【文献】
島野雄実、島野健仁郎,「体表面温度分布に基づく臍位脂肪量評価法の開発」」,肥満研究,日本,日本肥満学会,2011年 9月 1日,Vol.17 Supplement,p171
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、本発明を詳細に説明する。
本発明者らは、体型の違いによって体表面の体温が違うということに着目し、体表面の温度差は体脂肪の量に関連があるのではないか、と考えた。そして、体脂肪量と体表面温度との間に関連があるならば、体表面の温度データから脂肪量を求められる可能性があることに想到した。体表面の温度を測ることは簡便であるので、体表面温度から脂肪量を求められるならば、これは極めて有益である。そして、発明者らの鋭意研究により、熱伝導解析に基づいて体表面温度から人体の脂肪量を評価できることが分かった。
そこで、まず、熱伝導解析に基づいて人体の脂肪量を評価するという本発明の基本原理を説明する。
【0013】
(基本原理)
伝熱解析に基づいて人体腹部の臍位における脂肪量を評価する方法の基本原理を説明する。
人体のマクロな熱環境は、(A1)代謝に伴う発熱と、(A2)皮膚表面での冷却と、によって決定される。そして、人体の温度が時間的に大きく変動しないのは、代謝に伴う発熱(A1)と皮膚表面での冷却(A2)とがバランスしているからである。つまり、代謝に伴う発熱(A1)によって単位時間に一定量の熱が発生しているが、それと同量の熱が皮膚表面から除去される(A2による冷却)ので人体各部の温度が時間とともに変化することはないのである。
【0014】
次に体内の熱移動に着目する。
温度の高いところから低いところに向かって熱移動が起きるので、温度の高い体深部から温度の低い皮膚表面に向かって常に熱が移動している。人体内の熱移動は熱伝導によるものと血流の対流輸送によるものとを考えることができるが、本発明で測定対象とする腹部の臍位断面においては、熱伝導が支配的である。それは、腹部には、皮膚表面に向かって熱を輸送するような大血管が存在しないからである。
【0015】
温度差があると熱移動が起きる。熱移動が熱伝導による場合、温度勾配に比例した熱移動が起こる。
伝熱方向をxとすると、単位時間に単位面積を通じて移動する熱流束q [W/m
2]は、次の式(1)のように表される。
【0017】
ここに、比例定数λは[W/(m・K)]の次元をもつ熱伝導率である。λが小さければ小さいほど熱を通しにくい物質であるということができる。人体においては筋肉や皮膚の熱伝導率が約0.4 W/(m・K)であるのに対し、脂肪のそれは約0.2W/(m・K)と半分程度の値しかない。このように熱移動の妨げとなるものを熱抵抗と呼ぶ。
【0018】
脂肪のような熱抵抗が熱移動の経路上にあるとき、一定の熱流束を保つためには温度勾配dT/dxが増大することになる。温度勾配の増大は端的に次のような現象となって現れる。
【0019】
(B1)高温部の温度がさらに高くなる(いわゆる「熱がこもった」状態)。
(B2)低温部の温度がさらに低くなる。
【0020】
しかしながら、安静時の人体では、体深部温度がおおよそ38℃に保たれているので、脂肪が多く分布している場合には、上記の(B2)が主に起こり、低温部である皮膚表面の温度がさらに低下するという現象が起こる。
【0021】
また、脂肪量増加に伴って腹囲が増大するとともに、体深部と皮膚表面との距離が長くなるのが普通である。すると、これを補償するためにさらなる皮膚表面温度の低下が引き起こされる。温度差一定のままで距離だけが伸びると、温度勾配が低下してしまうからである。すなわち、脂肪量と皮膚表面温度とには相関があり、このことから脂肪量を測定することが可能となる。
【0022】
以上のことをまとめると、本発明における重要な着目点は、
(C1)体深部から皮膚表面に常に一定量の熱移動が起きていること、
(C2)内臓脂肪が熱抵抗となること、
(C3)体深部温度がほぼ一定であること、
の3点である。
【0023】
(脂肪量評価法の前提となる熱伝導解析)
次に、脂肪量評価法の前提となる熱伝導解析について説明を加える。
上記では、熱が一方向(x方向)に移動することを前提として、熱抵抗の影響について述べた。実際の人体における熱の流れは一次元的ではなく、熱は、x、y、zの各方向に移動することができるので、温度分布も熱流束分布も複雑になる。また、体深部で発生した熱が皮膚表面に至るまでにたどる経路も脂肪量の大小によって違ってくる。しかしながら、脂肪量の大小が皮膚表面温度分布の違いとなって現れる点については一次元の場合と同様である。
