【実施例】
【0036】
次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
【0037】
実施例1(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体5.11g(13.17mmol)及び2,4−ジメチル−3−ペンタノール10.12g(88.61mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、12Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム5.73gを得た(単離収率;79%)。
【0038】
なお、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。
【0039】
1H−NMR(CDCl
3,δ(ppm));0.90(48H,d)、1.70(8H,m)、3.30(4H,d)
元素分析:C
28H
60O
4Zr
測定値 C:60.5%、H:11.1%、Zr:16.5%
理論値 C:60.9%、H:11.0%、Zr:16.5%
【0040】
実施例2(M=Zr,R=エチル基;テトラキス(2−メチル−3−ペントキシ)ジルコニウムの合成(式(2)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体4.42g(11.41mmol)及び2−メチル−3−ペンタノール7.29g(71.36mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(140℃、17Pa)し、白色固体として、テトラキス(2−メチル−3−ペントキシ)ジルコニウム4.18gを得た(単離収率;74%)。
【0041】
なお、テトラキス(2−メチル−3−ペントキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。
【0042】
1H−NMR(CDCl
3,δ(ppm));0.92(36H,m)、1.50(8H,m)、1.66(4H,m)、3.29(4H,q)
元素分析:C
24H
52O
4Zr
測定値 C:58.3%、H:10.4%、Zr:18.4%
理論値 C:58.1%、H:10.6%、Zr:18.4%
【0043】
実施例3(M=Zr,R=n−プロピル基;テトラキス(2−メチル−3−ヘキソキシ)ジルコニウムの合成(式(3)のジルコニウム化合物の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体4.32g(11.15mmol)及び2−メチル−3−ヘキサノール9.17g(78.91mmol)を加え、液温を200℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、12Pa)し、低粘性の透明液体として、テトラキス(2−メチル−3−ヘキソキシ)ジルコニウム4.20gを得た(単離収率;68%)。
【0044】
なお、テトラキス(2−メチル−3−ヘキソキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。
【0045】
1H−NMR(CDCl
3,δ(ppm));0.68(36H,m)、1.35(12H,m)、1.57(8H,m)3.60(4H,q)
元素分析:C
28H
60O
4Zr
測定値 C:60.7%、H:11.3%、Zr:16.5%
理論値 C:60.9%、H:11.0%、Zr:16.5%
【0046】
実施例4〜6及び比較例1〜5(熱安定性の比較1)
実施例1〜3で得られた式(2)〜(4)の本発明のジルコニウム化合物と、比較として合成した式(11)〜(15)のジルコニウム化合物について、それぞれの熱安定性を確認するため、一度蒸留を行った各化合物について再度蒸留を行い、その回収率を確認した。その結果を表1に示す。なお、化合物の構造を下記式に示す。但し、式中、Mはジルコニウム(Zr)を示す。
【0047】
【化3】
【0048】
【表1】
【0049】
式(11)〜(15)のジルコニウム化合物(比較例1〜5)は再蒸留では熱分解して回収できなかったのに対して、本発明のジルコニウムアルコキシド化合物(式(2)〜(4)のジルコニウム化合物)は再蒸留回収率が97〜99%であり、熱安定性に優れていることが分かる。更に、本発明のジルコニウムアルコキシド化合物は、分子量に関わらず、いずれも低い温度且つ低い減圧度で蒸留でき、このことから、ジルコニウム含有薄膜の製造に適していることが分かる。
【0050】
実施例7及び比較例6(熱安定性の比較2;加熱処理試験)
実施例1で得られた式(4)のジルコニウム化合物と、テトラキス(t−ブトキシド)ジルコニウム(非特許文献3のジルコニウムアルコキシド化合物)について、熱安定性の比較試験を行った。それぞれの化合物を、アルゴン雰囲気で250℃にて10時間加熱した後、熱処理後のジルコニウムアルコキシド化合物について、
1H−NMRにより分解具合を観察し、また、再蒸留を行い、その回収率を確認し、それぞれの結果を比較した。その結果を表2に示した。
【0051】
【表2】
【0052】
本発明のジルコニウムアルコキシド化合物(式(4)のジルコニウム化合物)は、熱処理後においても色の変化がなく、
1H−NMRのスペクトルパターンでも変化は観られなかった。又、再蒸留での回収率も98%であった。
【0053】
一方、テトラキス(t−ブトキシド)ジルコニウムは、熱処理後すぐに褐色に変色し、再蒸留での回収率も低く、又、蒸留残渣として釜の中に褐色固体(分解物)が残っていた。
【0054】
以上のことから、本発明のジルコニウムアルコキシド化合物が熱に対して高い安定性を有していることが分かった。
【0055】
通常、ALD法では、基板への化合物吸着、反応ガス(例えば、酸素ガス、オゾンガス)との反応を繰り返して成膜が行われる。この基板への化合物の吸着の際、基板温度で化合物が熱分解しないことが求められる。本発明のジルコニウムアルコキシド化合物(式(4)のジルコニウム化合物)は、加熱処理試験の結果より、アルゴンガス雰囲気(不活性ガス雰囲気)での熱安定性が高いことから、基板上で熱分解しないことが示唆されており、ALD法でより好適に使用できることがわかる。一方、テトラキス(t−ブトキシド)ジルコニウム(非特許文献3のジルコニウムアルコキシド化合物)は加熱処理試験において変質、分解物が見られることから、基板上で容易に熱分解することが示唆され、ALD法には不向きであることがわかる。
【0056】
実施例8〜9(蒸着実験;ジルコニウム含有薄膜の製造)
実施例1及び3で得られた式(4)及び(3)のジルコニウムアルコキシド化合物を用いて、CVD法による蒸着実験を行い、成膜特性を評価した。
【0057】
評価試験には、
図1に示す装置を使用した。気化器3(ガラス製アンプル)にあるジルコニウムアルコキシド化合物20は、ヒーター10Bで加熱されて気化し、マスフローコントローラー1Aを経て予熱器10Aで予熱後導入されたヘリウムガスに同伴し気化器3を出る。気化器3を出たガスは、マスフローコントローラー1B、ストップバルブ2を経て導入された酸素ガスとともに反応器4に導入される。反応系内圧力は、真空ポンプ手前のバルブ6の開閉により、所定圧力にコントロールされ、圧力計5によってモニターされる。反応器の中央部はヒーター10Cで加熱可能な構造となっている。反応器に導入されたジルコニウムアルコキシド化合物は、反応器内中央部にセットされ、ヒーター10Cで所定の温度に加熱された被蒸着基板21の表面上で酸化熱分解し、基板21上にジルコニウム含有薄膜が析出する。反応器4を出たガスは、トラップ7、真空ポンプを経て、大気中に排気される構造となっている。
【0058】
蒸着条件及び蒸着結果(膜特性)を表3に示す。なお、被蒸着基板としては、6mm×20mmサイズの矩形のものを使用した。
【0059】
【表3】
【0060】
その結果、本発明のジルコニウムアルコキシド化合物(式(3)及び(4)の化合物)は、酸素雰囲気にて、優れた成膜特性を示すことが分かった。
【0061】
