(58)【調査した分野】(Int.Cl.,DB名)
あるコンテンツの表示要求があったときに、そのコンテンツの推薦コンテンツを前記表示要求のあったコンテンツの前記分割コンテンツから取得し、アクセス可能なコンテンツを提供するコンテンツ表示プログラムを有することを特徴とする請求項1又は2に記載のコンテンツ推薦プログラム。
【発明の概要】
【発明が解決しようとする課題】
【0006】
このような推薦システムは、情報が広く流通している場合に用いられるが、コンテンツによっては、アクセスが少ないためにコンテンツを推薦するための情報が少なかったり、特定のユーザの情報に偏ってしまうと、似た視点での情報が多くなり、推薦するコンテンツの新規性・意外性が薄くなるという問題がある。
【0007】
特に、営業秘密や個人情報などの機微な情報を扱う業務の情報を共有するようなソーシャルウェアにおいては、特定のユーザ群がその情報を見ることができるコンテンツを作成し、共有するシステムを利用している。しかし、このような特定のユーザのためのシステムにおいて他に新しいコンテンツを推薦する場合、その特定のユーザ群が見た情報のみを用いて推薦情報を選定するため、すでに共有した情報を推薦することが多くなり、すでに見た情報を除外すると、僅かな情報しか推薦することができなくなる場合がある。また、特定のユーザの情報に偏ってしまうため、似た視点での情報が多くなり推薦コンテンツの新規性・意外性が薄くなるという問題がある。
【0008】
そこで、本発明は、推薦するコンテンツを多くするコンテンツ推薦装置を提供することを目的とする。
【0009】
また、特定のユーザ群のみで共有されるコンテンツに関して他に推薦するコンテンツを選定する際に有効なコンテンツ推薦装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記の課題を解決するため、本発明では、そのアクセスが少ないか、アクセスが制限されたコンテンツを見ることのできる特定のユーザ群が見る、他のアクセスが公開されたまたは前記の特定のユーザ群以外が見ることのできるコンテンツに関して、アクセスが多く評価されたコンテンツを推薦候補として選択するコンテンツ推薦装置を提供する。
【0011】
さらに本発明では、前記の推薦候補として、推薦する元の情報となるアクセスが少ないか、アクセスが制限されたコンテンツを複数の細分化されたコンテンツに分割し、その分割コンテンツそれぞれについて、アクセス制限がない別のコンテンツと比較し、一致するコンテンツについて、別のユーザのアクセスまたは評価が多い推薦コンテンツを選定するコンテンツ推薦装置を提供する。
【0012】
さらに本発明では、推薦する元の上方となるアクセスが少ないか、アクセスが制限されたコンテンツを細分化し比較することによって求められた別のコンテンツにアクセスしたり評価することが多いユーザを、アクセス制限コンテンツを参照可能なメンバとして推薦するコンテンツ推薦装置を提供する。
【0013】
本発明の一観点によれば、登録された参照元コンテンツを参照する際に他に参照すべき参照先コンテンツを推奨する協調フィルタリングエンジンを用いて推薦するコンテンツ推奨プログラムであって、前記参照元コンテンツを分割して分割コンテンツとするコンテンツ分割プログラムと、前記分割コンテンツ単位で、コンテンツを評価するコンテンツ評価プログラムと、前記コンテンツ評価プログラムの評価結果に基づいて、前記分割コンテンツと関連する関連コンテンツを求め、前記関連コンテンツからの参照先コンテンツである推薦コンテンツを特定する推薦コンテンツ情報を、前記協調フィルタリングエンジンを用いて生成する推薦コンテンツ生成プログラムと、を有することを特徴とするコンテンツ推奨プログラムが提供される。
【0014】
分割したコンテンツにより評価を行うため、関連するコンテンツを増やすことができる。
【0015】
前記コンテンツ評価プログラムは、前記分割コンテンツ単位で、コンテンツの類似性を評価することが好ましい。
【0016】
あるコンテンツの表示要求があったときに、そのコンテンツの推薦コンテンツを前記表示要求のあったコンテンツの前記分割コンテンツから取得し、アクセス可能なコンテンツを提供するコンテンツ表示プログラムを有することが好ましい。
【0017】
さらに、前記推薦コンテンツを評価した評価者を取得し、前記評価者が前記表示要求のあったコンテンツにアクセスする権限を有していない場合に、前記評価者を前記制限コンテンツのアクセス対象として推薦することが好ましい。