【0024】
よって本発明では、次に示す定常熱伝導方程式を数値的に解くことによって人体内部の温度分布と熱流束ベクトル分布とを求める。
【0026】
ここにq
inは[W/m
3]の次元をもつ量であり、単位時間当たりに単位体積に発生する内部発熱量である。これは、人体においては代謝による発熱に相当する。座標軸の取り方は、腹部を臍位において切断した断面を(x, y)平面とし、これに垂直な方向をz方向とする(背骨に沿った方向がz軸とほぼ一致する)。
【0027】
なお、臍位における脂肪量を求めるためには、(x, y)平面での温度および熱流束分布が分かれば十分である。臍位においてはz方向に体組成が大きく変化しないということより、式(2)のz方向微分は支配的でないとして無視することができる。よって,次の二次元定常熱伝導方程式を解けばよいことになり、計算コストを大幅に低下させることができる。
【0029】
ただし、z方向の血流によって臍位にもたらされる熱量の効果はq
inの中に含ませて取り扱う必要がある。
【0030】
(q
inの与え方)
上記式(4)を解くには、q
inを与えなければならない。
このq
inを見積もる方法を説明する。
上記のように、二次元熱伝導方程式(4)の右辺にあるq
inは[W/m
3]の次元をもつ量であり、単位体積の物質に対して単位時間に与えられる熱量を表わす。
臍位における断面内の温度分布を計算する際には、
(D1)筋肉と腸とにおける代謝の効果と、
(D2)臍位断面を貫く方向に横断する血流によりもたらされる熱の効果と、
の二つを考慮する必要があり、これらを合算したものがq
inとして与えられる。
【0031】
((D1)筋肉と腸における代謝による発熱について)
代謝量の見積もりにはハリス・ベネディクトの式を用いる。ハリス・ベネディクトの式については、文献(J.A. Harris and F.G. Benedict: A Biometric Study of Basal Metabolism in man, The Carnegie Institution of Washington, (1919))に記載されている。
これは、安静状態にある健常人の基礎エネルギー消費量を見積もるために広く用いられている式であり、体重、身長および年齢の線形な関数として基礎エネルギー消費量[kcal/day]が計算される。ハリス・ベネディクトの式で与えられる基礎エネルギー消費量のうち、筋肉での代謝が38%、腸での代謝が7%を占めているとしてq
inを与える。この割合については、文献(横山真太郎: 生体内熱移動現象, 北海道大学図書刊行会, (1993))に記載されている。
【0032】
((D2)臍位断面を貫く方向に横断する血流によりもたらされる熱について)
臍位を貫く大血管は、大動脈、下大静脈、上腸間膜動脈と同静脈、下腸間膜動脈と同静脈である。大血管を通過する血流から周囲の組織に熱が移動するときの熱流束をq [W/m
2]として次のように表す。
【0034】
ここに、ΔT [K]は血液と周囲組織との温度差であり、h[W/(m
2・K)]は熱伝達率である。血管を内径がDで 長さがLの円筒管と仮定すると、伝熱面の面積はπDLである。伝熱面の面積πDLと熱流束qとの積をとると、単位時間当たりの伝熱量は、πDLq[W]として表される。
さらにこれを血管の占める体積πD
2L/4で除せば、q
in[W/m
3]に相当する量を得ることができる。
【0035】
円管を通過する発達した流れについての熱伝達率hは、次のハウゼンの式により計算することができる。
【0037】
ここで、λ
a[W/(m・K)]は血液の熱伝導率である。
また、Reは血流のレイノルズ数であり、Prは血流のプラントル数であり、これらの式中のu[m/s]は血液の平均流速、μ?[Pa・s]は血液の粘度、c[J/(kg・K)]は血液の比熱を表わす。
【0038】
レイノルズ数に含まれている平均流速uは次のように表されるので、平均流速uは血液の平均体積流量Q[m
3/s]から計算される。
【0040】