実施例10(M=Hf,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムの合成(式(4)のハフニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ハフニウム・イソプロパノール付加体5.15g(10.84mmol)及び2,4−ジメチル−3−ペンタノール10.00g(86.06mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、17Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウム4.94gを得た(単離収率;71.3%)。
【0062】
なお、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムは、以下の物性値で示される新規な化合物である。
【0063】
1H−NMR(CDCl
3,δ(ppm));0.90(48H,d)、1.70(8H,m)、3.39(4H,d)
元素分析:C
28H
60O
4Hf
測定値 C:53.0%、H:9.7%、Hf:27.7%
理論値 C:52.6%、H:9.5%、Hf:27.9%
【0064】
実施例11(熱安定性;加熱処理試験)
実施例10で得られた式(4)のハフニウム化合物(本発明)の熱安定性を確認するために再度蒸留を行い、その回収率を確認した。また、アルゴン雰囲気で250℃にて10時間加熱した後、熱処理後のハフニウム化合物について、
1H−NMRにより分解具合を観察し、また、再蒸留を行い、その回収率を確認した。その結果は以下の通りであった。
【0065】
初回蒸留;150℃(17Pa)
再蒸留回収率;99%
熱処理前;無色透明液体
熱処理後;無色透明液体
熱処理後の再蒸留回収率;97%
熱処理後の
1H−NMR(CDCl
3,δ(ppm));変化なし
【0066】
以上の結果より、本発明の金属アルコキシド化合物が、優れた熱安定性を有するとともに、特にCVD法またはALD法により金属含有膜を製造する際に有用な化合物であることが分かる。
【0067】
実施例12(M=Ti,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムの合成(式(4)のチタニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)チタニウム5.00g(17.59mmol)及び2,4−ジメチル−3−ペンタノール10.00g(86.06mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(160℃、21Pa)し、無色透明固体として、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウム6.50gを得た(単離収率;72.6%)。
【0068】
なお、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムは、以下の物性値で示される新規な化合物である。
【0069】
融点:65〜75℃
1H−NMR(CDCl
3,δ(ppm));0.93(48H,m)、1.71(8H,m)、3.70(4H,m)
元素分析:C
28H
60O
4Ti
測定値 C:66.3%、H:12.2%、Ti:9.3%
理論値 C:66.1%、H:11.9%、Ti:9.4%
【0070】
実施例13(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.02g(17.25mmol)及びメチルシクロヘキサン50mlを秤量し、水冷下でイソプロピルアミン12ml(140.08mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、13Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.71gを得た(単離収率;81.0%)。
【0071】
実施例14(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積50mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.12g(17.68mmol)及びメチルシクロヘキサン25mlを秤量し、水冷下でsec−ブチルアミン13ml(128.51mmol)を滴下した。この溶液を2,4−ジメチル−3−ペンタノール9.88g(85.03mmol)及びメチルシクロヘキサン25mlを仕込んだ攪拌装置及び温度計を備えた内容積100mlのフラスコに滴下して1時間反応させた。反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、15Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム8.05gを得た(単離収率;82.5%)。
【0072】
実施例15(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン23.5ml(224.91mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、10Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.69gを得た(単離収率;77.3%)。
【0073】
実施例16(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、水冷下でジエチルアミン16.5ml(157.92mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の淡黄色透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.76gを得た(単離収率;76.7%)。
【0074】
実施例17(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、系内を−10℃以下となるようにジエチルアミン16.0ml(153.13mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.92gを得た(単離収率;79.6%)。
【0075】
実施例18(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、系内を−10℃以下となるようにジメチルアミン11.61g(257.54mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.81gを得た(単離収率;76.3%)。
【0076】
実施例19(M=Hf,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムの合成(式(4)のハフニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ハフニウム5.03g(15.71mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン10ml(95.71mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール10ml(71.34mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(170℃、19Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウム3.50gを得た(単離収率;34.9%)。
【0077】
実施例20(M=Ti,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムの合成(式(4)の化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化チタン5.85g(30.84mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン16ml(153.13mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール17.5ml(124.85mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、17Pa)し、透明固体として、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウム8.81gを得た(単離収率;56.2%)。