特許第5775201号(P5775201)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ポラリゼーション ソリューションズ エルエルシーの特許一覧 ▶ 岩崎電気株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5775201
(24)【登録日】2015年7月10日
(45)【発行日】2015年9月9日
(54)【発明の名称】製作方法
(51)【国際特許分類】
   G02B 5/30 20060101AFI20150820BHJP
【FI】
   G02B5/30
【請求項の数】12
【全頁数】25
(21)【出願番号】特願2014-163307(P2014-163307)
(22)【出願日】2014年8月11日
(62)【分割の表示】特願2009-524759(P2009-524759)の分割
【原出願日】2007年8月14日
(65)【公開番号】特開2014-219697(P2014-219697A)
(43)【公開日】2014年11月20日
【審査請求日】2014年8月25日
(31)【優先権主張番号】60/837,829
(32)【優先日】2006年8月15日
(33)【優先権主張国】US
(31)【優先権主張番号】60/883,194
(32)【優先日】2007年1月3日
(33)【優先権主張国】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】512278216
【氏名又は名称】ポラリゼーション ソリューションズ エルエルシー
(73)【特許権者】
【識別番号】000000192
【氏名又は名称】岩崎電気株式会社
(74)【代理人】
【識別番号】110001081
【氏名又は名称】特許業務法人クシブチ国際特許事務所
(72)【発明者】
【氏名】ワン,ジアン,ジム
(72)【発明者】
【氏名】リウ,ツァオミン
(72)【発明者】
【氏名】デン,ツェドン
(72)【発明者】
【氏名】リウ,フェン
【審査官】 後藤 亮治
(56)【参考文献】
【文献】 国際公開第2006/063049(WO,A1)
【文献】 特表2008−523422(JP,A)
【文献】 特開2004−144884(JP,A)
【文献】 特開2006−126464(JP,A)
【文献】 特開2003−324066(JP,A)
【文献】 特開2005−202104(JP,A)
【文献】 国際公開第2005/123277(WO,A2)
【文献】 特表2008−502948(JP,A)
【文献】 国際公開第2005/011860(WO,A2)
【文献】 特開2004−280050(JP,A)
【文献】 米国特許出願公開第2005/0045799(US,A1)
【文献】 米国特許第06317264(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/30
(57)【特許請求の範囲】
【請求項1】
第1の方向に沿って延在する、酸化チタンの複数の離間分離した細長い部分を含む層を透明性の基板の上に含み、前記細長い部分の幅が10nm〜50nm、深さが100nm以上、かつ150nm以下の間隔で分離された矩形状の自立構造であり、200nmから280nmまでの範囲内である波長λの光を偏光する直線偏光子の製作方法において、
前記基板に、選択的にエッチング除去可能な初期回折格子を形成し、
前記基板、及び前記初期回折格子の上に、単分子層の厚さが3nm以下の原子層堆積を用いて酸化チタンの等角層を堆積し、
前記初期回折格子のそれぞれの側壁上を残して前記等角層を異方的にエッチング除去し、KOH中のウェットエッチング、或いはCl/BClを使用する反応性イオンエッチングによって前記初期回折格子をエッチング除去し、前記細長い部分を形成する、
ことを特徴とする製作方法。
【請求項2】
前記初期回折格子の材料は、金属、有機材料、又は前記基板と同じ材料である
ことを特徴とする請求項1に記載の製作方法。
【請求項3】
前記層は、
第1の偏光状態を有する前記波長λの光の20%以上を透過させ、
第2の偏光状態を有する前記波長λの光の2%以下を透過させる、
ことを特徴とする請求項1または2に記載の製作方法。
【請求項4】
λが260nm以下である、ことを特徴とする請求項1に記載の製作方法。
【請求項5】
λが230nmから260nmまでの範囲内である、ことを特徴とする請求項1に記載の製作方法。
【請求項6】
前記層は、入射する前記第1の偏光状態を有する波長λの光の30%以上を透過させる、ことを特徴とする請求項3に記載の製作方法。
【請求項7】
前記層は、入射する前記第2の偏光状態を有する波長λの光の1%以下を透過させる、ことを特徴とする請求項3に記載の製作方法。
【請求項8】
前記層はλにおいて30以上の減衰比を有する、ことを特徴とする請求項1に記載の製作方法。
【請求項9】
前記層は、入射する前記第2の偏光状態を有する波長λの光の20%以下を反射する、ことを特徴とする請求項3に記載の製作方法。
【請求項10】
前記第1の方向に沿って延在する、第2の材料の複数の離間分離した部分を含む第2の層をさらに含み、前記第2の材料が酸化チタンとは異なり、
前記第2の層は、入射する前記第1の偏光状態を有する波長λ’の光の20%以上を透過させ、
前記層は、入射する前記第2の偏光状態を有する波長λ’の光の2%以下を透過させ、前記第1と第2の偏光状態は直交し、λ<λ’である、
ことを特徴とする請求項3に記載の製作方法。
【請求項11】
λ’が400nmから700nmまでの範囲内である、ことを特徴とする請求項10に記載の製作方法。
【請求項12】
前記第2の材料が金属である、ことを特徴とする請求項11に記載の製作方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は2006年8月15日出願の「模様化された構造を形成するための方法」と題した米国仮出願番号第60/837,829号、及び2007年1月3日出願の「偏光子薄膜及びこの製作方法」と題した米国仮出願番号第60/883,194号の優先権を主張するものである。上記参照仮出願の両方の内容の全てを本明細書に援用する。
【0002】
本発明は直線偏光子、関連するシステムと方法、及び製作方法に関する。
【背景技術】
【0003】
光の操作を所望する所では、光学装置及び光学システムが一般に使用される。光学装置の例には、レンズ、偏光子、光学フィルタ、反射防止装置、位相差板(例えば、1/4波長板)、及びビームスプリッタ(例えば、偏光及び非偏光ビームスプリッタ)を含む。光学装置は薄膜の形態でもよい。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は直線偏光子を製作するための方法関する。
【課題を解決するための手段】
【0005】
上記目的を達成するために、本発明は、第1の方向に沿って延在する、酸化チタンの複数の離間分離した細長い部分を含む層を透明性の基板の上に含み、前記細長い部分の幅が10nm〜50nm、深さが100nm以上、かつ150nm以下の間隔で分離された矩形状の自立構造であり、200nmから280nmまでの範囲内である波長λの光を偏光する直線偏光子の製作方法において、前記基板に、選択的にエッチング除去可能な初期回折格子を形成し、前記基板、及び前記初期回折格子の上に、単分子層の厚さが3nm以下の原子層堆積を用いて酸化チタンの等角層を堆積し、前記初期回折格子のそれぞれの側壁上を残して前記等角層を異方的にエッチング除去し、KOH中のウェットエッチング、或いはCl/BClを使用する反応性イオンエッチングによって前記初期回折格子をエッチング除去し、前記細長い部分を形成する、ことを特徴とする。
【0009】
また本発明は、上記製作方法において、記初期回折格子の材料は、金属、有機材料、又は前記基板と同じ材料であことを特徴とする。
【0011】
また本発明は、上記製作方法において、前記層は、第1の偏光状態を有する前記波長λの光の20%以上を透過させ、第2の偏光状態を有する前記波長λの光の2%以下を透過させる、ことを特徴とする。
【0013】
また本発明は、上記製作方法において、λが260nm以下であることを特徴とする。
【0014】
また本発明は、上記製作方法において、λが230nmから260nmまでの範囲内であることを特徴とする。
【0015】
また本発明は、上記製作方法において、前記層は、入射する前記第1の偏光状態を有する波長λの光の30%以上を透過させることを特徴とする。
【0016】
また本発明は、上記製作方法において、前記層は、入射する前記第2の偏光状態を有する波長λの光の1%以下を透過させることを特徴とする。
【0017】
また本発明は、上記製作方法において、前記層はλにおいて30以上の減衰比を有することを特徴とする。
【0018】
また本発明は、上記製作方法において、前記層は、入射する前記第2の偏光状態を有する波長λの光の20%以下を反射することを特徴とする。
【0019】
