫装置15は、煤塵が除去された後、ガス供給ラインL
4を介して供給される排ガス18中の硫黄酸化物を湿式で除去する装置である。この脱硫装置15では、アルカリ吸収液として石灰スラリー20(水に石灰石粉末を溶解させた水溶液)が用いられ、装置内の温度は30〜80℃程度に調節されている。石灰スラリー20は、石灰スラリー供給装置21から脱硫装置15の塔底部22に供給される。脱硫装置15の塔底部22に供給された石灰スラリー20は、図示しない吸収液送給ラインを介して脱硫装置15内の複数のノズル23に送られ、ノズル23から塔頂部24側に向かって噴出される。脱硫装置15の塔底部22側から上昇してくる排ガス18がノズル23から噴出する石灰スラリー20と気液接触することにより、排ガス18中の硫黄酸化物及び塩化水銀が石灰スラリー20により吸収され、排ガス18から分離、除去される。石灰スラリー20により浄化された排ガス18は、浄化ガス26として脱硫装置15の塔頂部24側より排出され、煙突27から系外に排出される。
【0024】
脱硫装置15の内部において、排ガス18中の硫黄酸化物SO
xは石灰スラリー20と下記式(1)で表される反応を生じる。
CaCO
3+SO
2+0.5H
2O → CaSO
3・0.5H
2O +CO
2・・・(1)
【0025】
さらに、排ガス18中のSO
xを吸収した石灰スラリー20は、脱硫装置15の塔底部22に供給される空気(図示せず)により酸化処理され、空気と下記式(2)で表される反応を生じる。
CaSO
3・0.5H
2O+0.5O
2+1.5H
2O → CaSO
4・2H
2O・・・(2)
このようにして、排ガス18中のSO
xは、脱硫装置15において石膏CaSO
4・2H
2Oの形で捕獲される。
【0026】
また、上記のように、石灰スラリー20は、脱硫装置15の塔底部22に貯留した液を揚水したものが用いられるが、この揚水される石灰スラリー20には、脱硫装置15の稼働に伴い、反応式(1)、(2)により石膏CaSO
4・2H
2Oが混合される。以下では、この揚水される石灰石膏スラリー(石膏が混合された石灰スラリー)を吸収液とよぶ。
【0027】
脱硫に用いた吸収液(石灰石膏スラリー)は、脱硫排水30として脱硫装置15の塔底部22から外部に排出され、後述する排水ラインL
20を介して脱水機32に送られ、ここで脱水処理される。この脱硫排水30には、石膏の他、水銀等の重金属やCl
-、Br
-、I
-、F
-等のハロゲンイオンが含まれている。
【0028】
脱水機32は、脱硫排水30中の石膏31を含む固体分と液体分の脱水濾液33とを分離するものである。脱水機32としては、例えばベルトフィルタ、遠心分離機、デカンタ型遠心沈降機等が用いられる。脱硫装置15から排出された脱硫排水30は、脱水機32により石膏31が分離される。その際、脱硫排水30中の塩化水銀は石膏31に吸着された状態で石膏31とともに液体と分離される。分離した石膏31は、システム外部(以下、「系外」という)に排出される。
一方、分離液である脱水濾液33は脱水ラインL
21を介して噴霧乾燥装置50に送られる。なお、脱水濾液33は一時的に排水タンク(図示せず)に貯留するようにしてもよい。
【0029】
噴霧乾燥装置50は、ボイラ11からの排ガス18の主ラインである排ガス供給ラインL
2から分岐した排ガス導入ラインL
11を介して排ガス18の一部が導入されるガス導入手段と、脱水濾液33を散布又は噴霧する噴霧手段とを具備している。そして、導入される排ガス18の熱により散布又は噴霧された脱水濾液33を蒸発乾燥させている。また、噴霧乾燥装置50で乾燥に寄与した排ガス18は、ガス供給ラインL
3に直接供給している。
【0030】
本発明では、脱硫排水30から石膏31を除去した脱水濾液33を噴霧乾燥しているので、噴霧手段での目詰まりを防止することができる。
すなわち、脱硫排水そのものを噴霧するのではないので、脱硫排水が蒸発するのに伴い発生する乾燥粒子の量を大幅に低減させることができる。その結果、乾燥粒子の付着に起因する目詰まりを低減させることができる。また、脱硫排水30を脱水処理することにより、石膏31とともに塩化水銀も分離・除去されるため、排水噴霧時に排ガス18中の水銀濃度が増加するのを防止することができる。
【0031】
また、本実施例では、エアヒータ13へ流入する排ガス18の一部を排ガス供給ラインL
2から排ガス導入ラインL
11を介して分岐しているので、排ガスの温度が高く(350〜400℃)、脱水濾液33の噴霧乾燥を効率よく行うことができる。
【0032】
図2は、本実施例に係る脱硫排液からの脱水濾液の噴霧乾燥装置の概略図である。
図2に示すように、本実施例の噴霧乾燥装置50Aは、噴霧乾燥装置本体の頂(蓋)部51a近傍の側壁51bに設けられ、脱水濾液33の噴霧液33aを乾燥する排ガス18を導入するガス導入口52と、噴霧乾燥装置本体内に設けられ、導入された排ガス18を減速すると共に、排ガス流れを層流Xに変更する整流板53と、層流Xとなった排ガス18中に、脱硫排水30からの脱水濾液33を噴霧する噴霧ノズル54と、噴霧乾燥装置本体の底部を排ガス18の主煙道と連結し、噴霧乾燥固形物を主煙道に排出する連結手段80と、を具備するものである。
【0033】
また、本実施例では、噴霧乾燥装置本体51内の排ガス18の導入領域に、排ガス18中の固形分による内壁面の磨耗を防ぐ保護板61を壁に沿って設けるようにしている。
