【実施例】
【0021】
本実施例は、鉱床崩落時の岩石挙動の解析システムであることから、使用する擬似岩石は、鉱床から取り出される際の平均的な大きさ、形状に設定し、特に、設置位置、向き等は意識せず、崩落時における鉱床内の岩石の挙動を測定するのに適した状態で設置されるものである。
【0022】
図1に本実施例に係る擬似岩石の構造を示す。
図1において、100が本実施例に係る擬似岩石である。擬似岩石100の筐体は、外殻球(圧力外壁)1と内殻球2の二重構造となっており、外殻球(圧力外壁)1は、鉄あるいはステンレスなどから成型され、鉱床内において岩石から受ける圧力に耐え得るような強度を有している。内殻球2の内部には、三軸加速度センサ3、三軸地磁気センサ4、加振器(バイブレータ)5、温度センサ6及び電気制御ユニット(エレクトリック・コントロール・ユニット。以下、ECUという)7が収容されている。
外殻球1と内殻球2は、擬似岩石100のX軸、Y軸、Z軸の正負両方向に延びる6本の柱状部材8により連結されており、この柱状部材8には、それぞれ、歪みセンサである歪みゲージ9が2個取り付けられ、外殻球1と内殻球2の間のスペース11を利用して、二次電池などの電池スペースとしている。
なお、三軸地磁気センサ4は、後述するように、擬似岩石100の水平面におけるN軸に対する傾斜角を測定する際に使用するものであり、鉛直方向(重力作用方向)に対する傾斜角のみを測定する際は不要である。また、三軸地磁気センサ4を使用する場合は、擬似岩石100の内部で地磁気を正確に測定できるよう、外殻球1はステンレス等、地磁気を透過する素材とする必要がある。
【0023】
なお、この実施例では、擬似岩石100の筐体を外殻球1と内殻球2からなる二重構造の球体としたが、立方体、直方体あるいは平行に対向面を有する立体形状であればよく、鉱床内に分布する岩石の平均的な形状等に応じて適宜定めればよい。
【0024】
歪みゲージ9は、崩落開始前後、鉱床内の他の岩石との接触や衝突などにより、外殻球1に作用する圧力や衝撃を、これに伴い発生する各柱状部材8の歪みにより計測するもので、こうした圧力や衝撃を、擬似岩石100のX軸、Y軸、Z軸の正負両方向の6軸方向に高精度に検出することができる。
なお、この擬似岩石100は、鉱床内あるいは地盤内の適当な箇所に少なくとも1箇所設置されるが、複数個配置した方が、崩落現象を解析する上でより高精度のデータを収集することが可能になる。
【0025】
加振器5は、例えば、携帯電話に使用されているような、偏心ウエイトをモータで高速回転することにより、所定方向に振動を与えるもので、この振動は、三軸加速度センサ3により検出され、擬似岩石100のX軸、Y軸、Z軸方向の振動が検出される。なお、加振器5は、このようなタイプのものに限られることなく、コイルを用いたものなど、電動型加振器であればいずれを採用してもよい。
【0026】
ところで、擬似岩石100(
図1)は鉱床内において、適当な向きで初期値に設置、埋設されるものであり、しかも、鉱床内においても、周辺の岩石から受ける圧力により様々な方向に回転することになる。したがって、擬似岩石100のX軸、Y軸、Z軸は、地表面における東西方向、南北方向、鉛直方向(重力作用方向)のグローバル座標に対し、さまざまな方向を傾斜することになる。
崩落を解析する際、特に、擬似岩石100に対しグローバル座標の鉛直方向からみてどのような方向に圧力や衝撃が発生したかを判定することが必要である。
【0027】
ここで、
図2に示されるように、擬似岩石100(
図1)のX軸、Y軸、Z軸が鉛直方向に対し、それぞれθx、θy、θzで傾斜しているものとする。
三軸加速度センサ3のX軸センサ出力(Vx)、Y軸センサ出力(Vy)、Z軸センサ出力(Vz)に基づいて求めた加速度ベクトルを(Vx、Vy、Vz)、加振器5による振動の擬似岩石100のX軸、Y軸、Z軸における単位ベクトルを(a、b、c)とすると、この加速度ベクトルには、水平面に対し鉛直方向に重力加速度VGが作用しているので、オイラー角と方向余弦行列の関係から、