【0018】
前記コンテンツ分割プログラムは、前記参照元コンテンツに含まれる引用記号の有無によりコンテンツを分割することが好ましい。
【0019】
前記コンテンツ分割プログラムは、前記参照元コンテンツの行又は段落毎に、コンテンツを分割するようにしても良い。
【0020】
また、本発明は、登録された参照元コンテンツを参照する際に他に参照すべき参照先コンテンツを推奨する協調フィルタリングエンジンを用いて推薦するコンテンツ推奨装置であって、前記参照元コンテンツを分割して分割コンテンツとするコンテンツ分割部と、前記分割コンテンツ単位で、コンテンツを評価するコンテンツ評価部と、前記コンテンツ評価部の評価結果に基づいて、前記分割コンテンツと関連する関連コンテンツを求め、前記関連コンテンツからの参照先コンテンツである推薦コンテンツを特定する推薦コンテンツ情報を、前記協調フィルタリングエンジンを用いて生成する推薦コンテンツ生成部と、を有することを特徴とするコンテンツ推奨装置である。
【0021】
本発明の他の観点によれば、登録された参照元コンテンツを参照する際に他に参照すべき参照先コンテンツを推奨する協調フィルタリングエンジンを用いて推薦するコンテンツ推奨方法であって、前記参照元コンテンツを分割して分割コンテンツとするコンテンツ分割ステップと、前記分割コンテンツ単位で、コンテンツを評価するコンテンツ評価ステップと、前記コンテンツ評価ステップの評価結果に基づいて、前記分割コンテンツと関連する関連コンテンツを求め、前記関連コンテンツからの参照先コンテンツである推薦コンテンツを特定する推薦コンテンツ情報を、前記協調フィルタリングエンジンを用いて生成する推薦コンテンツ生成ステップと、を有することを特徴とするコンテンツ推奨方法が提供される。
【0022】
本発明は、上記に記載の方法を、コンピュータに実行させるためのプログラムや、当該プログラムを記録するコンピュータ読み取り可能な記録媒体であっても良い。
【0023】
尚、上記の各構成要件は、任意に追加・削除が可能であり、各装置やプログラム毎の発明も、本発明に含まれるものである。例えば、コンテンツ評価プログラムなども含まれる。
【発明の効果】
【0024】
以上、説明したように、本発明のコンテンツ推薦装置によれば、アクセスが少ないか、アクセスが制限されているコンテンツであっても、有効なコンテンツを推薦することができる。
これにより、推薦するコンテンツの新規性、意外性を保つことができる。
【0025】
また、本発明のコンテンツ推薦装置により、アクセスが少ないか、アクセスが制限されているコンテンツを共有して業務を行う際に、別の有益なコンテンツを推薦してくれる別のユーザをメンバ候補や情報収集元として検討することができ、業務の推進に役立てることが可能となる。
【発明を実施するための形態】
【0027】
以下、添付図面を参照しながら、本発明のコンテンツ推薦技術を実施するための形態について詳細に説明する。以下では、コンテンツへのアクセスが少ないか、アクセスが制限されたコンテンツの例として、複数のメンバが特定の業務やテーマに関して意見や情報を交換するソーシャルウェアやグループウェアに関し、特にその交換する情報の内容へのアクセスが特定メンバに制限されているシステムを例にして説明する。
【0028】
また、以下に説明する処理は、一般的には、メモリ等に記憶されているプログラムをコンピュータ(CPU)により実行させることにより実現するが、集積回路などのハードウェアのみにより構成するようにしても良い。
【0029】
図1Aは、本実施形態にかかるコンテンツ推薦装置の構成例を示す概略図である。
図1Aに示すように、本実施形態によるコンテンツ推薦装置1000は、プログラム記憶領域1005内に格納された、コンテンツ登録プログラム1110と、コンテンツ分割プログラム1120と、コンテンツ評価プログラム1130と、推薦コンテンツ情報生成プログラム1140と、コンテンツ表示プログラム1150と、データベースDBなどを含む記憶部1004と、を有している。記憶部1004の一部又は全部は、ネットワーク経由でアクセスできるように構成されていても良い。
【0030】
図1Bは、コンテンツ推薦装置の詳細な構成例と、処理の内容例とを示す図である。
図1Cは、
図1Bの各テーブルの例を示す図である。
図1B、