これは、導入される排ガス18は、その流速が例えば10〜18m/s程度であり、この排ガス18が装置本体の接線方向から導入されるので、保護板61を設置することで、その内壁面51dの磨耗を防止するようにしている。
【0034】
図3−1は、
図2のA−A断面図であり、噴霧乾燥装置の頂部側に設けた保護板61の設置状態を示す概略図である。
図3−2は、そのC部拡大図である。
図3−1及び
図3−2に示すように、噴霧乾燥装置本体内の内壁面51dに、例えばレール状の挿入治具63が設けられている。そして、保護板61は、挿入治具63に対して、鉛直軸方向に引き抜きが容易とされ、必要に応じて交換可能としている。
【0035】
これは、ボイラ11からの排ガス18中には、硬度が高い灰等の煤塵が多く含まれている。そして、排ガス18がガス導入口52から流入する際に発生する旋回流により衝突の際に発生する内壁面51dに対しての硬度が硬い灰等による磨耗から保護する必要があるからである。このために、挿入自在な保護板61を内壁面51dの周囲に沿って設けるようにしている。
【0036】
なお、排ガス18の導入は、排ガスのガス供給ラインL
2と排ガス導入ラインL
11との圧力損失の相違により、排ガス18を噴霧乾燥装置50A内へ導入するようにしたり、必要に応じて誘引ファン等を用いて排ガス18を導入したりしている。
【0037】
また、
図3−2に示すように、保護板61の表面には、さらに凹凸面61aを形成し、この凹凸面61aにより排ガス18の流れを減速させるようにしている。
本実施例では、保護板61に減速手段である凹凸面61aを形成しているが、本発明はこれに限定されず、別途独立してガス減速手段を設けるようにしてもよい。
【0038】
この保護板61に衝突した排ガス18は、さらにその渦流れを弱めるために、整流板53が設けられている。
本実施例に係る整流板53は、噴霧ノズル54に供給する脱水濾液33の供給管54aを中心とし、そこから放射状に図示しない支持手段により設けられている。そしてこの整流板53により、排ガス18を渦流(旋回流)から層流Xの下降流へ変更するようにしている。
なお、整流板53は内壁面51d側にもその鉛直軸方向に設けるようにしてもよい。
【0039】
この層流Xとなった排ガス18中に、脱水濾液33を噴霧液33aとして噴霧ノズル54から噴出するようにしている。
ここで、噴霧ノズル54は、脱水濾液33を所定の液滴径となるように噴霧するものであれば、その形式は限定されるものではない。例えば2流体ノズルや、ロータリーアトマイザ等の噴霧手段を用いることができる。なお、2流体ノズルは比較的少量の脱水濾液33を噴霧するのに適しており、ロータリーアトマイザは、比較的多量の脱水濾液33を噴霧するのに適している。
また、ノズルの数も1基ではなく、その処理量に応じて複数基設けるようにしてもよい。
【0040】
本実施例では、噴霧乾燥装置50Aの内壁周面を洗浄する洗浄手段を有している。
この洗浄手段は、洗浄液72を内壁面全域に亙って噴射し、濡れ壁72aを形成する洗浄ノズル71と、濡れ壁72aの落下液を回収する回収樋73とを有している。
この濡れ壁72aは、内壁面51dの全域に亙って形成されており、排ガス18及び脱水濾液33中から析出する付着物の発生を防止するようにしている。
この洗浄手段は必要に応じて設置すればよく、付着物の発生が少ない場合には洗浄手段を省略するようにしてもよい。
【0041】
なお、噴霧ノズル54から噴霧される噴霧液33aの乾燥が良好に行われるように、噴霧乾燥装置50Aの塔内の噴霧乾燥領域は、一般の水に較べて沸点が高い脱硫濾液であるので、その濾液の蒸発速度に応じてその長さを変化させ、噴霧液33aの対流時間を長くするようにしている。
【0042】
噴霧乾燥装置50Aの底部は、その底部側開口81と連結する連結手段80により、排ガス18の主煙道のガス供給ラインL
3の煙道側開口82と連結されている。そして、噴霧乾燥に寄与した排ガス18は、この連結手段80を通過して、直接煙道内に排出される。
前記連結手段80としては、例えばエキスパンション等を例示し、両者の干渉を防ぐようにしている。
【0043】
また、噴霧乾燥装置50Aは、その高さが8〜10m程度であるので、煙道とは別途支柱等により支持するようにしている。なお、煙道の支持が堅固な場合には、支持部材を設けることなく、直接連結手段80を介して連結するようにしてもよい。
【0044】
よって、噴霧乾燥装置を別途独立して設置した場合のように、排ガスの排出手段と灰の排出手段の設置を不要とし、装置構成の簡略化を図ることができる。
【0045】
本実施例によれば、噴霧乾燥装置50A内において、排ガス18を整流板53により層流Xとし、その層流Xとなった排ガス18中に、脱硫排水30からの脱水濾液33を噴霧ノズル54から噴霧することで、脱水濾液33の噴霧乾燥が良好となる。この際、導入及び排出する際の内壁面51dと衝突する排ガス18による磨耗を保護板61で保護することとしているので、噴霧乾燥装置の耐久性が向上する。
【0046】
さらに、噴霧乾燥装置50Aの内部を洗浄する洗浄手段を有し、濡れ壁72aによる洗浄とすることにより、排ガス18中の高濃度の灰と噴霧乾燥後の多量の析出塩を洗浄し、壁面内部にスケールの発生を防止することができるので、噴霧乾燥装置の耐久性が向上する。