X軸 (a.b.c)(1.0.0)=cosθx=Vx/VG
Y軸 (a.b.c)(0.1.0)=cosθy=Vy/VG
X軸 (a.b.c)(0.0.1)=cosθz=Vz/VG
と表すことができる。
したがって、この関係式を利用することにより、X軸センサ出力(Vx)、Y軸センサ出力(Vy)、Z軸センサ出力(Vz)に基づいて、θx、θy、θzを位相解析により求めることができる。
これにより、各歪みゲージ9により検出した、外殻球1に作用する、鉱床内の岩石からの圧力や衝突などが、グローバル座標の鉛直方向に対しどの方向に作用したかを正確に解析することができる。
【0028】
グローバル座標の鉛直方向のみならず水平方向の傾斜角を特定する場合は、三軸地磁気センサ4を使用する。
この三軸地磁気センサ4は、
図3に示されるように、擬似岩石100(
図1)のX軸、Y軸、Z軸に対し、水平面におけるN−S方向に作用する地磁気の方向成分を検出するもので、X軸、Y軸、Z軸の方向の地磁気センサ出力をそれぞれVHX、VHY、VHZとし、N極方向に設置された際の地軸センサ出力をVH、地磁気の単位方向ベクトルを(A、B、C)とすると、鉛直方向の特定と同様に、
X軸 (A.B.C)(1.0.0)=cosθHX=VHX/VH
Y軸 (A.B.C)(0.1.0)=cosθHY=VHY/VH
Z軸 (A.B.C)(0.0.1)=cosθHZ=VHZ/VH
と表すことができる。
したがって、擬似岩石100のN−S方向に対する傾斜角を特定する必要がある場合、この関係式を利用することにより、VH及びVHX、VHY、VHZに基づいて、θHX、θHY、θHZを位相解析により求めることができる。
これにより、各歪みゲージ9により検出した、外殻球1に作用する、鉱床内の岩石からの圧力や衝突などが、NS方向に対しどの方向に作用したか解析することができる。
【0029】
図1に戻って、擬似岩石100の内殻球2の内部に格納されたECU7には、電池スペース11に収容されたバッテリ44(
図4)から電力が供給されており、三軸加速度センサ3、三軸地磁気センサ4、温度センサ6、各歪みゲージ9が入出力インターフェース(図示なし)を介してECU7のCPU43に接続されている。加振器5を構成するモータはCPU43がトランジスタ48のベース48Bの電圧をオンオフ制御することで回転する。
ECU7は、後述する地上管制側200(
図7)に設置された送信用バイブレータ10から起動振動を受信したとき、それに応答して、各加速度センサ3の各検出値を対応する周波数に変換して、加振器5を作動させて地上管制装置200に発信したり、あるいは、各加速度センサ3の検出値を検出時間とともに時系列データとしてメモリ42(
図4)に記憶させるものである。
【0030】
図4に擬似岩石100内のブロック図を示す。
上段のR1とR2が、X軸正方向に延びる柱状部材に取り付けられた歪みゲージ9の抵抗値を示し、R3とR4が、X軸負方向に延びる柱状部材に取り付けられた歪みゲージの抵抗値を示している。抵抗値R1とR2の直列回路とR3とR4の直列回路とでブリッジを組み、抵抗値R1とR2の接続点B1にバッテリ44の正電圧を印加し、抵抗値R3とR4の接続点B2に接地電位を印加し、抵抗値R1とR3の接続点B3を差動アンプU1の第1入力端子(マイナス端子)に接続し、抵抗値R4とR2の接続点B4を差動アンプU1の第2入力端子(プラス端子)に接続することで、歪みに伴う各抵抗値R1〜R4の変化が、差動アンプU1の出力端子(OUT端子)から出力される。この検出値はアナログ/デジタル(A/D)変換器41を介してCPU(中央演算装置)43に入力され、X軸正方向(引っ張り方向)あるいは負方向(圧縮方向)にどのような応力が発生したかを検出することができる。SW1〜SW3はCPU43によって制御されるスイッチで、SW1をON、SW2とSW3をOFFにすれば、差動アンプU1の出力が選択されてA/D変換器41に読み込まれる。同様の操作で差動アンプU1〜U3までの3チャンネルを1チャンネルのA/D入力で読み込める。A/Dの半導体は通常8チャンネル入力が一般的なのでこのようにして3チャンネルを1チャンネルのA/D入力で読み込んでいる。