すなわち、各血管の平均血流量が分かれば式(6)のhを計算することが可能となる。大血管については、流量が内径の3乗に比例するというMurray則が知られており、これに従ってQを決定できる。Murray則については、文献(C.D. Murray: The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume, Proceedings of the National Academy of Sciences of the United States of America, (1926), Vol.12,No.3, pp207-214)に記載されている。
【0041】
(簡易モデルによる検証)
次に、上記で説明した熱伝導解析の手法が脂肪量の評価に適用できることを簡易モデルを用いて示す。
図1Aおよび
図1Bは簡易的に作成した臍位の体組成モデルである。
図1AのモデルをModel Aとし、
図1BのモデルをModel Bとする。
二つのモデルで、腹囲は810mmで共通とし、全体の面積も等しく設定してある。
ここで、簡単に符号を説明すると、皮膚11の内側に、脂肪12、腸13および筋肉(腹筋)14があり、さらに、中心に骨(背骨)15がある。
脂肪12の量については、Model Aで209.0cm
2とし、Model Bで170.2cm
2とし、Model Aの方が脂肪12の量が多くなるように設定してある。二つのモデルにおける脂肪量の差は、腹筋14と腸13との間に存在する内臓脂肪量121の差であり、皮下脂肪量122は共通である。
【0042】
なお、Model Aでは脂肪12が多いだけ筋肉14の量を減少させることで、Model AとModel Bとの面積を一致させている。すなわち、Model Bにおける筋肉14の量は204.6 cm
2であるが,Model Aの筋肉14の量は167.0 cm
2であり、Model Aの筋肉量はModel Bに比べておおよそ2割少ない。
これらの組成や構造は必ずしも実際の人体のそれと合致するとは限らないが、本発明の手法の有効性についての基礎的な検討には十分である。
【0043】
非構造格子を用いた有限体積法を二次元熱伝導方程式(4)に適用して、それぞれのモデルの温度分布を求めた。計算に当たって、筋肉および腸の部位で一定値q
in =780W/m
3を与えた。有限体積法の適用に当たっては、計算領域をおおよそ40000の三角形セルに分割した。また、皮膚表面温度が全周に渡って等しい、腸の平均温度が37℃である、という二つの拘束条件を与えた。
【0044】
計算結果を
図2Aおよび
図2Bに示す。
図2Aは、Model Aに対して求められた温度分布であり、
図2Bは、Model Bに対して求められた温度分布である。各モデルの計算結果において温度の最小値は皮膚11の表面で記録されており、その値はModel Aで33.51、Model Bで33.76であった。両者の差は0.25Kであり、現状の温度計測技術の分解能により十分検知できるレベルの温度差である。
【0045】
ここで、Model AとModel Bとでは、Model Aの方がModel Bに比べて筋肉量が約20%少ないとした。
筋肉および腸の部位で一定値q
in =780W/m
3を与えるようにしたので、内部発熱量は、Model Aの方が約20%低く、逆に、Model Bの方が約20%高くなることになる。
仮に、筋肉14や脂肪12などの体組織の違いに関係なく熱伝導率が均一であるとすると、発生する温度勾配はModel Bの方が20%程度大きくなり、結果として、Model Bの皮膚表面温度がModel Aよりも低く算出されるはずである。
(拘束条件の一つとして、腸の平均温度が37℃、という条件を置いたので、発熱量の多いModel Bの方で排熱(放熱)が速く進まないと計算に合わなくなるからである)
それにも関わらず、Model Aにおいてより低い皮膚温度が算出されたのは、脂肪12の熱伝導率が低いことに起因すると結論することができる。
【0046】
さらに、実際の人体では、腹囲は同じであるが脂肪量が違うということはなく、脂肪量が多い場合は腹囲の増大(すなわち伝熱距離の増大)を伴うのが普通である。したがって、脂肪が多い場合には上記の簡易なModel Aよりもさらに皮膚表面温度は低下すると考えられ、皮膚表面の温度差から脂肪量を十分に評価できることがわかる。
【0047】
(人体モデルによる検証)
次に、熱伝導解析による脂肪量評価を実際の人体に適用した場合の例を示す。