図1Cに示すように、コンテンツ推薦装置1000と、そこに接続するコンテンツ登録者端末1001、コンテンツ評価者端末1002、コンテンツ閲覧者端末1003とを有して構成されている。端末は、複数存在するのが一般的である。また、それぞれの端末1001、1002、1003が、共通であっても良い。
【0031】
コンテンツ登録者となるユーザは、コンテンツ登録者端末1001から、さまざまなコンテンツをコンテンツ推薦装置1000に登録する。コンテンツは、例えば業務的なデータであり、営業秘密や個人情報保護などを含むため、アクセス範囲を限定して登録を行うことができる。コンテンツ評価者となるユーザは、コンテンツ評価者端末1002から、これら登録されたコンテンツを自分のアクセス可能な範囲で必要に応じて明示的に評価を行うか、またはそのコンテンツへのアクセスなどの暗黙的な操作をコンテンツ推薦装置1000が採取し、その情報を基にコンテンツ推薦装置1000が評価情報を生成する。
【0032】
コンテンツ閲覧者となるユーザは、コンテンツ閲覧者端末1003から、当該ユーザのアクセス可能な範囲でコンテンツの閲覧を行う。コンテンツの閲覧を行う際、コンテンツ推薦装置1000は閲覧されたコンテンツを評価した情報をもとに、コンテンツを推薦する推薦コンテンツ情報を生成し、コンテンツと推薦コンテンツ情報との表示を行うことができる。関連コンテンツからの参照先コンテンツである推薦コンテンツを特定するのが推薦コンテンツ情報である。尚、この際、コンテンツ閲覧者端末1003を操作するユーザは、同時にコンテンツ評価者端末1002のユーザとなって、評価情報生成のトリガーとなることもある。
【0033】
コンテンツ推薦装置1000は、情報の記憶領域(記憶部)1004とプログラム領域(プログラム記憶部)1005とCPUとを備え、プログラム領域1005に格納されるプログラムがユーザの入力情報やコンテンツ推薦装置1000へのトリガーにより起動し、情報の記憶領域1004にある情報を用いて処理を行い、その結果を記憶領域1004に格納したり、結果をユーザに出力したりする。
【0034】
記憶領域1004には、ユーザID、認証情報、権限情報などのユーザ情報1010、コンテンツID、コンテンツ内容、登録したユーザ名などのコンテンツ情報1020、コンテンツID、アクセス制限などのアクセス制御情報1030、分割コンテンツID、コンテンツ内容などのコンテンツ分割内容1040、コンテンツID、分割コンテンツIDを対応させるコンテンツ分割情報1050、コンテンツ操作、スコアなどのコンテンツ操作スコア1055、分割コンテンツID、評価ユーザ、評価スコアなどのコンテンツ評価情報1060、元分割コンテンツID、推薦分割コンテンツID、両者の類似度などの推薦コンテンツ情報1070、が格納される。
【0035】
また、プログラム領域1005には、上記
図1Aのプログラムが格納され、それぞれ、コンテンツ登録手段1110、コンテンツ分割手段1120、コンテンツ評価手段1130、コンテンツ表示手段1150および推薦コンテンツ情報生成手段1140として機能する。これらプログラム領域1005上のプログラムは、CPUによりプログラムを実行しないときはメモリカードやハードディスクなどの媒体等に保存し、実行時にプログラム領域にロードして使用するようにすることも可能である。
【0036】
次に、利用シーンごとにコンテンツ推薦装置1000の動作について
図1Bを参照しながら説明する。
【0037】
コンテンツ登録時、コンテンツ登録者は、コンテンツ登録者端末1001から、コンテンツ推薦装置1000へのログインを行う。その際、コンテンツ登録手段1110が、ユーザが入力したID情報及びパスワード情報と、ユーザ情報1010内のユーザID1011及び認証情報1012の情報とを照合し、ユーザの認証を行う(ステップ1112)。両者の情報が一致し、どのユーザが登録されたかを特定できれば、実際にコンテンツとそのアクセス可能なユーザの範囲を指定して登録を行う(ステップ1114)。登録した情報は、コンテンツ情報1020とアクセス制御情報1030内に登録される。
【0038】