CPU43にはメモリ42が接続されている。A/D変換器41とメモリ42とCPU43は1つの基板上に取り付けられてECU7(
図1)を構成している。
R5〜R8、R9〜R12についても同様である。すなわち、R5〜R8はY軸正方向(R5とR6)および負方向(R7とR8)に延びる柱状部材8(
図1)に取り付けられた歪みゲージ9の抵抗値を示し、また、R9〜R12はZ軸正方向(R9とR10)および負方向(R11とR12)に延びる柱状部材8に取り付けられた歪みゲージ9の抵抗値を示しており、それぞれ、Y軸の正方向あるいは負方向に、Z軸の正方向あるいは負方向に、どのような応力が発生したかをCPU43によって検出される。
【0031】
加速度センサ3X、3Y、3Zは三軸加速度センサ3を示している。そして地磁気センサ4X、4Y、4Zが三軸地磁気センサ4を示している。三軸加速度センサ3と三軸地磁気センサ4は温度センサ6とともに、A/D変換器41を介してこれらの検出値がECU7を構成するCPU43に入力される。そして、CPU43はトランジスタ48のベース電圧48Bを制御することにより加振器5のモータをオンオフ制御する。44は電池である。46は各センサに供給するための電源をON/OFFするスイッチであり、ECU7(CPU43)によって制御される。このスイッチ46は待機時はOFFされており、システムの消費電力を低減して、内蔵バッテリーの寿命を延ばしている。また、上述したように、地上管制装置200からのID振動パルスを受信した際にECU7(CPU43)によりONされて、各センサが起動して計測を開始する。
【0032】
図5は歪みゲージ9(
図1)の応力(横軸)と検出値(縦軸)との関係を示す図で、歪みゲージ9にX軸、Y軸、Z軸方向の圧縮応力(正方向)または引っ張り応力(負方向)が加わると、作動アンプU1(
図4)の検出値(電圧)はそれに比例して出力されることが判る。
【0033】
図6は地上管制装置の基本構成を示す平面図で、
図7はその縦断面図である。
図6および
図7において、地上管制装置200には、各擬似岩石100(
図7の101〜104)の制御を行うための送信用バイブレータ10と、加速度センサあるいは振動センサからなる受信センサ50とが複数個(
図6の51〜59)、鉱床300を囲んで設置されている。
パソコンPCは受信センサ50(
図6の51〜59)と送信用バイブレータ10を制御するもので、パソコンPCの中に制御用のプログラムがあり、このプログラムによって送信用バイブレータ10を制御して擬似鉱石101〜104(
図7)へ信号を送り、擬似鉱石101〜104からの信号を受信センサ50で受信して、この受信信号の内容の解析と、各受信センサ51〜59(
図6)の信号の到達時間の差から、擬似鉱石101〜104の位置を特定するなどの動作をする。
擬似岩石100(
図7では101〜104の4個)は鉱床300の内部の計測地点に設置・埋設されるものであり、鉱床内の岩石密度あるいは成分によっては、地上と無線交信することは困難である。そこで、擬似岩石100(
図1)の中にある内殻球2(
図1)に収容している各歪みゲージ9と加振器5を使用して、地上管制装置200と振動伝搬による通信を利用する。
すなわち、各擬似岩石100の加振器5が地上管制装置200への送信器の役割を果たし、三軸加速度センサ3が地上管制装置200から送られて来る振動を受け取る受信器の役割を兼用している。
なお、本実施例では、三軸加速度センサ3を地上管制装置からの送信振動を受信する受信器として兼用しているが、専用の加速度センサを設置してもよい。
【0034】
一方、
図6および
図7に示されるように、地上管制装置200には、各擬似岩石100(101〜104)の制御を行うための送信用バイブレータ10と、受信センサ50(