また本発明は、上記製作方法において、前記第1の方向に沿って延在する、第2の材料の複数の離間分離した部分を含む第2の層をさらに含み、前記第2の材料が酸化チタンとは異なり、前記第2の層は、入射する前記第1の偏光状態を有する波長λ’の光の20%以上を透過させ、前記層は、入射する前記第2の偏光状態を有する波長λ’の光の2%以下を透過させ、前記第1と第2の偏光状態は直交し、λ<λ’である、ことを特徴とする。
【0020】
また本発明は、上記製作方法において、λ’が400nmから700nmまでの範囲内であることを特徴とする。
【0021】
また本発明は、上記製作方法において前記第2の材料が金属であることを特徴とする。
【0026】
本発明の他の特徴及び利点は、説明、図面、及び請求項より明らかになるだろう。
【図面の簡単な説明】
【0027】
図1図1Aは偏光子薄膜の実施形態の断面図である。図1Bは偏光子薄膜の実施形態の平面図である。
図2】偏光子薄膜の実施形態の断面図である。
図3図3Aから3Dは偏光子薄膜の実施形態の断面図である。
図4】偏光子薄膜の実施形態の断面図である。
図5図5Aから5Cは偏光子薄膜の実施形態の製造の種々の段階における構造の断面図である。
図6】偏光子薄膜の実施形態に対し波長の関数としてモデル化された光学性能を示すプロット図である。
図7】偏光子薄膜の実施形態に対し波長の関数としてモデル化された光学性能を示すプロット図である。
図8】偏光子薄膜の実施形態に対し波長の関数としてモデル化された光学性能を示すプロット図である。
図9】偏光子薄膜の実施形態に対し波長の関数としてモデル化された光学性能を示すプロット図である。
図10-A】図10Aは原子層堆積システムの模式図である。
図10-B】図10Bは原子層堆積を使用してナノ積層物を形成するためのステップを示すフローチャートである。
図11-A】図11Aは偏光子薄膜の実施形態に対し波長の関数として測定された光学性能を示すプロット図である。
図11-B】図11Bは偏光子薄膜の実施形態に対し波長の関数として測定された光学性能を示すプロット図である。
図12】露光システムの模式図である。
【0028】
各種図面で同様な参照符号は同様な要素を示す。
【発明を実施するための形態】
【0029】
図1A及び図1Bを参照すると、直線偏光子薄膜100は回折格子層110及び基板140を含む。回折格子層110は、図1A及び図1B中に示すデカルト座標系のy方向に沿って延在する細長い部分111を含む。部分111は周期Λを有する回折格子を形成するように配列される。組成が異なれば、波長λ1の光に対して異なる光学特性を有する。
【0030】
回折格子層110は、z軸に平行に伝搬する波長λ1の入射光を直線的に偏光させる。換言すると、z軸に平行に伝搬し直線偏光薄膜100上に入射する波長λ1の光に対して、直線偏光薄膜100は、y方向に平面偏光した(「阻止」状態偏光と呼ばれる)成分の量に比べると、x方向に平面偏光した(「通過」状態偏向と呼ばれる)入射光の成分の比較的多くの量を透過させる。例えば、偏光子薄膜100は、λ1で通過状態の光を約25%以上(例えば、約30%以上、約40%以上、約50%以上、約60%以上、約80%以上)透過させることができる一方で、λ1で阻止状態の光を約5%以下(例えば、約4%以下、約3%以下、約2%以下、約1%以下、約0.5%以下、約0.3%以下、約0.2%以下、約0.1%以下)透過させることができる。λ1は通過状態の透過スペクトルにおける局所的(又は全体的)最大値に対応し得る。別法として、又は追加的に、λ1は阻止状態の透過スペクトルにおける局所的(又は全体的)最小値に対応し得る。
【0031】
一般に、λ1は約100nmと約5,000nmの間である。実施形態のあるものでは、λ1はEMスペクトルの可視部分内の波長(例えば、400nmから700nmまで)に対応する。実施形態のいくつかでは、λ1は、約250nm等、EMスペクトルのUV部分内の波長(例えば、約100nmから最大400nmまで)に対応する。
【0032】
実施形態のいくつかでは、直線偏光子薄膜100は複数の波長の放射光を偏光させる。例えば、直線偏光子薄膜100は波長λ1及びλ2の放射光を偏光させることが可能で、ここで、λ1<λ2であり、|λ1−λ2|は約50nm以上である(例えば、約75nm以上、約100nm以上、約150nm以上、約200nm以上、約250nm以上、約300nm以上、約400nm以上、約500nm以上)。実施形態のあるものでは、直線偏光子薄膜100は、λ1及びλ2を含む連続波長帯域Δλの放射光を偏光させることができる。例えば、直線偏光子薄膜100は、約10nm幅以上(例えば、約20nm幅以上、約50nm幅以上、約80nm幅以上、約100nm以上、約200nm以上、約300nm以上、約400nm以上)の波長帯域Δλの放射光を偏光させることができる。λ2は通過状態の透過スペクトルにおける局所的(又は全体的)最大値に対応し得る。別法として、又は追加的に、λ2は阻止状態の透過スペクトルにおける局所的(又は全体的)最小値に対応し得る。
【0033】
さらに、直線偏光子薄膜100はz軸に平行に伝搬する入射放射光を偏光させるが、実施形態のいくつかでは、偏光子薄膜100は、λ1の放射光を、非法線の入射角の放射光に対して(すなわち、θがゼロでない場合にz軸に対して角度θで伝搬して直線偏光子薄膜100上に入射する放射光に対して)偏光させることができる。実施形態のあるものでは、直線偏光子薄膜100は、ある入射角範囲に対して等、複数の入射角で入射する放射光を偏光させることができる。例えば、実施形態のいくつかでは、直線偏光子薄膜100は、約10°以上(例えば、約15°以上、約20°以上、約30°以上、約45°以上)のθの入射角の円錐内に入射する放射光を偏光させることができる。非法線入射に対しては、通過状態がx−z平面に平行に偏光した光に対応し、阻止状態はx−z平面に直角に偏光した光に対応することに留意されたい。
【0034】
実施形態では、直線偏光子薄膜100は、比較的多くの量の阻止状態放射光を吸収することによって、阻止状態偏光を有するλ1及び/又はλ2で比較的多くの量の入射放射光を阻止する。例えば、直線偏光子薄膜100は、阻止偏光状態を有するλ1及び/又はλ2の入射放射光の約80%以上を吸収することができる(例えば、約90%以上、約95%以上、約98%以上、約99%以上)。実施形態のいくつかでは、偏光子薄膜100からの阻止状態の反射は比較的低い。例えば、偏光子薄膜100は、阻止状態のλ1の入射放射光の約50%以下を反射することができる(例えば、約20%以下、約15%以下、約10%以下、約5%以下)。実施形態のあるものでは、偏光子薄膜100は、阻止状態のλ1及びλ2の入射放射光の約50%以下を反射することができる(例えば、約20%以下、約15%以下、約10%以下、約5%以下)。別法として、実施形態のいくつかでは、偏光子薄膜100は、阻止状態のλ1の入射放射光の約50%以下を反射することができる(例えば、約20%以下、約15%以下、約10%以下、約5%以下)一方で、阻止状態のλ2の入射放射光の約50%以上を反射することができる(例えば、約60%以上、約70%以上、約80%以上、約90%以上)。
【0035】
直線偏光子薄膜100は、λ1及び/又はλ2の透過光に対し、比較的高い減衰比、ET、を有し得る。透過光に対しては、減衰比は、直線偏光子薄膜100によって透過される阻止状態強度に対する、λ1及び/又はλ2における通過状態強度の比を指す。減衰比は、また、偏光子コントラストとも呼ばれる。例えば、ETはλ1及び/又はλ2で約10以上である(例えば、約20以上、約30以上、約40以上、約50以上、約60以上、約70以上、約80以上、約90以上、約100以上、約150以上、約300以上、約500以上)。実施形態のいくつかでは、λ1は、波長の関数ET(λ)としての減衰比における局所的(又は全体的)最大値に対応する。別法として、又は追加的に、λ2は、ET(λ)における局所的(又は全体的)最大値に対応し得る。
【0036】
偏光子の減衰比は、比ではなく、デシベル(dB)でも表現され、比ETと対応するdB値との間の関係は次の式ET,dB=10・1og10Tに従って決定可能である。例えば、減衰比の30は約15dBに対応し、減衰比の50は約17dBに対応し、減衰比の100は約20dBに対応する。
【0037】
直線偏光子薄膜100は、例えば、環境的又は運用的な要因への曝露による劣化への優れた耐性を示し得る。そのような要因には、例えば、湿度、温度、酸化物への曝露(例えば、空気)及び/又は放射光を含む。一般に、劣化への優れた耐性とは、直線偏光子薄膜の光学性能(例えば、通過状態の透過、阻止状態の透過、減衰比)が、一つ又は複数の環境的又は運用的な要因への長期の曝露に対し、比較的にほとんど変化しないことを意味する。例えば、直線偏光子薄膜100がUV放射光用の偏光子として使用される実施形態では、偏光子薄膜は、かなりの期間(例えば、100時間以上、500時間以上、1,000時間以上)に渡りこの放射光に対して曝露されても光学性能はほとんど変化を示さないことがある。
【0038】