コンテンツ推薦装置1000によってコンテンツID1021が採番され、入力されたコンテンツがコンテンツ内容1022に、登録したユーザIDが登録ユーザ1023欄に登録される。また、どのユーザがアクセス可能かに関する情報が、採番したコンテンツID1021ごとに、アクセス制御情報1030内のコンテンツID1031、参照可ユーザID一覧1032、コメント可ユーザ一覧1033のセットとして登録される。尚、本実施の形態では記載していないが、アクセス制御情報は、例えば特定ユーザや複数ユーザのグループである組織に対してアクセスが可能であるコンテンツをよく登録する場合にアクセス制御情報のテンプレートを用意しておいてもよい。またアクセス制御の操作内容については、参照、コメント以外に編集、承認要否などの権限を設けても良い。
【0039】
コンテンツ登録手段1110によってコンテンツが登録されると、次に登録したコンテンツを分割して格納するコンテンツ分割手段(プログラム)1120が呼び出される。コンテンツ分割手段1120は、コンテンツを、後述するルールに従って要素に分解する(ステップ1122)。また、各要素に関する情報をコンテンツ分割情報1050とコンテンツ分割内容1040とに登録する(ステップ1124)。
【0040】
図2にコンテンツの例とコンテンツの分割例を示す図である。
図2では、参照元コンテンツ2000を分割する2つの例を示している。(1)の第1分割方法の例では、文章の最初の部分に付され引用されていることを示す引用記号(本例では「>」記号)の有無をもとに、引用のない分割コンテンツ2002と引用記号の付いた分割コンテンツ2004とに分割している。(2)の第2分割方法の例では、改行で終わる1行ごとにコンテンツを分割し、分割コンテンツ2012〜2024に分割している。この例に限らず他にコンテンツの特性によりさまざまな分割をすることが可能であり、分割の方法により限定されるものではない。段落毎に分割しても良いし、その他、コンテンツの分割方法として公知に方法を用いることができる。
【0041】
図3(a)は、コンテンツの要素を分解する処理1122(
図1B)を詳細に説明したフローチャート図である。
図2(1)の分割方法の場合を例にして説明すると、まず、分解したいコンテンツの引用記号(>)の部分を抽出し(ステップ3002)、コンテンツの引用のない部分を第1の分割コンテンツとし(ステップ3004)、引用記号のある部分は、引用記号を削除し、第2の分割コンテンツとする(ステップ3006)。(2)の場合も同様なフローで実施が可能である。
【0042】
図3(b)は、分解したコンテンツ情報を登録する処理1124を詳細に説明したフローチャート図である。第1,第2の各分割コンテンツをコンテンツ分割内容1040の各レコードと比較し、コンテンツ内容1042と同じ内容のコンテンツが含まれるかどうかを調べる(ステップ3012)。もし含まれない場合は、その分割コンテンツのIDを新規に採番し、分割コンテンツの内容コンテンツ分割内容1042とともにコンテンツ分割内容1040に登録する(ステップ3014)。すでに同じ内容の分割コンテンツが存在する場合は、その分割コンテンツIDを取得し、新規に登録した分割コンテンツIDとともに、元のコンテンツID1051と分割コンテンツID1052との組を新規登録する(ステップ3016)。
【0043】
このようにして、参照元コンテンツが登録されると、コンテンツの閲覧および評価が可能となる。
図1Bに戻り、まず、コンテンツ評価者端末1002が、評価のための入力操作に基づく信号をコンテンツ推薦装置1000に送る。評価の方法としては、様々な方法が考えられるが、例えば、コンテンツ表示がされている際に、そのコンテンツに対して評価を行うボタンを、コンテンツ評価者端末1002の画面上に表示させ、クリック等により入力してもらうことによりスコア値を設定したり、スコアを数字等で指定する(例えば1から5の数字を入力する)ことで評価を行ったり、単純にアクセスが行われるたびにスコアを増やすことで評価を行ったりすることができる。これらスコアの値は、ユーザが重要と判断した操作であればあるほど高いスコアになるようにコンテンツ操作スコア1055に設定しておく。閲覧はスコアが1、評価ボタン押下はスコアが10などと設定することができる。
【0044】
コンテンツ評価者端末1002からの入力をコンテンツ推薦装置1000が受け取ると、コンテンツ評価手段1130が、まずコンテンツの操作ユーザ、操作対象と内容を取得する(ステップ1132)。次に、操作したコンテンツIDに対応する分割コンテンツIDをコンテンツ分割情報1050から取得し、操作に対応するスコアをコンテンツ操作スコア1055から取得する(ステップ1134)。そして、コンテンツ評価情報1060に対して各分割コンテンツID1061と、評価ユーザID1062と評価情報となる評価スコア1063を登録する(ステップ1136)。