二人の被験者のCT画像を撮り、それらをモデル化した。
図3Aと
図3Bに示す二つの臍位モデルReal Model AとReal Model Bとは、二人の被験者のCT画像から作成したモデルである。
CT画像より、Real Model Aでは脂肪面積が398.1cm
2であり、Real Model Bでは脂肪面積が56.5cm
2であった。
【0048】
また、サーモグラフィを用いて両被験者の皮膚表面温度測定も行った。
図4Aと
図4Bとは、サーモグラフィ計測の結果である。なお、
図4Aは
図3Aに対応し、
図4Bは
図3Bに対応する。この温度計測により、二次元定常熱伝導方程式(4)を解く際に境界条件として必要となる皮膚表面温度を得ることができる。
【0049】
ここで、
図4A、
図4Bの鉛直線を仮想し、この鉛直線が人体と臍位置で交わる点をFRONT、背面で交わる点をBACKとする。
図5は、FRONTからBACKに至る左半身に沿った皮膚表面温度分布を両モデルについて示したグラフである。
図4と
図5においても、脂肪量が多いReal Model Aで皮膚表面温度が低いことがわかる。
【0050】
サーモグラフィによる温度計測結果を境界条件として二次元定常熱伝導方程式(4)を解いて内部の温度分布を求め、さらに熱流束ベクトルを求めた。
その結果を
図6A、
図6Bに示す。
【0051】
Real Model Aにおいて、腸およびその周辺の血管から発生した熱は主に前方(腹面の方向)へ向かう。
背面に向かう熱は、主に背骨を取り巻く筋肉で発生したものである。それに対し、Real Model Bにおいては、腸およびその周辺の血管から発生した熱が背面と腹面との両方に伝わっており、Real Model Aと対照的である。以上のように,脂肪量が多い被験者と脂肪量が少ない被験者とでは、臍位における皮膚表面温度分布と内部の熱移動の様子とにおいて明確な差異が生じること示された。
【0052】
(本発明の実施形態)
次に、本発明の実施形態について説明する。
上記に説明した熱伝導解析による脂肪量評価を実際の患者に適用するための実施形態を説明する。
図7は、処理の流れを示す図である。
まず、本実施形態の方法を実施するにあたって、予めデータベース200を用意しておくことが必要である。
データベース200は、複数のサンプルデータを記録している。これは、できるだけ多くの人(サンプル)に対して基礎調査を行い、その結果を予め基礎データとして取得しておくものである。サンプルごとに、体組成データ、腹囲データ、皮膚表面温度分布、熱流束分布を求めて記録しておく。
【0053】
体組織データは、CTスキャンのデータから得られるものである。皮膚表面温度分布はサーモグラフィから取得できる。熱流束分布については、前述のように、皮膚表面温度分布を境界条件とし、CTスキャンで得た体組織データに対して二次元定常熱伝導方程式(4)を解くことで得られる。このようなデータベースを複数のサンプルについて用意しておくことにより、今度は皮膚表面温度分布の情報から体組織を求められることになる。
【0054】
なお、データベースには、患者自身のデータもサンプルとして含まれていてもよい。例えば、患者がクリニックに入院するときに最初に各項目を測定おき、それをサンプルデータとしてデータベースに蓄積しておく。入院中の定期検査にあたっては、CTスキャンを毎回撮るわけにはいかないので本発明の手法を適用することになるが、数ヶ月前の患者自身のデータがサンプルとしてデータベースに蓄積されていれば、それは有益なサンプルデータになると考えられる。
【0055】
さて、脂肪量評価を受ける患者に対しては、腹囲、皮膚表面温度および体深部温度を測定する(ST100)。皮膚表面温度は、サーモグラフィーで測定すればよい。ここで、体深部温度が必要になるところ、体深部温度として直腸温度を測定してもよい。あるいは、腋の下や舌下の温度から所定の校正式を用いて体深部温度を求めるようにしてもよい。
【0056】
次に、データベースのサンプルの中から、腹囲と皮膚表面温度分布とが患者に近いサンプルを抽出する(ST110)。
サンプルの抽出にあたっては、例えば、まず、腹囲を使ってある程度サンプルを絞る。そして、絞られたサンプルの中から、体表面の平均温度が近いものを抽出するようにしてもよい。さらに、
図5に示した皮膚温度分布のグラフにおいて、グラフの傾向が近似しているものを選ぶようにしてもよい。
