(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、本発明について、詳細に説明する。
本発明におけるポリマー微粒子の製造方法は、ポリマーAとポリマーBと有機溶媒を溶解混合させ、ポリマーAを主成分とする溶液相(以下、ポリマーA溶液相と称することもある)と、ポリマーB(ポリビニルアルコール類)を主成分とする溶液相(以下、ポリマーB溶液相と称することもある)の2相に相分離する系において、100℃以上でエマルションを形成させた後、ポリマーAの貧溶媒を接触させることにより、ポリマーAを析出させることを特徴とするポリマー微粒子の製造方法である。
【0013】
上記において、「ポリマーAとポリマーBと有機溶媒を溶解混合させ、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離する系」とは、ポリマーAとポリマーBと有機溶媒を混合したときに、ポリマーAを主として含む溶液相と、ポリマーBを主として含む溶液相の2相に分かれる系をいう。
【0014】
このような相分離をする系を用いることにより、相分離する条件下で混合して、乳化させ、エマルションを形成させることができる。
【0015】
なお、上記において、ポリマーが溶解するかどうかについては、本発明を実施する温度、即ちポリマーAとポリマーBを溶解混合して、2相分離させる際の温度において、有機溶媒に対し1質量%超溶解するかどうかで判別する。
【0016】
このエマルションは、ポリマーA溶液相が分散相に、ポリマーB溶液相が連続相になり、そしてこのエマルションに対し、ポリマーAの貧溶媒を接触させることにより、エマルション中のポリマーA溶液相から、ポリマーAが析出し、ポリマーAで構成されるポリマー微粒子を得ることが出来る。
【0017】
本発明の製造方法においては、ポリマーA、ポリマーB、これらを溶解する有機溶媒およびポリマーAの貧溶媒を用い、本発明のポリマー微粒子が得られる限り、その組合せに特に制限はないが、本発明において、ポリマーAとは、高分子重合体のことを指し、好ましくは、天然には存在しない合成ポリマーであり、さらに好ましくは非水溶性ポリマーであり、その例として熱可塑性樹脂、熱硬化性樹脂が挙げられる。
【0018】
熱可塑性樹脂としては、具体的には、ビニル系重合体、ポリエステル、ポリアミド、ポリアリーレンエーテル、ポリアリーレンスルフィド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリウレタン、ポリカーボネート、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリアセタール、シリコーンおよびこれらの共重合体などが挙げられる。
【0019】
ビニル系重合体とは、ビニル系単量体を単独重合または共重合して得られるものである。かかるビニル系重合体としては、ゴム質重合体の存在下、ビニル系単量体(スチレン等の芳香族ビニル系単量体、シアン化ビニル系単量体、その他のビニル系単量体等から選択されるものであってよい)またはその混合物をグラフト共重合せしめてなるゴム含有グラフト共重合体あるいは、これとビニル系重合体との組成物のような、ゴム質重合体を含むビニル系重合体であってもよい。
【0020】
これらビニル系重合体を、具体的に例示するならば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ(アクリロニトリル−スチレン−ブタジエン)樹脂(ABS)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル、ポリアクリルアミド、ポリ酢酸ビニル、ポリアクリル酸ブチル、ポリメタクリル酸メチル、環状ポリオレフィンなどが挙げられる。
【0021】
本発明の方法をビニル系重合体に適用する場合には、乳化重合法による粒子化では、粒子径分布の小さい粒子を得ることが困難であった領域のサイズ、即ち、平均粒子径が10μm以上、好ましい態様では、20μm以上であるサイズで、粒子径分布の小さい粒子を得ることが可能となる。また、このとき上限としては、通常1000μm以下となる。
【0022】
特に上記ゴム質重合体を含むビニル系重合体において本発明の方法を適用すると、ビニル系重合体のマトリックス中にグラフト共重合体(子粒子)が分散する、子粒子分散構造の粒子で粒子径分布の小さいポリマー微粒子が得られ、特に好ましい。このようなものの具体例として、ポリ(アクリロニトリル−スチレン)樹脂のマトリックス中にゴム含有グラフト共重合体が分散した、ポリ(アクリロニトリル−スチレン−ブタジエン)樹脂(ABS樹脂)が挙げられる。