【0045】
評価情報が入力されると、公知の協調フィルタリングエンジンによる推薦情報の生成が可能となる。コンテンツ推薦装置1000では、推薦コンテンツ情報生成手段1140が、コンテンツ評価情報1060を入力として協調フィルタリングエンジンを定期的に起動し(ステップ1142)、出力された推薦情報をコンテンツ推薦情報1070として登録する(ステップ1144)。生成されたコンテンツ推薦情報1070は、元分割コンテンツID1071と推薦分割コンテンツID1072、類似度(推薦スコア)1073との組からなっている。
【0046】
推薦コンテンツ情報1070が生成されると、コンテンツの表示時に推薦スコア1073などの推薦情報を合わせて表示することができる。
【0047】
コンテンツ閲覧者端末1003がアクセス可能なコンテンツの表示要求をコンテンツ推薦装置1000に送信すると、まずコンテンツ表示手段1150が推薦情報の要求を取得する(ステップ1152)。次に、そのコンテンツが含む分割コンテンツをコンテンツ分割情報1050から取得し、推薦コンテンツ情報1070から一致する元分割コンテンツID1071の推薦分割コンテンツID1072と類似度1073とを取得する(ステップ1154)。
【0048】
次に分割された推薦コンテンツIDに紐付く分割推薦コンテンツを含む分割前の元のコンテンツを、コンテンツ分割情報1050で一致する分割コンテンツID1052からそれを含むコンテンツID1051を検索して取得する。その中でアクセス可能なコンテンツを絞り込むため、アクセス制御情報1030から参照可ユーザ1032にコンテンツ閲覧者のユーザIDを含むコンテンツID1031の一覧を取得し、コンテンツ分割情報1050と推薦コンテンツ情報1070からコンテンツIDとその類似度一覧を取得する(ステップ1156)。なお、1つのコンテンツは複数の分割コンテンツから成るため、複数の分割コンテンツの類似度の平均を用いることができる。
【0049】
次に、アクセス可能な推薦コンテンツに対する評価の高いユーザをコンテンツ評価情報1060の中で分割コンテンツID1061に存在するユーザとその評価スコア1063を取得する。そして、そのユーザと評価スコアの一覧から、アクセス制御情報1030で元のコンテンツに一致するコンテンツID1031に関連付けられたユーザを含まないユーザに絞った一覧を得る(ステップ1158)。
【0050】
そして最後に、要求されたコンテンツの表示と共に、ステップ1156で得られたコンテンツIDを類似度の高い順に、ステップ1158で得られたユーザとスコアの一覧を評価スコアの高い順に表示する(ステップ1160)。
【0051】
図6は、上記ステップ1160において表示する推薦情報を含めたコンテンツ表示画面の例を示す図である。コンテンツ表示画面6000は、表示要求のあったコンテンツを表示する表示部6010と、要求のあったコンテンツに関連する推薦コンテンツ情報を表示する領域6020と、このコンテンツを現時点で見る権限がないが、見るべきである推薦メンバを表示する領域6030とを有している。推薦コンテンツ情報表示領域6020に表示される推薦コンテンツは、類似度の高い順に表示されるようにすると良い。推薦メンバを表示する領域6030に表示されるメンバはスコアの高い順に表示されるようにすると良い。
【0052】
ここで、どのように推薦対象が増えるかについて説明するため、
図4、
図5を用いて簡略化した例を用いて説明する。
【0053】
図4はコンテンツの構成例を模式的に示す図である。
図4(a)では、コンテンツ1と、コンテンツX、Y、Zの4つのコンテンツあり、それぞれが異なるコンテンツである。コンテンツIDとして、
図1Bに対応するように、コンテンツ1: コンテンツID=CNT00001、コンテンツX: コンテンツID=CNT00002、コンテンツY: コンテンツID=CNT00003、コンテンツZ: コンテンツID=CNT00004である。ここで、参照元コンテンツ1はメンバ(ユーザ)A、B、Cのみしかアクセスすることができないものとする。但し、実際は、
図4(b)のようにコンテンツ1とコンテンツXと、がaという分割可能な共通部分を持っているとする。
【0054】
このようなケースでは、その共通部分aをベースに、一見、関係のない参照元コンテンツ1とコンテンツXとに関連性を持たせ、コンテンツXをコンテンツ1の関連コンテンツとすることができる。