環境的な劣化に対する直線偏光子の耐性を特徴化する一つの方法は、制御された雰囲気中で上昇した温度に曝露する等、制御された環境試験によることである。例として、直線偏光子は、約650℃の温度で6時間、酸素環境に曝露し得る。曝露の前後で測定すると、劣化への優れた耐性を備える直線偏光子薄膜は、λ1での透過率で約8%以下(例えば、5%以下、4%以下、3%以下、2%以下、1%以下)の減少を示す。曝露の前後で測定すると、劣化への優れた耐性を備える直線偏光子薄膜は、また、λ1でのETで約8%以下(例えば、5%以下、4%以下、3%以下、2%以下、1%以下)の減少を示し得る。
【0039】
さらなる例として、環境的な安定性を試験する他の方法は、長期間、高出力のUV放射源への長期の曝露によることである。具体的には、直線偏光子薄膜は、1,000Wの水銀アークランプ(例えば、カリフォルニア州サイプレスのウシオアメリカ(Ushio America)から入手可能な型式番号UVH1022−0)から2cmに偏光子を位置させることによって試験可能である。偏光子薄膜は、発生源からの光がz軸に沿って偏光子に入射するように配向される。ETは曝露の前後においてλ1で測定される。曝露の前後で測定すると、劣化への優れた耐性を備える直線偏光子薄膜の実施形態は、また、λ1でのETで約8%以下(例えば、5%以下、4%以下、3%以下、2%以下、1%以下)の減少を示し得る。
【0040】
ここで回折格子層110の構造に移ると、細長い部分111はy方向に沿って延在し、隙間112によって離間した連続する部分で構成される周期的な回折格子を形成する。部分111に対応する部分はx方向に幅Λ111を有し、一方、隙間112は幅x方向に幅Λ112を有する。回折格子周期Λは、Λ111+Λ112に等しく、λ1よりも小さく、その結果、光が周期的な構造と相互作用する際に起こり得る著しい高次元の遠方場回折を伴うことなしに、波長λ1の光は回折格子層110と相互作用する。ここで、λ1はEMスペクトルの可視又はUV部分内であり、回折格子層110はナノ構造化層の例と考えてよい。
【0041】
一般に、Λ111は約0.2λ1以下でよい(例えば、約0.1λ1以下、約0.05λ1以下、約0.04λ1以下、約0.03λ1以下、約0.02λ1以下、約0.01λ1以下)。例えば、実施形態のいくつかでは、Λ111は約200nm以下である(例えば、約150nm以下、約100nm以下、約80nm以下、約70nm以下、約60nm以下、約50nm以下、約40nm以下、約30nm以下)。実施形態のいくつかでは、Λ111は約10nm以上である(例えば、約15nm以上、約20nm以上)。同様に、Λ112は約0.2λ1以下でよい(例えば、約0.1λ1以下、約0.05λ1以下、約0.04λ1以下、約0.03λ1以下、約0.02λ1以下、約0.01λ1以下)。例えば、実施形態のいくつかでは、Λ112は約200nm以下である(例えば、約150nm以下、約100nm以下、約80nm以下、約70nm以下、約60nm以下、約50nm以下、約40nm以下、約30nm以下)。Λ111及びΛ112は互いに同じ、又は異なってよい。
【0042】
一般にΛは、約0.5λ1以下(例えば、約0.3λ1以下、約0.2λ1以下、約0.1λ1以下、約0.08λ1以下、約0.05λ1以下、約0.04λ1以下、約0.03λ1以下、約0.02λ1以下、0.01λ1以下)等、λ1より小さい。実施形態のいくつかでは、Λは約500nm以下である(例えば、約300nm以下、約200nm以下、約150nm以下、約130nm以下、約100nm以下、約80nm以下、約60nm以下、約50nm以下、約40nm以下)。
【0043】
比Λ111:Λによって与えられる回折格子層のデューティーサイクルは、所望により変わり得る。実施形態のいくつかでは、デューティーサイクルは約50%より小さい(例えば、約40%以下、約30%以下、約20%以下、約10%以下、約8%以下)。別法として、実施形態のあるものでは、デューティーサイクルは約50%より大きい(例えば、約60%以上、約70%以上、約80%以上)。
【0044】
一般に、回折格子層中の部分111の数は所望により変わり得る。部分の数は、周期Λ、及び直線偏光子の最終使用者の用途によって必要とされる面積による。実施形態のいくつかでは、回折格子層110は約50以上の部分(例えば、約100以上の部分、約500以上の部分、約1,000以上の部分、約5,000以上の部分、約10,000以上の部分、約50,000以上の部分、約100,000以上の部分、約500,000以上の部分)を有し得る。
【0045】
z軸に沿って測定される回折格子層110の厚さdは所望により変わり得る。一般に、層110の厚さは、λ1における回折格子層110の所望の光学特性、及び、そのような構造の製造上の制限に基づき選択される。実施形態のいくつかでは、dは約50nm以上である(例えば、約2,000nm等、約75nm以上、約100nm以上、約125nm以上、約150nm以上、約200nm以上、約250nm以上、約300nm以上、約400nm以上、約500nm以上、約1,000nm以上)。
【0046】
Λ111に対する回折格子層の厚さdのアスペクト比、及び/又はΛ112に対するdのアスペクト比は比較的大きくてよい。例えば、d:Λ111及び/又はd:Λ112は約2:1以上でよい(例えば、約3:1以上、約4:1以上、約5:1以上、約8:1以上、約10:1以上、約12:1以上、約15:1以上)。
【0047】
一般に、部分111の組成は、偏光子薄膜100が所望の偏光特性を有するように選択される。部分111の組成は、また、偏光子薄膜100の製造に使用される製造工程等に対する適合性等の要因、及び、環境曝露による劣化への耐性等の環境的な特性に基づき選択される。
【0048】
実施形態では、部分111はλ1で比較的低い透過率を有する材料から形成される。λ1で比較的低い透過率を有する1マイクロメートル厚さの材料のバルクサンプルは、その上に法線入射するλ1の放射光の約0.1%未満(例えば、約0.05%以下、約0.01%以下、約0.001%以下、約0.0001%以下)を透過させる。低透過率材料には、λ1で比較的多くの量の放射光を吸収する材料を含む。
【0049】
例えば、λ1がEMスペクトルのUV部分内にある実施形態のいくつかでは、部分111は二酸化チタン(TiO2)、タングステン(W)、インジウムスズ酸化物(ITO)、モリブデン(Mo)、リン化インジウム(InP)、ガリウムヒ素(GaAs)、アルミニウムガリウムヒ素(AlxGa1-xAs)、シリコン(Si)(例えば、結晶質、半結晶質、アモルファスシリコン)、インジウムガリウムヒ素(InGaAs)、ゲルマニウム(Ge)、又はリン化ガリウム(GaP)から形成可能である。
【0050】
さらに一般的には、部分111は無機及び/又は有機材料を含んでよい。無機材料の例は、金属、半導体、及び無機誘電材料(例えば、ガラス)を含む。有機材料の例は高分子を含む。
【0051】
部分111はλ1で比較的高い吸収を有する材料から形成可能である。比較的高い吸収を有する1マイクロメートル厚さの材料のバルクサンプルは、その上に法線入射するλ1の放射光の約90%以上(例えば、約93%以上、約95%以上)を吸収する。一般に、λ1によるが、比較的高い吸収を有する材料には、誘電材料、半導体材料、及び電気伝導材料を含む。UV中のある波長で比較的高い吸収を有する誘電材料には、例えば、TiO2を含むことができる。UV中のある波長で比較的高い吸収を有する半導体材料の例は、シリコン(Si)である。半導体材料のさらなる例には、Ge、リン化インジウム(InP)、及びシリコンゲルマニウム(SiGe)を含む。UV及び可視光のある波長で比較的高い吸収を有する電気伝導材料の例には、コバルト(Co)、白金(Pt)、及びチタン(Ti)を含む。他の材料には、クロム(Cr)、ニッケル(Ni)、バナジウム(V)、タンタル(Ta)、パラジウム(Pd)、及びイリジウム(Ir)を含む。ケイ化タングステン(WSi2)、ケイ化チタン(TiSi)、ケイ化タンタル(TaSi)、ケイ化ハフニウム(HfSi2)、ケイ化ニオブ(NbSi)、及びケイ化クロム(CrSi)等の金属ケイ化物もまた、使用可能である。
【0052】
実施形態のいくつかでは、部分111は、λ1及びλ2を含む波長帯域に渡り比較的低い透過率を有する材料等、λ2で比較的低い透過率を有する材料から形成される。例えば、Wは、約200nmから約600nmまでの波長範囲に渡り比較的低い透過率を有し、UVスペクトルの部分を含む比較的広い波長範囲に渡り使用可能な直線偏光子薄膜を形成するために使用可能である。実施形態のあるものでは、部分111を形成する材料はλ2で比較的高い吸収を有する。
【0053】