【0023】
ポリエステルとしては、多価カルボン酸またはそのエステル形成性誘導体と多価アルコールまたはそのエステル形成性誘導体を構造単位とする重合体、ヒドロキシカルボン酸またはラクトンを構造単位とする重合体、およびこれらの共重合体が挙げられる。
【0024】
ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリへキシレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート/テレフタレート、ポリプロピレンイソフタレート/テレフタレート、ポリブチレンイソフタレート/テレフタレート、ポリエチレンテレフタレート/ナフタレート、ポリプロピレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/デカンジカルボキシレート、ポリエチレンテレフタレート/シクロヘキサンジメチレンテレフタレート)、ポリエーテルエステル(ポリエチレンテレフタレート/ポリエチレングリコール、ポリプロピレンテレフタレート/ポリエチレングリコール、ポリブチレンテレフタレート/ポリエチレングリコール、ポリエチレンテレフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/ポリテトラメチレングリコール、ポリエチレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/イソフタレート/ポリテトラメチレングリコールなど)、ポリエチレンテレフタレート/サクシネート、ポリプロピレンテレフタレート/サクシネート、ポリブチレンテレフタレート/サクシネート、ポリエチレンテレフタレート/アジペート、ポリプロピレンテレフタレート/アジペート、ポリブチレンテレフタレート/アジペート、ポリエチレンテレフタレート/セバケート、ポリプロピレンテレフタレート/セバケート、ポリブチレンテレフタレート/セバケート、ポリエチレンテレフタレート/イソフタレート/アジペート、ポリプロピレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/サクシネート、ポリブチレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/セバケート、ビスフェノールA/テレフタル酸、ビスフェノールA/イソフタル酸、ビスフェノールA/テレフタル酸/イソフタル酸、ポリグリコール酸、ポリ乳酸、ポリ(3−ヒドロキシブタン酸)、ポリ(3−ヒドロキシバレリック酸)、ポリブチロラクトン、ポリカプロラクトンなどが挙げられる。
【0025】
上記の中でもエーテル結合を有する熱可塑性樹脂であるポリエーテルエステルは好ましく用いられ、これらは“ハイトレル(登録商標)”(東レ・デュポン社製、デュポン社製)等として市販されている、いわゆるポリエステルエラストマーと称されるものを使用することが可能である。
【0026】
ポリアミドとしては、3員環以上のラクタム、重合可能なアミノカルボン酸、二塩基酸とジアミンまたはそれらの塩、あるいはこれらの混合物の重縮合によって得られるポリアミドが挙げられる。
【0027】
このようなポリアミドの例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリペンタメチレンアジパミド(ナイロン56)、ポリテトラメチレンセバカミド(ナイロン410)、ポリペンタメチレンセバカミド(ナイロン510)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリデカメチレンセバカミド(ナイロン1010)、ポリウンデカアミド(ナイロン11)、ポリドデカアミド(ナイロン12)、ポリペンタメチレンテレフタルアミド(ナイロン5T)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、4,4’−ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(例示するならば、‘TROGAMID(登録商標)’CX7323 、ダイセル・エボニック社製)などの結晶性ポリアミド、非晶性のポリアミドとしては、3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタンとイソフタル酸と12−アミノドデカン酸の共重合体(例示するならば、‘グリルアミド(登録商標)’ TR55、エムザベルケ社製)、3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(例示するならば、‘グリルアミド(登録商標)’ TR90、エムザベルケ社製)、3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタンとイソフタル酸と12−アミノドデカン酸の共重合体と3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体との混合物(例示するならば、‘グリルアミド(登録商標)’ TR70LX、エムザベルケ社製)などが挙げられる。