例えば、
図5のグラフにおいて、無次元長さ0.5から0.8あたりにかけて温度が低下する部分があり、この低下の程度が脂肪量に関係していると考えられる。そこで、この温度低下の傾向が近似しているサンプルを抽出するようにすると、患者と脂肪量が近いサンプルを選ぶことができる。
【0057】
このようなサンプル抽出工程においては、所定プログラムをコンピュータに組み込んで、所定アルゴリズムをコンピュータに実行させることによりサンプルを自動抽出させるようにしてもよい。
【0058】
次に、選び出したサンプルの体組成を用いて熱伝導解析を行う(ST120)。ただし、境界条件となる皮膚表面温度分布には、患者のものを用いる。
【0059】
次に、患者の体深部温度と、熱伝導解析(ST120)で得られた体深部温度と、を対比する(ST130)。サンプルの体組成と患者の体組成とは完全に一致しているわけではないので、そのずれは体深部温度の違いとなって現れることになる。すなわち、サンプルの体組成と患者の体組成とが異なっていれば(ST140:NO)、熱伝導解析で算出される体深部温度は患者の実際の体深部温度からずれてくる。
患者の体組織を求めるには、この体深部温度のずれが小さくなるようにサンプルの体組織データを調整する(ST150)。
【0060】
サンプルの体組織データを調整する(ST150)にあたっては、主に、脂肪量と筋肉量とを調整する。骨と腸についてはあまり個人差はなく、さらに、サンプルを選定する時点で腹囲が近似しているものを選ぶなど、患者とサンプルとで似た体型を選んでいることもあり、骨と腸とについては調整を行わなくてもよい。(もちろん、必要に応じて、骨と腸とについても調整を行ってもよい。)
脂肪量と筋肉量とを調整する場合には、部位や形はほぼ決まっているので、相似変形させることが一例として挙げられる。どの部位をどの程度調整するかは、熱伝導解析の結果として得られた熱流束分布を参照しながら判断する。
【0061】
このような調整工程を行うにあたっては、コンピュータに所定プログラムを組み込み、コンピュータに所定のアルゴリズムを自動実行させることが好ましいが、オペレータや医師が熱伝導や医学の見地を利用して逐次調整処理を行ってもよい。
【0062】
熱伝導解析で求められる体深部温度が患者の体深部温度に一致するまで処理を繰り返す。熱伝導解析で求められる体深部温度が患者の体深部温度に一致したとき(ST140:YES)、このときの体組織が患者の体組織に一致すると考えられる。したがって、この体組織データから脂肪の割合および量を求めると、それが患者の脂肪量率であり、脂肪量である。このようにして、熱伝導解析を用いて、患者の脂肪量が求められた。
【0063】
以上、このような本実施形態によれば、次の効果を奏することができる。
人体の脂肪量を求めるにあたり、従来は、毎回CTスキャンを撮るか、あるいは、インピーダンス法による体脂肪測定に頼るしかなかった。
しかし、CTスキャンには費用と被爆の問題があり、インピーダンス法には精度の点で大いに問題があった。
この点、本実施形態では、患者に対しては腹囲、体表面温度および体深部温度の測定を行えばよく、費用は低廉であり、体への負担もない。そして、体表面温度と脂肪量の関係に基づく熱伝導解析により、上記に説明したように、かなり正確に被験者の体組織、すなわち、脂肪量を求めることができる。したがって、測定を高い頻度で定期的に行うことができ、例えば肥満治療であれば、患者に対して脂肪量の変化を提示することができる。
また、医師としても正確な脂肪量データに基づいた適格な診断、アドバイスができる。
【0064】
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
熱伝導解析において、内部発熱量q
in、体深部温度、脂肪の熱伝導率、皮膚の熱伝導率等の値は文献値や多くの実測データから適切な値を使用すればよく、上記に挙げた数値は一つの例示にすぎないものである。
【0065】
上記実施形態では、主として方法の発明として説明したが、データベースとなるメモリと、演算部となるコンピュータと、を用意し、脂肪量評価装置としてもよい。
すなわち、コンピュータに所定プログラムを組み込んで、このコンピュータを、サンプル抽出手段、熱伝導解析演手段、対比手段および調整手段の各機能手段として機能するようにしてもよい。