nを屈折率、kを減衰係数とすると、一般に、材料は、複屈折率n〜=n−ikによって特性づけ可能である。一般に、n〜は波長の関数として変化する。部分111は、λ1で1.5以上(例えば、1.8以上、2以上、2.1以上、2.2以上、2.3以上、2.4以上、2.5以上、2.6以上、2.7以上、2.8以上、2.9以上、3以上、4以上)の減衰係数kを有する材料から形成可能である。実施形態では、kは5以下であり得る(例えば、4以下、3.5以下)。実施形態のあるものでは、kは2から5までの範囲内である。例えば、Wは約633nmで2.92のk値を有する。さらに、実施形態のいくつかでは、材料は、λ1で1.5以上(例えば、1.8以上、2以上、2.1以上、2.2以上、2.3以上、2.4以上、2.5以上、2.6以上、2.7以上、2.8以上、2.9以上、3以上)の屈折率nを有してよい。例として、Wは約633nmで3.65のn値を有する。他の例として、TiO2は約633nmで2.88のn値を有する。
【0054】
実施形態のあるものでは、部分111は、λ1同様λ2で1.5以上(例えば、1.8以上、2以上、2.1以上、2.2以上、2.3以上、2.4以上、2.5以上、2.6以上、2.7以上、2.8以上、2.9以上、3以上)の減衰係数kを有する材料から形成される。材料は、λ2で1.5以上(例えば、1.8以上、2以上、2.1以上、2.2以上、2.3以上、2.4以上、2.5以上、2.6以上、2.7以上、2.8以上、2.9以上、3以上)の屈折率nを有してよい。
【0055】
一般に、部分111を形成する材料は、単一成分材料、又は複数の異なる成分からなる材料を含んでよい。実施形態のいくつかでは、部分111はナノ積層物材料から形成され、これは、少なくとも二つの異なる成分の材料の層から構成される組成を指し、材料の内の少なくとも一つの層は著しく薄い(例えば、1単分子層厚さと約10単分子層厚さとの間)。光学的に、ナノ積層物材料は局部的に均一な屈折率を有し、これは、構成材料の屈折率に依存する。構成材料のそれぞれの量を変化させると、ナノ積層物の屈折率も変化し得る。ナノ積層物の部分の例には、シリカ(SiO2)単分子層及びTiO2単分子層、SiO2単分子層及び五酸化タンタル(Ta25)単分子層、又は、酸化アルミニウム(Al23)単分子層及びTiO2単分子層で構成される部分を含む。
【0056】
一般に、部分111は結晶質、半結晶質、及び/又はアモルファス材料を含んでよい。
【0057】
回折格子層110の構造及び組成は、所望の直線偏光子薄膜100の光学性能に基づき選択される。直線偏光子100の光学性能に影響する構造パラメータには、例えば、d、Λ、Λ111、及びΛ112を含む。一般に、単一のパラメータを変化させると、複数の異なる性能パラメータに影響する。例えば、偏光子のλ1での全体の透過率は、隙間112の厚さΛ112に対する、非透過性材料から形成される部分111の相対厚さΛ111を変化させることによって変化し得る。しかし、Λ111/Λ112の比が低いと、通過状態の偏光の透過率が比較的高くなり、これは、また、阻止状態の偏光の透過率も高くし、ETを減少させ得る。その結果、偏光子の性能を最適化するには、種々の性能パラメータ間のトレードオフとなり、偏光子の構造と組成は、偏光子の最終使用者の用途に対する所望の性能によって変わる。
【0058】
一般に、波長λ1の光を効果的に偏光させるためには、回折格子層の周期Λは、約λ1/4以下(例えば、約λ1/6以下、約λ1/10以下)等、λ1よりも短い必要がある。さらに、効果的な広帯域性能のためには、Λは波長帯域Δλ中の一番短い波長よりも短い必要がある。可視スペクトルにおける広帯域偏光子に対しては、例えば、Λは、約200nm以下(例えば、約150nm以下、約130nm以下、約110nm以下、約100nm以下、約90nm以下、約80nm以下)等、約300nmよりも小さい必要がある。
【0059】
実施形態のいくつかでは、ETは、回折格子層110の厚さdを増加させることによって増加可能である。dを増加させると、通過状態の透過率の量を実質的に減少させずに、ETを増加可能である。
【0060】
ここで偏光子薄膜100中の他の層を参照すると、一般に、基板140は偏光子薄膜100を機械的に支持する。偏光子薄膜100が透過性偏光子である典型的な実施形態では、基板140は波長λ1の光に対して透過性であり、波長λ1で基板に突入する実質的に全ての光を透過させる(例えば、約90%以上、約95%以上、約97%以上、約99%以上、約99.5%以上)。
【0061】
一般に、基板140は、他の層を支持可能な偏光子100を製造するために使用される製造工程に適合する任意の材料から形成可能である。実施形態のあるものでは、基板140は、石英ガラス(例えば、溶融石英すなわち溶融シリカで、特別UV等級の溶融シリカ等)、BK7(アブリサコーポレーション(Abrisa Corporation)より入手可能)、ホウケイ酸ガラス(例えば、コーニングから入手可能なパイレックス(登録商標))、及び、アルミノケイ酸ガラス(例えば、コーニングから入手可能なC1737)等のガラスから形成される。実施形態のいくつかでは、基板140は、結晶性石英、又はフッ化カルシウム(CaF2)、又は、いくつかの場合では、非線形光学結晶(例えば、LiNbO3、又はガーネット等の磁気光学回転子)、又は結晶質(又は半結晶質)半導体(例えば、Si、InP、又はGaAs)等の結晶質の材料から形成可能である。基板140は、また、高分子(例えば、プラスチック)等の有機材料からも形成してよい。
【0062】
図1A及び図1Bは、基板上に回折格子層を有する構造、すなわち、隙間によって離間分離した部分111で構成された自立構造の回折格子を示すが、一般に、偏光子は追加の部分及び/又は層を含んでよい。例えば、図2を参照すると、実施形態のいくつかでは、偏光子薄膜200は層110中の隙間112を充填する材料を含み、モノリシック構造の回折格子層210を形成する。図2では、これらの部分は部分212として指定される。
【0063】
一般に、部分212は、111を形成する材料よりも、λ1で著しく高い透過率を有する材料から形成される。例えば、部分212を形成する材料の透過率は、部分111を形成する材料の透過率よりも、約100倍以上(例えば、500倍以上、103倍以上、5×103倍以上、104倍以上)大きい場合がある。実施形態のいくつかでは、部分212はSiO2(例えば、石英)から形成され、可視波長で比較的高い透過率を有する材料の例である。
【0064】
実施形態のあるものでは、部分212はλ2で比較的低い透過率を有する材料から形成される。例えば、部分212はλ2で比較的高い吸収又は反射率を有する材料から形成してよい。
【0065】
部分212を形成する材料は、回折格子層210がλ2の放射光を直線的に偏光させるように選択してよいし、一方で、部分111は回折格子層210がλ1の放射光を直線的に偏光させるように選択された材料から形成される。例として、実施形態のいくつかでは、部分111はUV中(例えば、約250nm)で比較的高い吸収を有する酸化物材料(例えば、TiO2)から形成され、一方、部分212は可視光(例えば、約450nmから約700nmまで)及び/又はIR(例えば、700nmから約2,000nmまで)で比較的高い反射率又は吸収を有する金属(例えば、Al)から形成される。
【0066】
実施形態のあるものでは、部分212は、λ2で2以上(例えば、2.1以上、2.2以上、2.3以上、2.4以上、2.5以上、2.6以上、2.7以上、2.8以上、2.9以上、3以上)の減衰係数kを有する材料から形成される。さらに、実施形態のいくつかでは、材料は、λ2で2以上(例えば、2.1以上、2.2以上、2.3以上、2.4以上、2.5以上、2.6以上、2.7以上、2.8以上、2.9以上、3以上)の屈折率nを有してよい。
【0067】
偏光子薄膜200中の回折格子層はモノリシック構造の層(すなわち、層の異なる部分間に隙間がない)であるが、実施形態では、隙間に隣接するいくつかの部分に加え、異なる材料から形成され、隣接する部分である、いくつかの部分を含んでよい。例えば、図3Aを参照すると、偏光子薄膜500は回折格子層510を含み、回折格子層510の中では、部分111のそれぞれが、一つの側で異なる材料から形成された部分512に隣接し、その反対側で隙間515に隣接する。換言すると、部分111は部分512に対して側壁を形成する。部分512は周期Λ500を有する回折格子を形成する。
【0068】
部分512は幅Λ512を有するが、隙間515は幅Λ515を有する。一般に、Λ512及びΛ515は、偏光子薄膜500の所望の光学特性に従って選択される。Λ512は、約λ2/4以下(例えば、λ2/8以下、約λ2/10以下、約λ2/12以下)等、λ2よりも小さくてよい。換言すると、部分512はλ2の放射光のためのサブ波長回折格子を形成する。Λ515はΛ512と同じ、又は異なってよい。一般に、より大きな値のΛ515は、λ1及びλ2の入射放射光の透過がより高いことに対応する。
【0069】
一般に、部分512は部分111を形成する材料と異なる材料から形成される。部分512はλ2で比較的透過が低い材料から形成してよい。例として、実施形態のいくつかでは、部分111は酸化物材料(例えば、TiO2)から形成されるが、一方、部分512は、可視光(例えば、約450nmから約700nmまで)で比較的高い反射率を有する金属(例えば、Al)から形成される。
【0070】
