【実施例】
【0036】
以下に本発明の好適な実施の形態について図を参照して説明する。本発明は対象が高速移動または静止する物体であり、該物体を含むレーダ、超音波、光学カメラ受信信号から、該物体を抽出する技術に関するものである。そしてその手段として、走査範囲を幾つかの小さな領域に分割し、各分割エリア内での前記物体の移動ベクトル、ターゲットの存在指標といったパラメータから、最適なスキャン相関処理パラメータを決定し処理を行う方法をとっている。
【0037】
本発明の一実施例を
図1に示す。レーダ、超音波、光学カメラの信号受信部1から逐次送られてくるビデオ信号はスキャン毎、複数スキャン画像メモリ2に記憶される。続いて、スキャン毎の画像を小区画領域に分け、領域毎に内部に存在すると思われるターゲットの移動ベクトルを移動ベクトル算出部3によって算出する。移動ベクトル算出部3で得られるターゲットの移動履歴より、ターゲットが存在する可能性を示す指標をターゲット指標算出部4によって算出し、また領域内のクラッタレベルをクラッタレベル算出部5によって求める。その後領域毎にスキャン相関処理部6によってスキャン相関画像を作成し、結果をスキャン相関画像メモリ7に記憶する。最後に表示部8によってスキャン相関画像を表示する。
【0038】
次にスキャン相関処理の入力パラメータである、移動ベクトル、ターゲット指標、クラッタレベルの各算出部について説明する。
図3に移動ベクトル算出部3の内部構成を示す。移動ベクトル算出部3への入力信号は、複数スキャン画像メモリ2に蓄えられた信号のうちの小区画領域内信号であり、インデックスx、y、tを用いてA
xytと表す。ここでAは信号受信部から送られてくる信号を示し、x、yはそれぞれ小区画領域内画像のx座標、y座標の番号、tはスキャン番号を示すものとする。この三次元データA
xyt内に移動ターゲットがあるとすれば、それぞれのスキャン毎のターゲットの位置をつなぎ合わせると三次元空間上で直線となる。この直線を検出できればターゲットの移動を検出することができる。
【0039】
三次元空間上の直線を検出するために、三次元フーリエ変換処理部3aによって周波数空間上に変換を行う。つまりA
xytをA’
ijkに変換する。ここでi、j、kはそれぞれx、y、tに対応する周波数空間上のインデックスである。元の空間で直線であるものは周波数空間上で原点を通る平面に変換される。一方、クラッタのようなランダムな信号は空間周波数上でもランダムに広がって存在するため、空間周波数上ではターゲットとクラッタの識別がしやすくなる。
【0040】
続いて二乗検出部3bによって複素数信号を二乗振幅に変換し、平面検出部3cによって周波数空間上の平面を検出する。ここで平面検出方法の一例としてはそれぞれのi、jにおいてA’
ijkの二乗振幅が最大となるk以外の点を0でマスクする。これによってクラッタ信号の影響を取り除き、ターゲット信号が含まれる平面のみを抽出する。
【0041】
平面検出後、逆フーリエ変換処理部3dによってもとの空間上に信号を変換する。周波数空間上における平面は元の空間では直線となる。また周波数空間上で二乗検出を行ったため、原点を通る直線となる。この直線は最新スキャン時刻を基準としたターゲットの移動履歴を示す。よってそれぞれの直線がt平面と交わる位置を求めることによって、ターゲットの移動履歴がわかる。よって二乗検出部3eにより二乗検出を行った後、それぞれのtにおける最大値をとるx,y(それぞれx
t、y
tと表す)を最大値検出部3fによって求める。
【0042】
ここでx
0,y
0は最新スキャン時刻を基準にした最新スキャン時刻におけるターゲットの位置であり、必ず0となる。続いてx
1,y
1は最新スキャン時刻からみた一つ前のスキャン時のターゲットの移動量となる。x
2,y
2以降も同様となる。移動ベクトル算出部は考慮したスキャン数Nだけの移動ベクトルx
0、x
1、、、x
N-1、y
0、y
1、、、y
N-1を出力する。
【0043】
次にターゲット指標算出部4について説明する。移動ベクトル算出部3によって求めた小区画領域内のターゲットの移動履歴であるが、実際はこの中にターゲットが存在するとは限らない、もし仮に小区画領域内にノイズやクラッタなどのランダムな信号しか存在しなかったとすると、最終的に出力される過去の移動履歴は規則的に変化せずにランダムな値をとる。よって移動履歴の直線性を算出することによって小区画領域内にターゲットが存在するかを示す指標を得ることができる。ターゲット指標を算出する一例として以下のように指標を計算する。
【0044】
【数4】
【0045】
この指標は0から1の間の値をとり、値が大きいほどターゲットが存在する可能性が高くなる。
【0046】
最後にクラッタレベル算出部5では小区画領域内におけるクラッタレベルを算出する。算出例としてはセルアベレジングや順序統計量によって求める。
【0047】
以上より求めた、移動ベクトル、ターゲット指標、クラッタレベルから、どのようにスキャン相関処理パラメータを決定するかを以下で説明する。スキャン相関処理部6内にある適応重み係数重み乗算部6aの構成図を
図4に示す。これはスキャン相関処理において最新スキャン画像の重み係数を算出する機能を持つ。重み係数はしきい値制御部6aaがターゲット指標TPとあるしきい値を比較し、その結果を受けて重み係数決定部6abが以下のように決定する。
【0048】
【数5】
【0049】
最終的に乗算回路6acによって、小区画領域内の最新スキャン画像内のピクセルに重み係数を乗算したものが出力される。
【0050】
次にスキャン相関処理部6内の適応重み係数乗算・位置補正処理部6bの構成図を
図5に示す。これはスキャン相関処理においてスキャン相関画像メモリの重み係数を算出する機能を持つ。小区画領域内の各ピクセルの重み係数は以下のように決定される。しきい値制御器6baが最新スキャン画像信号A
tおよびスキャン相関画像メモリ信号の振幅B
t−1をクラッタレベルCL
1、CL
2とそれぞれ比較し、ターゲット指標TPをあるしきい値と比較する。この結果を受けて重み係数決定部6bbが以下のように重み係数を決定する。
【0051】
【数6】
【0052】
また位置補正処理部6bcはしきい値制御6baの結果および移動ベクトル算出部3の出力値によって、スキャン相関画像メモリの各ピクセルの位置を補正する。ピクセルx方向、y方向の位置補正量(それぞれd
x、d
yとする)は以下のように決められる。
【0053】
【数7】
【0054】
最終的にスキャン相関処理部6は上記二つの重み係数を乗算した結果を足し合わせ出力する。従来のスキャン相関方法の重み係数算出方法、数2、数3と異なるのはターゲット指標による条件式である数5(2)および数6(1)を加えたことである。これによってクラッタであると判断されたピクセルにおいては従来以上に信号が抑圧される効果を生んでいる。もう一つ従来と異なる点として、数7においてターゲットであると判断されたピクセルにおいては、ターゲットの移動量分の位置補正を行うことによって、移動ターゲットにおいても信号を抑圧することなくスキャン相関処理が可能となっている。