【0055】
図4(b)に示すように、コンテンツ1は、aとbとを有し、コンテンツXは、aとxとを有しているとする。この場合、aが共通部分となる。もちろん、aは完全同一でなくても、多くの部分で共通である場合を含む。
【0056】
このような場合に、
図1Bのコンテンツ分割内容1040,コンテンツ分割情報1050に示すように、コンテンツaの分割コンテンツIDをCHK0001、コンテンツbの分割コンテンツIDをCHK0002、コンテンツxの分割コンテンツIDをCHK0003、コンテンツYの分割コンテンツIDをCHK0004、コンテンツYの分割コンテンツIDをCHK0005、とすることができる。すると、コンテンツ評価を、分割コンテンツID毎に行い(
図1Bのコンテンツ評価情報1060)、推薦コンテンツ情報1070として、分割コンテンツID毎の類似度に基づいて推薦対象を決めることができる。尚、コンテンツ1が、コンテンツaとxとを有している場合でも、コンテンツXを、参照元コンテンツ1と類似する関連コンテンツとすることができる。
【0057】
図5は、上記のような構成において、推薦コンテンツを生成する処理過程を模式的に示す図である。ここで評価については簡略化して説明するため、評価の「有無」のみによる評価で例示する。
【0058】
図5(a)は、従来のようにコンテンツを分割せずにそのまま参照して推薦コンテンツを決定した場合の例を示す模式的な図である。
図5(a)に示すように、コンテンツ1はメンバ(ユーザ)A、B、Cの3メンバとも評価しているため、Aがコンテンツ1にアクセスする際に協調フィルタリングの手法により推薦できるのは、同じコンテンツを評価しているメンバB、Cが他に評価しているコンテンツ3、4、Xとなる。
【0059】
一方、本実施の形態による手法を用いた
図5(b)では、コンテンツを分割し、分割したコンテンツに対して推薦を実施する際の模式図である。
図5(b)の場合は、参照元コンテンツ1とコンテンツXとは同じ分割コンテンツaを含むため、参照元コンテンツ1にアクセスする際に協調フィルタリングの手法により推薦できる候補として、参照元コンテンツ1の関連コンテンツであるとされるコンテンツXを評価しているメンバD、E、Fが他に評価しているコンテンツY、Zを含めても妥当である。また、メンバEは、他のメンバD、Fより評価しているコンテンツの数が多く、アクセス制限コンテンツ1へのアクセスを推薦するメンバ候補としてメンバEを挙げることが妥当である。
【0060】
このように、分割コンテンツの同一性・類似性に着目して、同一又は類似する分割コンテンツを有するコンテンツ同士を、コンテンツの評価、推薦の候補である関連コンテンツとすることで、本実施の形態によるコンテンツ評価技術、推薦技術によれば、アクセスが少ないか、アクセスが制限されているコンテンツであっても、有効なコンテンツを推薦することができる。これにより、推薦するコンテンツの新規性、意外性を保つことができる。
【0061】
また、本実施の形態のコンテンツ推薦装置により、アクセスが少ないか、アクセスが制限されているコンテンツを共有して業務を行う際に、別の有益なコンテンツを推薦してくれる別のユーザをメンバ候補や情報収集元として検討することができ、業務の推進に役立てることが可能となる。
【0062】
尚、コンテンツの分割方法については、引用記号の有無や改行ごとの他に、例えば、段落単位や文節単位なども可能である。
【0063】
以上、本発明のコンテンツ推薦装置について、具体的な実施の形態を示して説明したが、本発明はこれらに限定されるものではない。当業者であれば、本発明の要旨を逸脱しない範囲内において、上記各実施形態又は他の実施形態にかかる発明の構成及び機能に様々な変更・改良を加えることが可能である。
【0064】
また、本実施の形態では、コンテンツを例にして、コンテンツの評価、推奨コンテンツンお提示について説明したが、例えば、インターネットショッピングなどにおける商品やサービスなどの評価、推奨に、上記分割という考え方を用いても良い。
【0065】
例えば、同じ商品でも、商品情報を分割した場合に、分割した商品情報に同じ又は類似した内容が含まれている場合に、分割した商品情報が共通するコンテンツについて、コンテンツの評価の仲間、推薦の候補とすることで、消費者が欲しい推薦情報を多く提供することができる。尚、分割には、内容的な分割、時間的な分割などが挙げられる。