実施形態のあるものでは、材料の部分は隙間515を置換可能であり、モノリシック構造の回折格子層510を与える。例えば、λ1及びλ2で高い透過率を有する材料で構成された部分は、隙間515を置換するために使用可能である。λ1及びλ2がスペクトルのUV又は可視部分内にある場合の例として、SiO2(例えば、石英)で構成された部分は隙間515を置換し得る。
【0071】
偏光子薄膜は複数の回折格子層を含んでよい。例えば、図3Bを参照すると、偏光子薄膜501は、回折格子層110と基板140との間に第2の回折格子層520を含む。別法として、回折格子層110は回折格子層520と基板140との間の部分であってよい。
【0072】
z軸に沿って測定される回折格子層520の厚さd'は所望により変わり得る。一般に、層520の厚さは、λ1及び/又はλ2における回折格子層520の所望の光学特性、及び、そのような構造の製造上の制限に基づき選択される。実施形態のいくつかでは、d'は約50nm以上でよい(例えば、約2,000nm等、約75nm以上、約100nm以上、約125nm以上、約150nm以上、約200nm以上、約250nm以上、約300nm以上、約400nm以上、約500nm以上、約1,000nm以上)。
【0073】
隙間112が材料で充填される実施形態では、この材料は隙間522を充填する材料と同じ、又は異なってよい。
【0074】
例として、実施形態のあるものでは、部分111及び521は約25nmの幅を有し、約75nmの周期を有する回折格子を形成する。部分111はTiO2又はWから形成され、約100nmの深さを有する。部分521は、Alから形成され、約50nmの深さを有する。両方の回折格子層中の回折格子は自立構造である。基板140は溶融シリカから形成される。そのような場合では、偏光子薄膜501はスペクトルのUV及び可視部分に対して効果的な偏光子であり得る。
【0075】
部分521で形成された回折格子は、部分111から形成された回折格子と同じ周期とデューティーサイクルを有するが、実施形態のあるものでは、これらの回折格子の周期とデューティーサイクルは異なってよい。例えば、図3Cを参照すると、偏光子薄膜502は、それぞれ幅Λ531及びΛ532を有する部分531及び部分532から構成された回折格子層530を含み、Λと異なる周期Λ530を有する回折格子を形成する。
【0076】
回折格子層530中の回折格子の周期、デューティーサイクル、及び深さは、λ2における偏光子薄膜の所望の光学特性に基づき選択してよい。例えば、実施形態のいくつかでは、Λ530は約0.5λ2以下(例えば、約0.3λ2以下、約0.2λ2以下、約0.1λ2以下、約0.08λ2以下、約0.05λ2以下、約0.04λ2以下、約0.03λ2以下、約0.02λ2以下、約0.01λ2以下)等、λ2より小さい。Λ530は、約1,000nm以下でよい(例えば、約500nm以下、約300nm以下、約200nm以下、約150nm以下、約100nm以下)。
【0077】
一般に、Λ531は約0.2λ2以下でよい(例えば、約0.1λ2以下、約0.05λ2以下、約0.04λ2以下、約0.03λ2以下、約0.02λ2以下、約0.01λ2以下)。例えば、実施形態のいくつかでは、Λ531は約500nm以下である(例えば、約300nm以下、約200nm以下、約100nm以下、約80nm以下、約60nm以下、約50nm以下)。実施形態のいくつかでは、Λ531は約30nm以上である(例えば、約40nm以上、約50nm以上)。同様に、Λ532は約0.2λ2以下でよい(例えば、約0.1λ2以下、約0.05λ2以下、約0.04λ2以下、約0.03λ2以下、約0.02λ2以下、約0.01λ2以下)。例えば、実施形態のいくつかでは、Λ532は約500nm以下である(例えば、約300nm以下、約200nm以下、約100nm以下、約80nm以下、約60nm以下、約50nm以下)。実施形態のいくつかでは、Λ532は約30nm以上である(例えば、約40nm以上、約50nm以上)。Λ531及びΛ532は互いに同じ、又は異なってよい。
【0078】
比Λ531:Λ530によって与えられる回折格子層のデューティーサイクルは、所望により変わり得る。実施形態のいくつかでは、デューティーサイクルは約50%より小さい(例えば、約40%以下、約30%以下、約20%以下、約10%以下、約8%以下)。別法として、実施形態のあるものでは、デューティーサイクルは約50%より大きい(例えば、約60%以上、約70%以上、約80%以上)。
【0079】
Λ531に対する回折格子層の厚さd'のアスペクト比は比較的大きくてよい。例えば、d':Λ531は約2:1以上でよい(例えば、約3:1以上、約4:1以上、約5:1以上、約8:1以上、約10:1以上、約12:1以上、約15:1以上)。
【0080】
部分532はλ2で比較的透過が低い材料から形成してよい。部分532はλ1及び/又はλ2で比較的透過が高い材料から形成してよい。
【0081】
実施形態のいくつかでは、回折格子層は基板140の対向する側に形成してよい。例えば、図3Dを参照すると、偏光子薄膜503は、基板140の一つの側に回折格子層110を、及び基板140の反対側に第2の回折格子層540を含む。さらに、前述の実施形態は二つの回折格子層を含むが、実施形態には二つより多い回折格子層(例えば、三つ、四つ、五つ、又はそれ以上の回折格子層)を含んでよい。
【0082】
実施形態には追加の層を含んでよい。例えば、図4を参照すると、偏光子薄膜300は、エッチング停止層310及び反射防止薄膜320を含む。
【0083】
エッチング停止層310は、部分112が形成される一つ又は複数の材料をエッチングするために使用されるエッチング工程に耐える材料から形成される。エッチング停止層130を形成する一つ又は複数の材料は、基板140及び回折格子層110を形成する材料に適合する必要がある。エッチング停止層130を形成可能な材料の例には、HfO2、SiO2、Ta25、TiO2、SiNx、又は金属(例えば、Cr、Ti、Ni)を含む。
【0084】
エッチング停止層310の厚さは所望により変わり得る。一般に、エッチング停止層310は、基板140のエッチングのかなりを防止するように十分に厚く、しかし偏光子薄膜100の光学性能に悪影響するように厚くてはいけない。実施形態のいくつかでは、エッチング停止層は約500nm以下である(例えば、約250nm以下、約100nm以下、約75nm以下、約50nm以下、約40nm以下、約30nm以下、約20nm以下)。
【0085】
反射防止薄膜320は、偏光子薄膜100に突入及び/又は偏光子薄膜100から脱出する通過状態の波長λの光の反射率を減少させることができる。反射防止薄膜320は、一般に一つ又は複数の異なる屈折率の層を含む。例として、反射防止薄膜320は、交互的な四つの高屈折率と低屈折率の層から形成可能である。高屈折率の層はTiO2又はTa25から形成可能であり、低屈折率の層はSiO2又はMgF2から形成可能である。反射防止薄膜は広帯域反射防止薄膜又は狭帯域反射防止薄膜でよい。
【0086】
実施形態のいくつかでは、偏光子薄膜は、通過状態の偏光に対し波長λで薄膜に突入する光の反射率が約5%以下である(例えば、約3%以下、約2%以下、約1%以下、約0.5%以下、約0.2%以下)。
【0087】
一般に、偏光子薄膜100は所望のように調整可能である。一般に、偏光子薄膜は、集積回路の製造で一般に使用される、堆積及びパターニング技術を使用して調整される。使用可能な堆積技術には、スパッタリング(例えば、高周波スパッタリング)、蒸着(例えば、電子ビーム蒸着、イオン支援堆積(IAD)電子ビーム蒸着)、又は、プラズマ増強CVD(PECVD)等の化学気相堆積(CVD)、原子層堆積(ALD)、又は酸化によるものを含んでよい。パターニングには、電子ビームリソグラフィ、フォトリソグラフィ(例えば、フォトマスク又はホログラフィ技術を使用して)、及びインプリントリソグラフィ等の、リソグラフィ及びエッチング技術を使用して実行可能である。エッチング技術には、例えば、反応性イオンエッチング、イオンビームエッチング、スパッタリングエッチング、化学増強イオンビームエッチング(CAIBE)、又はウェットエッチングを含む。
【0088】
本明細書に記載した構造に適用可能な回折格子構造を形成するための技術の説明は、2005年5月27日出願の「光学薄膜及びこの製作方法」と題した米国特許出願公開第2005−0277063A1号に説明されており、この内容の全てを本明細書に援用する。実施形態のいくつかでは、単一の基板上に比較的大きな回折格子層を形成し、次に個々の単体に切断することによって、複数の偏光子を同時に調整可能である。例えば、回折格子層は約10平方インチ以上の片面の表面積を有する基板(例えば、4インチ、6インチ、8インチの直径の基板)上に形成可能である。回折格子層を形成後、基板は、より小さな大きさの(例えば、約1平方インチ以下の片面表面積を有する)複数の単体に切断可能である。
【0089】