【0028】
ポリアリーレンエーテルとは、アリール基がエーテル結合でつながったポリマーであり、一般式(1)で代表される構造を有するものが挙げられる。
【0030】
この際、芳香環上には、置換基Rを有していてもいなくても良く、その置換基数mは1以上4以下である。置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6の飽和炭化水素基、ビニル基、アリル基等の不飽和炭化水素基、フッ素原子、塩素原子、臭素原子などのハロゲン基、アミノ基、水酸基、チオール基、カルボキシル基、カルボキシ脂肪族炭化水素エステル基などが好ましく挙げられる。
【0031】
ポリアリーレンエーテルの具体的な例としては、ポリ(2,6−ジメチルフェニレンエーテル)が挙げられる。
【0032】
ポリアリーレンスルフィドとは、アリール基がスルフィド結合でつながったポリマーであり、一般式(2)で代表される構造を有するものが挙げられる。
【0034】
この際、芳香環上には、置換基Rを有していてもなくても良く、その置換基数であるmは、1以上4以下である。置換基としては、メチル基、エチル基、プロピル基等の飽和炭化水素基、ビニル基、アリル基等の不飽和炭化水素基、フッ素原子、塩素原子、臭素原子などのハロゲン基、アミノ基、水酸基、チオール基、カルボキシル基、カルボキシ脂肪族炭化水素エステル基などが挙げられる。また、上記一般式(2)のパラフェニレンスルフィド単位の代わりにメタフェニレン単位、オルソフェニレン単位とすることや、これらの共重合体とすることも可能である。
【0035】
ポリアリーレンスルフィドの具体的な例としては、ポリフェニレンスルフィドが挙げられる。
【0036】
ポリスルホンとしては、一般式(3)で代表される構造を有するものが好ましく挙げられる。
【0038】
(式中のRは、炭素数1〜6のアルキル基または炭素数6〜8のアリール基を表し、mは0〜4の整数を表すものである。)
【0039】
ポリエーテルケトンとは、エーテル結合とカルボニル基を有するポリマーである。具体的には、一般式(4)で代表される構造を有するものが好ましく挙げられる。
【0041】
(式中のRは、炭素数1〜6のアルキル基または炭素数6〜8のアリール基を表し、mは0〜4の整数を表すものである。)
【0042】
ポリエーテルケトンの中でも、一般式(5)で表わされる構造を有するものは、特にポリエーテルエーテルケトンと称する。
【0044】
(式中のRは、炭素数1〜6のアルキル基または炭素数6〜8のアリール基を表し、mは0〜4の整数を表すものである。)
【0045】
ポリカーボネートとは、カーボネート基を有したポリマーであり、一般式(6)で代表される構造を有するものを好ましく挙げることができる。
【0047】
(式中のRは、炭素数1〜6のアルキル基または炭素数6〜12のアリール基を表し、mは0〜4の整数を表すものである。)
【0048】
具体的な例としては、Rmの置換基を有しない、ビスフェノールAが炭酸エステル結合で重縮合されたポリマー、ナフタレンジオールが炭酸エステル結合で重縮合されたポリマー、ビフェニレンジオールが炭酸エステル結合で重縮合されたポリマー、ジフェニレンスルフィドジオールが炭酸エステル結合で重縮合されたポリマー、ジフェニレンジスルフィドジオールが炭酸エステル結合で重縮合されたポリマーなどが挙げられる。また、ポリカーボネートと前記ポリエステルとを共重合したものでもよい。
【0049】
ポリアミドイミドとは、イミド結合と、アミド結合を有したポリマーである。
【0050】
ポリイミドとは、イミド結合を有したポリマーである。特に本系においては、熱可塑性ポリイミドが好ましく、具体的には1,2,4,5−ベンゼンテトラカルボン酸無水物と4,4’−ビス(3−アミノフェニルオキシ)ビフェニル の重縮合物や3,3’,4,4’− ビフェニルテトラカルボン酸無水物と1,3−ビス(4−アミノフェニルオキシ)ベンゼンの重縮合物が挙げられる。
【0051】
ポリエーテルイミドとは、分子内にエーテル結合とイミド結合を有したポリマーであり、具体的に例示するならば、4,4’−[イソプロピリデンビス(p−フェニレンオキシ)]ジフタル酸二無水物とメタフェニレンジアミンとの縮合により得られるポリマーなどが挙げられる。
