【実施例】
【0013】
次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。
【0014】
図3にレースウェイ模擬燃焼実験装置を示す。炉は、下部炉5と中部炉6からなり、試験終了後の下部炉5の炉内容物のサンプリングの便宜のため、中部炉6は、取り外し可能である。コークスは、中部炉6の上部より装入される。コークスと、下部炉の羽口7から吹き込まれたCOG、LNG、又は、水素ガス等の還元性ガスは、羽口前レースウェイ8で燃焼する。燃焼試験中は、羽口前レースウェイ8の温度を測定し、試験終了後は、レースウェイの解体調査を行い、微粉炭の未燃チャーを調べる。
図4にレースウェイ模擬燃焼実験装置の温度計の配置を示す。(A)は側面図、(B)は平面図を示す。温度計9は、上下2段の合計10箇所を測定する。
(実施例1)
メタン及び水素から成る還元性ガスを羽口から吹き込む実験を行った。吹き込みの条件を表1に示す。比較例1(A)は、送風のみで、還元性ガス吹き込みが無い場合である。比較例2(B)は、送風ブローパイプの中にあるガス吹き込み単管から還元性ガスを吹き込む場合である。実施例1(C)は、本願請求項1に係る発明の3重管により、還元性ガスを吹き込む場合である。
実施例1(C)では、
図2に示す還元性ガス吹き込みの3重
管ランスを用いた。中心部管1から還元性ガス、中間部管2から窒素、外周部管3から酸素富化した空気を吹き込んだ。
【0015】
【表1】
【0016】
図5に羽口前レースウェイの温度を示す。
まず、比較例1(A)について述べる。比較例1(A)で、酸素富化した送風によりコークスだけを燃焼させる場合は、次の反応が起きる。
C+O
2→CO
2 (1)
CO
2+C→2CO (2)
コークスは、(1)式の発熱反応により燃焼し、燃焼による発熱でレースウェイ内のガス温度が上昇する。O
2がほとんどなくなると(2)式の吸熱反応が起こって温度が低下するが、この反応は、比較的緩やかに起こる。その結果、
図5のAに示すレースウェイ内の温度が測定された。
【0017】
次に、比較例2(B)について述べる。比較例2(B)の、還元性ガス(CH
4,H
2)をガス吹き込み単管により羽口先端位置に吹き込んだ場合、前記(1)式、(2)式の他に、次の反応が起きる。
CH
4+2O
2→CO
2+2H
2O (4)
H
2+1/2O
2→H
2O (5)
H
2O+C→H
2+CO (3)
CH
4+CO
2→ CO+2H
2 (6)
吹き込まれたCH
4、H
2ガスは、コークスの燃焼に先行して、(4)式、(5)式の反応により燃焼発熱し、その後、(1)式によるコークスの燃焼も加速して高温になる。レースウェイ内の最高温部は、早期に燃焼する還元性ガスにより、比較例1(A)の場合よりも羽口側に移動する。最高温部より先のレースウェイ奥側では、(2)式、(3)式の吸熱反応が開始する。(2)式、(3)式の反応で生成した還元性ガス(CO,H
2)およびレースウェイで昇温されたN
2ガスは、(2)式、(3)式が吸熱反応であること、燃焼生成ガスから周囲のコークスに伝熱すること及び炉壁からの熱損失によりガス温度は低下していく。その結果、
図5のBに示すレースウェイ内の温度が測定された。
【0018】
次に、実施例1(C)について述べる。本発明の3重管(
図2参照)を使って還元性ガスを吹き込み、送風した。3重管の中間部管2から窒素ガスを10NM
3/HR吹いているため、送風中のN
2が10NM
3/HR少なくなるように送風量を調整し、送風中のO
2量がA,Bと同じになるように酸素富化率を調整した。また、3重管ランスの中央管から吹き込んでいる窒素ガスは常温のため、送風顕熱を維持するように送風温度を高めた。
中心部管1から吹き込まれた還元性ガス(CH
4,H
2)は、中間部管2から吹き込まれた窒素ガスにより、外周部管3から吹き込まれた酸素富化空気(熱風)との接触が妨げられ燃焼が遅れる。その結果、コークスと酸素富化空気(熱風)の燃焼が先行し、比較例1(A)に近い温度分布となる。一部の吹き込みガスが酸素富化空気と反応するのでわずかに比較例1(A)から比較例2(B)のパターンに近づくが、比較例2(B)に比べると最高温部はかなり奥側に戻り、レースウェイ奥での温度降下も緩和されている。したがって、吹き込まれたH
2は多くが(5)式から(3)式の反応経路を経ることなく未反応のH
2のまま昇温し、CH
4は(4)式から(2)式、(3)式の経路を経ることなくレースウェイ奥側で(6)式の反応により還元性ガスになっていると考えられる。
このためガスからのヒートロスが少なくなり、ボッシュガス((2)式(6)式の反応で生成した還元性ガス(CO,H
2)および吹き込まれたH
2ガスおよびレースウェイで昇温されたN
2)の顕熱が多く確保できる。以上のことより、