ここで、図5Aから5Cを参照すると、実施形態のいくつかでは、短い周期の回折格子層は、比較的長い周期を有する初期回折格子の部分の側壁上に材料を堆積させることによって形成される。図5Aは、基板140によって支持された離間分離する部分412で構成される初期回折層410の断面図を示す。回折格子層410は周期Λ410を有する。部分412は幅Λ412、及び厚さd412を有する。部分412は、111を形成する材料よりも、λ1で著しく高い透過率を有する材料から形成される。実施形態のいくつかでは、部分412はシリカすなわち石英から形成される。
【0090】
実施形態のあるものでは、部分412は、λ2で比較的低い透過率を有する材料から形成される。例えば、部分412は、スペクトルの可視部分で低い透過率を有するAl、Cu、Au、又はAg等の金属から形成してよい。
【0091】
実施形態のあるものでは、部分412は基板140と同じ材料から形成される。例えば、回折格子層410は、基板材料のモノリシック構造の層の部分をエッチングすることによって形成可能である。
【0092】
図5Bを参照すると、等角層420が初期回折格子層上に堆積される。実施形態のあるものでは、等角層420がALDを使用して堆積される。ALD堆積は、下に詳しく説明する。一般に、等角層420の厚さは、部分111の所望の厚さΛ111による。
【0093】
図5Cを参照すると、部分111を形成するために、等角層420は異方的にエッチングされ、部分412の側壁上の等角層420の部分のみを実質的に残す。これらの残りの部分が、偏光子薄膜の部分111である。ここで、同じ部分412の対向する側の部分111は間隔Λ412で分離し、隣接する部分412の側に面する部分111は幅Λ415を有する隙間415で分離し、この隙間はΛ412と同じ、又は異なってよい。Λ412がΛ415と異なる実施形態では、部分111から形成される回折格子の周期Λは、Λ111+Λ412及びΛ111+Λ415の平均と考えられる。この回折格子の厚さはd415と同じである。
【0094】
任意選択的に、部分412は選択的にエッチング除去可能で、自立構造の回折格子部分111を残すことができる。
【0095】
既存の回折格子構造の側壁上に材料を堆積させることによって回折格子を形成させる方法は、2006年の8月15日出願の「パターン化された構造を形成するための方法」と題した米国仮特許出願第60/837,829中に説明されており、この内容の全てを本明細書に援用する。
【0096】
次に、いくつかの模範的な構造の理論的な性能に移ると、図6は、37nmの幅及び150nmの厚さを備え、148nmの周期を有する溶融シリカの回折格子で構成される偏光子薄膜に対して、波長(水平軸)の関数として、透過率(左の軸)及び減衰比(右の軸、コントラストと呼ばれる)のプロットを示す。シリカ回折格子部分のそれぞれの壁は、10nmのTiO2層を有する。図6に見ることができるように、この回折格子は、約300nmの波長において約63dBの減衰比のピークを有する。この波長での透過率は、通過状態の放射光の透過率であるが、約60%である。
【0097】
他の例として、図7は、42nmの幅及び150nmの厚さを備え、148nmの周期を有する溶融シリカの回折格子で構成される偏光子薄膜に対して、波長(水平軸)の関数として、透過率(左の軸)及び減衰比(右の軸、コントラストと呼ばれる)のプロットを示す。シリカ回折格子部分のそれぞれの壁は、10nmのタングステン層を有する。図7に見ることができるように、この回折格子は、約240nmの波長において約44dBの減衰比のピークを有する。この波長での通過状態の透過率は約35%である。
【0098】
さらなる例では、図8は、42nmの幅及び150nmの厚さを備え、148nmの周期を有する溶融シリカの回折格子で構成される偏光子薄膜に対して、波長(水平軸)の関数として、透過率(左の軸)及び減衰比(右の軸、コントラストと呼ばれる)のプロットを示す。シリカ回折格子部分のそれぞれの壁は、10nmのアモルファスシリコンを有する。図8に見ることができるように、この回折格子は、約330nmの波長において約36dBの減衰比のピークを有する。この波長での通過状態の透過率は約70%である。
【0099】
さらなる例として、図9は、42nmの幅及び150nmの厚さを備え、148nmの周期を有する溶融シリカの回折格子で構成される偏光子薄膜に対して、波長(水平軸)の関数として、透過率(左の軸)及び減衰比(右の軸、コントラストと呼ばれる)のプロットを示す。シリカ回折格子部分のそれぞれの壁は、10nmのGaP層を有する。図9に見ることができるように、この回折格子は、約250nmの波長において約50dBの減衰比のピークを有する。この波長での通過状態の透過率は約38%である。
【0100】
図6〜9のデータはGソルバー(GSolver)ソフトウェア(テキサス州アレンのグレイティングソルバデベロップメントカンパニー(Grating Solver Development Company)から市販されている)を使用して作成した。図5〜8に対応する例のための材料全てに対する屈折率データ(屈折率の実数部及び虚数部の両方とも)は、このソフトウェア付属のデータベースから取得した。このデータベースは、「Handbook of Optical Constants of Solids」(全5巻)(ハードカバー版)、エドワード D. パリック(Edward D.Palik)編、アカデミックプレス(Academic Press)出版による。
【0101】
前述したように、実施形態のいくつかでは、回折格子層及び/又は他の層のある部分は原子層堆積(ALD)を使用して調整される。例えば、図10Aを参照すると、例えば、ナノ積層物多層薄膜を備える中間物品901上に材料を堆積させるためにALDシステム900が使用される。ナノ積層物多層薄膜の堆積は単分子層ずつ起こり、薄膜の組成及び厚さを実質的に制御する。単分子層の堆積中にプリカーサの蒸気がチャンバ内に導入され、物品901の露出された表面、又はこれらの表面に隣接する前もって堆積された単分子層の上に吸着される。続いて、吸着されたプリカーサと化学的に反応する反応物がチャンバ内に導入され、所望の材料の単分子層を形成する。表面上の化学反応の自己抑制性は、薄膜厚さ、及び堆積された層の広範囲な均一性を正確に制御可能とする。さらに、露出されたそれぞれの表面上へのプリカーサの無方向性吸着は、チャンバBに対する表面の配向に係わらず、露出された表面上へ材料を均一に堆積させる。従って、ナノ積層物薄膜の層は中間物品901の溝の形状に適合する。
【0102】
ALDシステム900は、マニフォールド930を介して供給源950、960、970、980、及び990に接続される反応チャンバ910を含む。供給源950、960、970、980、及び990は、それぞれ供給ライン951、961、971、981及び991を介してマニフォールド930に接続される。弁952、962、972、982、及び992は、それぞれ供給源950、960、970、980、及び990からのガスの流れを調節する。供給源950及び980は、それぞれ第1と第2のプリカーサを収容し、一方、供給源960及び990は、それぞれ第1の試薬と第2の試薬を含む。供給源970はキャリアガスを収容し、キャリアガスは堆積工程中チャンバ910を通して絶えず流されてプリカーサ及び試薬を物品901に移送し、一方で、反応副生成物を基板から除去して移送する。プリカーサ及び試薬は、マニフォールド930中でキャリアガスと混合することによって、チャンバ910内に導入される。ガスは排出口945を介しチャンバ910から排出される。ポンプ940は、排出口945を介しチャンバ910からガスを排出する。ポンプ940はチューブ946を介し排出口945に接続される。
【0103】
ALDシステム900は、チャンバ910の温度を制御する温度制御装置995を含む。堆積中に、温度制御装置995は、物品901の温度を室温よりも上に上昇させる。一般に、温度は十分に高くして、プリカーサと試薬との間の迅速な反応を促進する必要があるが、基板を損傷させてはならない。実施形態のいくつかでは、物品901の温度は、約500℃以下でよい(例えば、約400℃以下、約300℃以下、約200℃以下、約150℃以下、約125℃以下、約100℃以下)。
【0104】
一般に、温度は、物品901の異なる部分の間で著しく変化してはならない。温度変化が大きいと、基板の異なる部分でプリカーサと試薬との間の反応速度を変化させ、厚さ及び/又は堆積された層の形態を変化させる場合がある。実施形態のいくつかでは、堆積表面の異なる部分の間の温度は、約40℃以下で変化してよい(例えば、約30℃以下、約20℃以下、約10℃以下、約5℃以下)。
【0105】
堆積工程パラメータは、電子制御装置999によって制御され同期される。電子制御装置999は、温度制御装置995、ポンプ940、及び弁952、962、972、982、及び992と通信する。電子制御装置999は、また、ユーザインターフェースを含み、これによって操作者は堆積工程パラメータを設定し、堆積工程を監視し、それ以外にも、システム900と対話することができる。
【0106】