図6では、51〜59)が設置されている。この受信センサ50は、鉱床の周囲に複数個(図示例は、45°間隔に8個の受信センサ51〜58を)配置し、感度向上の観点から鉱床の中央部にも1個の受信センサ59を配置するのが好ましい。
【0035】
各擬似岩石100は、それぞれ別個のIDを備えており、
図8(A)および
図8(B)において、例えば
図8(B)に示すように4個の擬似岩石101〜104を使用する場合、地上管制装置200の送信用バイブレータ10(
図7)は、
図8(A)に示すようにスタートとエンドの振動パルスと、その間に2つの振動パルスを有する4つの振動パルス分の時間(TV)の期間に、各疑似岩石のトリガーを行う。
すなわち、ID0の擬似岩石101には、スタートとエンドの間に振動パルスがなく、(1、0、0、1)の振動パターンのIDが割り当てられ、同様にID1〜ID3の擬似岩石102〜104には、それぞれ、(1、0、1、1)、(1、1、0、1)、(1、1、1、1)のIDが割り当てられている。
これにより、各擬似岩石101〜104は、地上管制装置200の送信用バイブレータ10から送信される後述のTV期間の振動パルスのパターンにより、自己のID振動パルスを識別し、個別に各ECU7(
図4)を待機状態からの起動を行ったり、三軸加速度センサ3、三軸地磁気センサ4、温度センサ6、各歪みゲージ9の検出値などを、加振器5を介して各自のID振動パルスととともに地上管制装置200に送信し、振動伝搬によるデータ通信の確立が行われる。
【0036】
図9(A)〜
図9(C)は、地上管制装置200において、受信センサ50の第1受信センサ51(
図6)と同じ箇所に設置された送信用バイブレータ10{
図8(A)}の作動と、ID3の擬似岩石104{(
図8(B)}との間で振動による通信が確立される様子を示しており、TVの期間、地上管制装置200は
図9(A)に示す(1、1、1、1)のID振動パルス91を送信用バイブレータ10により送信すると、
図9(B)に示すように、Δt1後に、ID3の擬似岩石104{
図8(B)}はその内部に収容している三軸加速度センサ3(
図1)により、自分のID振動パルス92を検知する。
自分のID振動パルスであるID3を受信した擬似岩石104は、ECU7が備えている電源制御手段により電源オンにして、
図9(C)に示すように、内部に収容している加振器5(
図1)により自分のIDであるID3の振動パルス93を地上管制装置200に返した上で、次のパルス列94から、三軸加速度センサ3、三軸地磁気センサ4、温度センサ6、各歪みゲージ9等の検出値を、対応する振動パルスに変換して、加振器5により地上管制装置200に順次送信する。なお、ここで使用する振動による1ビットは5秒である(後述)。
【0037】
図10(A)は、擬似岩石100が加振器5により地上管制装置200にID振動パルス、各センサの検出値を送信する際のデータストリームを示している。送信データ80は、
図8(B)で説明したように、スタート時に1ビット、複数個の擬似岩石の中から特定の擬似岩石を選ぶID認識用に2ビット、スタート用に1ビット、次いで各種のセンサ出力用として、まず、
図2で説明した擬似岩石100のX軸、Y軸、Z軸が鉛直方向に対してそれぞれ傾斜している傾斜角θx、θy、θz用にそれぞれ4ビット、
図3で説明した擬似岩石100のN−S方向に対する傾斜角θHX、θHY用にそれぞれ4ビット、X軸・Y軸・Z軸の3方向用の各歪みゲージ9の応力PX、PY、PZ用にそれぞれ4ビット、温度センサ6のセンサ出力用に4ビット、そしてエンド用に2ビットが割り振られている。なお、傾斜角θHZは後で計算から求めることができるので、傾斜角θHZ用のビットは用意していない。
ここで使用する振動による1ビットは、
図10(B)の1ビットの構成を拡大
図10(C)で示すように、偏心モータの振動により作られるもので、60ヘルツ程度の正弦波の5秒程度の集合体で構成されている。
【0038】