図5のCに示すレースウェイ内の温度が測定された。
【0019】
(実施例2)
メタン及び水素から成る還元性ガスとPCを羽口から吹き込む実験を行った。吹き込みの条件を表2に示す。比較例3(D)は、PCのみの吹き込みであり、還元性ガス吹き込みが無い場合である。比較例4(E)は、送風ブローパイプの中にある2重管の内管からPCを、外管から還元性ガスを吹き込む場合である。実施例2(F)は、本願請求項2に係る発明の3重管により、還元性ガスを吹き込む場合である。
図2に示すPC及び還元性ガス吹き込みの3重
管ランスを用いた。中心部管1から還元性ガス、中間部管2から窒素、さらに外周部管3から酸素富化した空気を吹き込み、PCは、別のPC吹き込み単管から吹き込む。中心部管1から吹き込まれた還元性ガスは、外周部管3から吹き込まれた酸素富化した送風と、中間部管2から吹き込まれた窒素により遮断されているため、還元性ガスが早期に燃焼することは無い。従って、PCの燃焼は、還元性ガスにより送風中の酸素がとられることが無いため、還元性ガスに先行して行われると考えられる。
【0020】
【表2】
【0021】
図6に微粉炭及び還元性ガス吹き込み時のレースウェイ温度を示す。
【0022】
まず、比較例3(D)について述べる。比較例3(D)の微粉炭のみ吹き込んだ場合は、次の反応が起きる。
PC+XO
2→YCO
2+ZH
2O (7)
CO
2+C→2CO (8)
H
2O+C→H
2+CO (9)
まずPCは、(7)式の反応で燃焼し、発熱によりガス温度が上昇する。O
2がほとんどなくなると(8)式(9)式の吸熱反応が起こって温度が低下するが、この反応は、比較的緩やかに起こる。その結果、
図6のDに示すレースウェイ内の温度が測定された。
【0023】
次に、比較例4(E)について述べる。PCおよび還元性ガス(CH
4,H
2)を、2重管ランスで吹き込んだ場合、下記式の反応が起こる。
CH
4+2O
2→CO
2+2H
2O (10)
H
2+(1/2)O
2→H
2O (11)
吹き込まれた還元性ガス(CH
4、H
2)は、(10)式、(11)式の発熱反応で先行的に燃焼発熱し、(7)式によるPCの燃焼も加速して高温になる。レースウェイ内の最高温部は、比較例3(D)の場合よりも羽口側に移動する。最高温部より先のレースウェイ奥側では、(8)式、(9)式の吸熱反応が開始する。(8)式、(9)式の反応で生成した還元性ガス(CO,H
2)およびレースウェイで昇温されたN
2ガスは、(8)式、(9)式が吸熱反応であること、燃焼生成ガスから周囲のコークスに伝熱すること及び炉壁からの熱損失によりガス温度は低下していく。羽口からの距離が遠いレースウェイ奥側では比較例3(D)より温度が下がってしまう。その結果、
図6のEに示すレースウェイ内の温度が測定された。
また、実験終了後に装置を解体してレースウェイ奥(炉芯)のコークス部位に残っていた未燃チャーを採取した。
図7に微粉炭及び還元性ガス吹き込み時の未燃チャーの炉芯内残留量を示す。
比較例4(E)では、比較例3(D)に比べて多量の未燃チャーが残存していた。これは(10)式、(11)式の反応で酸素がガスの燃焼に先に消費されため、PCを燃やすための酸素が不足し、続いて起こる(8)式、(9)式の反応では、PC中のCより高温のコークスのCが先行して使われるため、PCのCが燃え残って炉芯に蓄積したものと推定される。
【0024】
次に、実施例2(F)について述べる。3重管ランスの中心部管1から窒素ガスを10NM
3/HR吹いているため、送風中のN
2が10NM
3/HR少なくなるように送風量を調整し、送風中のO
2量が比較例3(D)、比較例4(E)と同じになるように酸素富化率を調整した。また、3重管ランスの中心部管1から吹き込んでいる窒素ガスは常温のため、送風顕熱を維持するように送風温度を高めた。PC吹き込み単管4は、
図2に示すように2本を使用して3重管の外周部管3を通して吹き込んだ。この吹き込みを行った結果、
図6のFに示すレースウェイ内の温度が測定された。還元性ガス(CH
4,H
2)と酸素富化空気(熱風)は、間にある不活性な窒素により接触が妨げられて、PCは、外周部管3の酸素富化空気(熱風)と還元性ガスに先行して反応し、比較例3(D)に近い温度分布と成った。一部のガスが酸素富化空気と反応するのでわずかに比較例3(D)から比較例4(E)のパターンに近づくが、比較例4(E)に比べると最高温部はかなり奥側に戻り、レースウェイ奥での温度降下も緩和されている。
実験終了後に装置を解体してレースウェイ奥(炉芯)のコークス部位に残っていた未燃チャーを採取した。
図7に示す実施例2(F)のFに示す未燃チャーは、比較例4(E)のEに比べて少なく、ほぼ比較例3(D)のDに近い量であった。微粉炭の燃焼が還元性ガスに酸素を取られて妨げられることなく、燃焼できたことを示している。