図10Bを参照すると、ALD工程が開始(1005)すると、システム900は、供給源970からのキャリアガスと混合することによって、供給源950から第1のプリカーサをチャンバ910に導入する(1010)。第1のプリカーサの単分子層が物品901の露出された表面上に吸着され、チャンバを通るキャリアガスの連続流によって、残余プリカーサはチャンバ910からパージされる(1015)。次に、システムは供給源960から第1の試薬を、マニフォールド930を介してチャンバ910に導入する(1020)。第1の試薬は第1のプリカーサの単分子層と反応し、第1の材料の単分子層を形成する。第1のプリカーサについては、キャリアガスの流れが残余試薬をチャンバからパージする(1025)。第1の材料の層が所望の厚さに到達するまで、ステップ1010から1025までが繰り返される(1030)。
【0107】
薄膜が材料の単一層である実施形態では、この工程は、第1の材料の層が所望の厚さに到達すると終了する(1035)。しかし、ナノ積層物薄膜に対しては、システムは、マニフォールド930を通してチャンバ910内に第2のプリカーサを導入する(1040)。第2のプリカーサの単分子層が、第1の材料の堆積された層の露出された表面上に吸着され、キャリアガスが残余プリカーサをチャンバからパージする(1045)。次に、システムは供給源990から第2の試薬を、マニフォールド930を介してチャンバ910に導入する。第2の試薬は第2のプリカーサの単分子層と反応し、第2の材料の単分子層を形成する(1050)。チャンバを通るキャリアガスの流れは残余試薬をパージする(1055)。第2の材料の層が所望の厚さに到達するまで、ステップ1040から1055までが繰り返される(1060)。
【0108】
ステップ1040から1055までを繰り返すことによって、第1と第2の材料のさらなる層が堆積される。所望の数の層が形成されると(例えば、溝が充填され、及び/又はキャップ層が所望の厚さを有する)、工程は終了し(1070)、被覆された物品はチャンバ910から取り出される。
【0109】
プリカーサは、上述した工程中のそれぞれのサイクル中で、試薬の前にチャンバ内に導入されるが、他の例では、試薬がプリカーサの前に導入されることもある。プリカーサと試薬が導入される順番は露出された表面との相互作用に基づき選択できる。例えば、プリカーサと表面との間の結合エネルギが試薬と表面との間の結合エネルギよりも高い場合には、プリカーサは試薬の前に導入してよい。別法として、試薬の結合エネルギがより高い場合には、試薬はプリカーサの前に導入してよい。
【0110】
それぞれの単分子層の厚さは、一般に、多くの要因に依存する。例えば、それぞれの単分子層の厚さは、堆積される材料の型に依存し得る。より大きな分子で構成される材料は、より小さな分子で構成される材料と比べて、より厚い単分子層をもたらすことがある。
【0111】
物品の温度も、また、単分子層の厚さに影響を与え得る。例えば、いくつかのプリカーサに対しては、より高い温度は、堆積サイクル中に表面上へのプリカーサの吸着を減少させ、基板の温度がもっと低ければ形成したであろう厚さよりも、より薄い単分子層をもたらすことがある。
【0112】
プリカーサ及び試薬の投入量と同様に、プリカーサの型及び試薬の型も、単分子層の厚さに影響することがある。実施形態のいくつかでは、材料の単分子層が特定のプリカーサと共に堆積可能であるが、しかし、試薬が異なれば、それぞれの組み合わせに対して異なる単分子層の厚さをもたらす。同様に、異なるプリカーサから形成された材料の単分子層は、これら異なるプリカーサに対して異なる単分子層の厚さをもたすことがある。
【0113】
単分子層の厚さに影響し得る他の要因の例には、パージ期間、被覆された表面でプリカーサの滞留時間、反応器内の圧力、反応器の物理的な形状、堆積された材料上の副生成物からのあり得る影響を含む。副生成物が薄膜の厚さに影響する例には、副生成物が堆積された材料をエッチングする場合がある。例えば、HClは、TiCl4プリカーサ及び水を試薬として使用してTiO2を堆積させる場合の副生成物である。HClは排出される前にTiO2をエッチングし得る。エッチングは堆積された単分子層の厚さを減少させるであろうし、基板のある部分が他の部分よりも、HClにより長く曝露される場合には、単分子層の厚さが基板上で変化することが起こり得る(例えば、排出部に近い基板の部分は排出部から遠い基板の部分よりも副生成物により長く曝露され得る)。
【0114】
典型的に、単分子層の厚さは約0.1nmと約5nmの間である。例えば、一つ又は複数の堆積された単分子層の厚さは約0.2nm以上であろう(例えば、約0.3nm以上、約0.5nm以上)。実施形態のいくつかでは、一つ又は複数の堆積された単分子層の厚さは約3nm以下であろう(例えば、約2nm、約1nm以下、約0.8nm以下、約0.5nm以下)。
【0115】
堆積された単分子層の平均の厚さは、基板上に予め設定された数の単分子層を堆積させ、材料の層を形成させることによって、決めることができる。続いて、堆積された層の厚さが測定される(例えば、偏光解析法、電子顕微鏡、又は他のいくつかの方法によって)。次に、堆積された単分子層の平均の厚さは、測定された層の厚さを堆積サイクルの数で割って決定することができる。堆積された単分子層の平均の厚さは、理論的な単分子層の厚さに対応するかも知れない。理論的な単分子層の厚さは、単分子層を構成する分子の特性寸法を指し、材料の体積密度及び分子の分子量から計算することができる。例えば、SiO2の単分子層の厚さの推定値は約0.37nmである。この厚さは立方センチメートル当たり2.0グラムの密度のアモルファスSiO2の式単位の立方根として推定される。
【0116】
実施形態のいくつかでは、堆積された単分子層の平均の厚さは、理論的な単分子層の厚さの分数(例えば、理論的な単分子層の厚さの約0.2倍、理論的な単分子層の厚さの約0.3倍、理論的な単分子層の厚さの約0.4倍、理論的な単分子層の厚さの約0.5倍、理論的な単分子層の厚さの約0.6倍、理論的な単分子層の厚さの約0.7倍、理論的な単分子層の厚さの約0.8倍、理論的な単分子層の厚さの約0.9倍)に対応し得る。別法として、堆積された単分子層の平均の厚さは、約30倍まで、理論的な単分子層の厚さの1倍より多く(例えば、理論的な単分子層の厚さの約2倍以上、理論的な単分子層の厚さの約3倍以上、理論的な単分子層の厚さの約5倍以上、理論的な単分子層の厚さの約8倍以上、理論的な単分子層の厚さの約10倍以上、理論的な単分子層の厚さの約20倍以上)に対応し得る。
【0117】
堆積工程中で、チャンバ910内の圧力は、実質的に一定の圧力に維持、又は、変化させてよい。一般に、チャンバを通るキャリアガスの流量を制御すると、圧力が制御される。一般に、プリカーサが表面を化学吸着された物質で飽和させ、試薬がプリカーサによって残された表面物質と完全に反応し、プリカーサの次のサイクルのために反応サイトを空けることが可能なように、圧力は十分に高い必要がある。プリカーサ及び/又は試薬の投入量が少なすぎる、及び/又は、ポンプ速度が速すぎる場合に起こり得るが、チャンバ圧力が低すぎる場合には、表面はプリカーサによって飽和せず、反応は自己抑制的にならないだろう。これによって、堆積された層の厚さが不均一になる場合がある。さらに、チャンバ圧力は、プリカーサと試薬との反応によって発生した反応生成物の除去を阻害するような高さではいけない。次のプリカーサの投入量がチャンバ内に導入された際に、残余副生成物は表面の飽和を妨害し得る。実施形態のいくつかでは、チャンバ圧力は約0.01トルと約100トルとの間(例えば、約1トル等、約0.1トルと約20トルとの間、約0.5トルと約10トルとの間)に維持される。
【0118】
一般に、それぞれのサイクル中に導入されるプリカーサ及び/又は試薬の量は、チャンバの大きさ、露出される基板表面の面積、及び/又はチャンバ圧力に従って選択可能である。それぞれのサイクル中に導入されるプリカーサ及び/又は試薬の量は実験的に決定可能である。
【0119】
それぞれのサイクル中に導入されるプリカーサ及び/又は試薬の量は、弁952、962、982、及び992の開閉のタイミングによって制御可能である。導入されるプリカーサ又は試薬の量は、それぞれのサイクルでそれぞれの弁が開く時間の量に対応する。十分なプリカーサを導入して基板表面に適切な単分子層の被覆を得るために、弁は十分長く開いている必要がある。同様に、それぞれのサイクル中当たり導入される試薬の量は、露出された表面上に堆積された実質的に全てのプリカーサと反応するために十分な必要がある。必要以上のプリカーサ及び/又は試薬を導入すると、サイクル時間及び/又はプリカーサ及び/又は試薬の無駄を増加させ得る。実施形態のいくつかでは、プリカーサの投入量は、それぞれのサイクル当たり適切な弁を約0.1秒と約5秒との間(例えば、約0.2秒以上、約0.3秒以上、約0.4秒以上、約0.5秒以上、約0.6秒以上、約0.8秒以上、約1秒以上)開くことに対応する。同様に、試薬の投入量は、それぞれのサイクル当たり適切な弁を約0.1秒と約5秒との間(例えば、約0.2秒以上、約0.3秒以上、約0.4秒以上、約0.5秒以上、約0.6秒以上、約0.8秒以上、約1秒以上)の開くことに対応する。