図11は、ID0〜ID3の4個の擬似岩石101〜104が、地上管制装置200の送信用バイブレータ10から送信されるスタートID加振により区間(i)にてトリガーされ、それぞれΔt1〜Δt4後に、4個の擬似岩石101〜104のそれぞれの三軸加速度センサ3(
図1)が(ii)の区間で受信し、さらにそれぞれΔt1〜Δt4後の区間(iii)において、各自のID振動パルスとセンサ検出値を加振器5(
図1)により発信し、これを地上管制装置200の送信用バイブレータ10と同位置に設けた受信センサ51(
図6)が検出する様子を示している。
なお、鉱床300(
図7)の内部においては、崩落などに伴いさまざまな周波数、波形の振動がランダムに発生しているが、上述のような地上管制装置200と個別の擬似岩石101〜104との通信に使用する規則的な周波数を有する振動とは明確に識別できるので、鉱床内で発生する振動がノイズとなることは原理的にない。
仮に他の振動源等によりノイズの影響が予想される場合には、地上管制装置からのID振動パルスの発生と、対応する擬似岩石からのID振動パルスの応答を複数回繰り返せば、ノイズによる誤動作をさらに確実に防止することができる。
【0039】
振動によるデータ通信が確立した後は、擬似岩石の鉱床内における3次元座標を特定する必要がある。前述のように、地上管制装置200には複数の受信センサ51〜59(
図6)が設置されており、特定の擬似岩石の鉱床内における3次元座標に対応して、この擬似岩石と受信センサとの直線距離が異なる。
一般に特定の鉱床内においては、振動は一定の速度で伝搬するから、
図11に示されているように、地上管制装置200の送信用バイブレータ10からのID振動パルスに応答して、各擬似岩石101〜104が自分のID振動パルスを受信するまでの時間(Δt1)、そして、各擬似岩石101〜104の加振器5がこれに受信を完了するまでの時間(Tv)を経た後、自分のID信号パルスと各センサの検出値を送信し、地上管制装置200の受信センサ51がこれを受信するまでの時間は、それぞれΔt1〜Δt4を要することになる。
したがって、地上管制装置の送信用バイブレータ10がID振動パルスの発振を開始した瞬間から、地上管制装置の各受信センサ51〜59が該当する擬似岩石の加振器5による振動を受信するまでの時間から、Δt1とΔTvを減算した値は、各受信センサ51〜58と後の擬似岩石の距離に比例することになる。
したがって、GPSと同様の原理で、地上管制装置は、少なくとも3個の受信センサの受信タイミングを解析することにより、擬似岩石の鉱床内における3次元位置を正確に特定することができる。
【0040】
なお、以上の実施例では、擬似岩石と地上管制装置との間での振動による通信を確立し、擬似岩石に作用する圧力、応力、衝撃力の大きさや方向を地上管制装置でリアルタイムに解析するようにしているが、擬似岩石内のECU7(
図4)のメモリ42(
図4)に各センサの検出値を,計測時間とともに格納し、擬似岩石を取り出した後にこのメモリ42に記録されたデータを共通の時間軸で解析することも可能である。
【0041】
また、非常にゆっくりとした長期にわたる崩落を計測する場合は、
図12に示されるように、地上管制装置200から例えば24時間毎に1回、区間(t1)で実施する。すなわち、各擬似岩石へ起動信号を送信し、各センサの検出値を取得する。その後の区間(t2)は各擬似岩石の電源をオフするような信号を送信するようにしてもよい。各擬似岩石は24時間に30分程度起動するようにタイマー制御するようにしている。地上管制装置200は常時待機状態とし、各擬似岩石はタイマー制御で24時間に30分程度起動し、実施する。このように、擬似岩石はタイマー回路のみ動作させ、必要時にメイン基板に電源を供給することにより、低消費電源回路を構成することができる。
【0042】
本出願は、2010年8月5日出願の日本特許出願2010−176677に基づくものであり、その内容はここに参照として取り込まれる。