【0120】
プリカーサ投入と試薬投入との間の時間はパージに対応する。それぞれのパージの期間は、残余プリカーサ又は試薬をチャンバから除去するに十分長い必要があるが、これよりも長い場合には、利点なしにサイクル時間を増加させることになり得る。それぞれのサイクル中において、異なるパージの期間は、同じでも又は変わってもよい。実施形態のいくつかでは、パージの期間は約0.1秒以上である(例えば、約0.2秒以上、約0.3秒以上、約0.4秒以上、約0.5秒以上、約0.6秒以上、約0.8秒以上、約1秒以上、約1.5秒以上、約2秒以上)。一般に、パージの期間は約10秒以下である(例えば、約8秒以下、約5秒以下、約4秒以下、約3秒以下)。
【0121】
導入する継続的なプリカーサ投入と投入との間の時間はサイクル時間に対応する。異なる材料の単分子層を堆積させるサイクルに対して、サイクル時間は、同じ又は異なってよい。さらに、異なるプリカーサ及び/又は異なる試薬を使用するが、同じ材料の単分子層を堆積させるサイクルに対して、サイクル時間は、同じ又は異なってよい。実施形態のいくつかでは、サイクル時間は約20秒以下でよい(例えば、約15秒以下、約12秒以下、約10秒以下、約8秒以下、約7秒以下、約6秒以下、約5秒以下、約4秒以下、約3秒以下)。サイクル時間を減少させると、堆積工程の時間を減少させ得る。
【0122】
プリカーサは、一般に、ALD工程と適合し、試薬と反応すると所望の堆積材料をもたらすように選択される。さらに、プリカーサ及び材料は、これらが堆積する材料(例えば、基板材料、又は先に堆積された層を形成する材料)と適合する必要がある。プリカーサの例は、TiCl4、SiCl4、SiH2Cl2、TaCl3、HfCl4、InCl3及びAlCl3等の塩化物(例えば、金属塩化物)を含む。実施形態のいくつかでは、プリカーサとして有機化合物が使用可能である(例えば、Tiエトキシド、Taエトキシド、Nbエトキシド)。有機化合物プリカーサの他の例は、(CH33Alである。SiO2堆積に対しては、例えば、適するプリカーサには、トリス(第3ブトキシ)、トリス(第3ペントキシ)シラノール、又はテトラエトキシシラン(TEOS)を含む。
【0123】
試薬は、また、一般に、ALD工程と適合するように選択され、プリカーサ及び材料の化学性質に基づき選択される。例えば、材料が酸化物の場合、試薬は酸化剤でよい。適する酸化剤の例には、水、過酸化水素、酸素、オゾン、(CH33Al、及び種々のアルコール(例えば、エチルアルコール(CH3OH))を含む。例えば、TiCl4を酸化してTiO2を得る、AlCl3を酸化してAl23を得る、及び、Taエトキシドを酸化してTa25を得る、Nbエトキシドを酸化してNb25を得る、HfCl4を酸化してHfO2を得る、ZrCl4を酸化してZrO2を得る、及びInCl3を酸化してIn23を得る等、プリカーサを酸化するために、水は適する試薬である。それぞれの場合で、HClが副生成物として生成される。実施形態のいくつかでは、シラノールを酸化してSiO2を得るために、(CH33Alが使用可能である。
【0124】
模範的な偏光子薄膜の光学性能データを図11Aに示す。特に、図11Aは、溶融シリカ基板によって支持される148nmの周期を有する溶融シリカの回折格子で構成される偏光子薄膜に対して、波長(水平軸)の関数として、透過率(左の軸)及び減衰比(右の軸、コントラストと呼ばれる)のプロットを示す。シリカ回折格子部分のそれぞれの壁は、10nmのTiO2層を有する。TiO2の堆積の前に、シリカ回折格子部分は55nmの幅及び150nmの厚さを有した。300℃でALDを使用し、引き続き、反応性イオンエッチングによってエッチングして(5sccmのCF4、0.5sccmのO2のガス流、8mトルの圧力、100Wの出力でプラズマサーム(Plasma Therm)720装置を使用して)、TiO2層がシリカ回折格子上に堆積された。図11Aに見ることができるように、この回折格子は、約265nmの波長において約50の減衰比のピークを有する。この波長での通過状態の透過率は約50%である。
【0125】
他の模範的な偏光子薄膜の光学性能データを図11Bに示す。ここで、偏光子薄膜は、始めに溶融シリカ基板上に犠牲アルミニウム回折格子を形成することによって形成された。このアルミニウム回折格子は148nmの周期、37nmの線幅、及び200nmの深さを有した。300℃でALDを使用し、引き続き、反応性イオンエッチングによってエッチングして(5sccmのCF4、0.5sccmのO2のガス流、8mトルの圧力、100Wの出力でプラズマサーム(Plasma Therm)720装置を使用して)、20nm厚さのTiO2薄膜がアルミニウム回折格子上に堆積された。引き続き、KOH中で2分間のウェットエッチングによって、アルミニウム回折格子がエッチング除去された。別法として、例えば、Cl2/BCl3,を使用する反応性イオンエッチングを使用してアルミニウム回折格子をエッチングしてよい。アルミニウム回折格子を除去するために使用されるエッチング方法はアルミニウム回折格子を形成するために使用される方法と同じでよい。アルミニウム回折格子をエッチングすると、自立構造のTiO2が残る。図11Bに見ることができるように、この回折格子は、約265nmの波長において約1,600の減衰比のピークを有する。この波長での通過状態の透過率は約60%である。
【0126】
一定の実施形態を説明してきたが、一般に、他の直線偏光子構造もまた可能である。例えば、図1A図1B図2図3Aから図3D、及び図4は偏光子薄膜の種々の構成を示しているが、他の実施形態では、さらなる、又はより少ない層を含んでよい。例えば、実施形態のいくつかでは、偏光子はさらなる反射防止薄膜(例えば、基板層140と偏光子薄膜300中のエッチング停止層310との間)を含み得る。実施形態は、また、ハードコート層(例えば、ハードコート高分子)等の、保護層を含んでもよい。
【0127】
長方形の回折格子形状を有する回折格子層を含む偏光子の実施形態を説明してきたが、他の実施形態もまた可能である。例えば、実施形態のいくつかでは、回折格子層は正弦波形状等の曲線形状を有する。別法として、回折格子層は三角形形状、鋸歯形状、台形形状を有してよい。さらに、一般に、回折格子層の形状は、製造工程に関連する不完全性により、その指定された形状(例えば、長方形、三角形、台形)からわずかに変化する場合がある。
【0128】
さらに、偏光子の回折格子層内の回折格子周期は一定として説明してきたが、実施形態のあるものでは、回折格子周期は変化する場合がある。実施形態のいくつかでは、回折格子層部分の形状は非周期的に配列可能である。
【0129】
本明細書に説明したもの等の偏光子薄膜は、受動光学装置(例えば、偏光装置)及び能動光学装置(例えば、液晶表示装置)を含み、光学装置内に一体化可能である。偏光子薄膜は装置内に一体化し、モノリシック構造の装置を提供可能であり、又は、装置の他の部品から分離して配列可能である。
【0130】
実施形態のあるものでは、偏光子薄膜は基板に偏光したUV放射光を供給する用途に使用可能である。図12を参照すると、UV露光システム1200は、UV発生源1210、偏光子薄膜1220、及び、UV発生源1210からの放射光を受けるために、基板1240を位置決めするように構成された基板支持部1230を含む。発生源1210から放射された放射光1211は偏光子薄膜1220を通過し、基板1240に配光された偏光した放射光1212として現れる。任意選択的に、システム1200は、発生源1210と偏光子薄膜1220との間、及び/又は、偏光子薄膜1220と基板1240との間に、光学要素を含んでよい。光学要素は、発生源1210による基板の照明を制御(例えば、均質化)するために使用可能である。例として、実施形態のいくつかでは、UV露光システム1200は、例えばLCDパネルの表面上の、液晶整列層を露光するために使用可能である。
【0131】
他の例として、偏光子薄膜は、ウェハ又はLCD基板上のレジスト層を露光するUV放射光を利用するフォトリソグラフィ露光装置に使用可能である。
【0132】
UV偏光子は、また、ウェハ検査用計測システム(例えば、カリフォルニア州サンホセのKLAテンコア(KLA−Tencor)から入手可能なサーフスキャン(Surfscan)システムのような、市販の計測システム)に使用可能であり、ここでは、ウェハを照明しウェハから反射した光を検出するために、狭帯域UV光(例えば、約266nmの)及び/又は広帯域UV光(例えば、約240nmから約450nmまで)が使用される。ウェハについての情報は反射した光に基づき決定可能である。UV偏光子は、入射照明光を偏光させる、及び/又は、反射した照明光を分析するために使用可能であり、これによって、ウェハについての偏光依存の情報を提供する、及び/又は、非偏光を利用するシステムに対してシステムの解像度を増大する。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10-A】
図10-B】
図11-A】
図11-B】
図12