【0052】
本発明におけるポリマーAとしては、熱硬化性樹脂を用いてもよく、具体的には、エポキシ樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、フェノール樹脂、メラミン樹脂、マレイミド樹脂、シアン酸エステル樹脂および尿素樹脂などが挙げられる。
【0053】
これらの中で、エポキシ樹脂が耐熱性、接着性が高いことから好ましく用いられる。エポキシ樹脂としては、例えば、分子内に水酸基を有する化合物とエピクロロヒドリンから得られるグリシジルエーテル型エポキシ樹脂、分子内にアミノ基を有する化合物とエピクロロヒドリンから得られるグリシジルアミン型エポキシ樹脂、分子内にカルボキシル基を有する化合物とエピクロロヒドリンから得られるグリシジルエステル型エポキシ樹脂、分子内に二重結合を有する化合物を酸化することから得られる脂環式エポキシ樹脂、あるいはこれらから選ばれる2種類以上のタイプの基が分子内に混在するエポキシ樹脂などが用いられる。
【0054】
また、エポキシ樹脂と組み合わせて硬化剤を用いることができる。エポキシ樹脂と組み合わせて用いられる硬化剤としては、例えば、芳香族アミン、脂肪族アミン、ポリアミドアミン、カルボン酸無水物およびルイス酸錯体、酸系硬化触媒、塩基系硬化触媒などが挙げられる。
【0055】
本発明におけるポリマーAにおける好ましい樹脂としては、耐熱性の高いポリマーであり、ガラス転移温度または融点が100℃を超える樹脂である。
【0056】
具体的に例示するならば、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリフェニレンエーテル、ポリエーテルイミド、ポリフェニレンスルフィド、ポリオレフィン、ポリスルホン、ポリエステル、非晶ポリアリレート、ポリアミドイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、エポキシ樹脂などが挙げられ、中でも100℃以上の融点を有する結晶性熱可塑性樹脂が好ましく、結晶性が高い方がより好ましい。結晶性が高い樹脂としては、その分子主鎖骨格の中に、アミド単位を持つもの、エステル単位を持つもの、スルフィド単位を持つもの、炭酸エステル単位を持つ結晶性熱可塑性樹脂がより好ましく挙げられる。特にポリアミド、ポリエステル、ポリフェニレンスルフィドが好ましく挙げられ、特にポリアミド、ポリエステル、ポリフェニレンスルフィドが好ましく挙げられる。結晶性の熱可塑性樹脂は、本方法においての粒子形成にとって有利であり、本発明の目的を達成するに好適な態様である。
【0057】
上述したポリマーAは1種以上で用いることができる。
【0058】
これら好ましい樹脂は、熱的および/または機械的な性質に優れる。これらを原料として、本方法にて粒子化をした場合、得られる微粒子は、粒子径分布が小さく、取り扱い性に優れることから、高品質のポリマー微粒子が得られ、従来の微粒子で用いることができなかった用途への適用も可能となる点で好ましい。
【0059】
ポリマーAの分子量は、好ましくは、重量平均分子量で、1,000〜100,000,000、より好ましくは、1,000〜10,000,000、さらに好ましくは、5,000〜1,000,000であり、特に好ましくは、10,000〜500,000の範囲であり、最も好ましい範囲は、10,000〜100,000の範囲である。
【0060】
ここでいう重量平均分子量とは、溶媒としてジメチルホルムアミドを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリスチレンで換算した重量平均分子量を指す。
【0061】
ジメチルホルムアミドで測定できない場合については、テトラヒドロフランを用い、さらに測定できない場合は、ヘキサフルオロイソプロパノールを用い、ヘキサフルオロイソプロパノールでも測定できない場合は、2−クロロナフタレンを用いて測定を行う。
【0062】
本発明において、ポリマーAとしては、本発明が、貧溶媒と接触する際に微粒子を析出させることを要点とすることから、貧溶媒に溶けないものが好ましく、後述する貧溶媒に溶解しないポリマーが好ましく、特に非水溶性ポリマーが好ましい。
【0063】
ここで、非水溶性ポリマーとしては、水に対する溶解度が1質量%以下、好ましくは、0.5質量%以下、さらに好ましくは、0.1質量%以下のポリマーを示す。
【0064】
結晶性熱可塑性樹脂とは、ポリマー内部の結晶相と非晶相のうち、結晶部分を有するものをいい、これらは示差走査熱量測定法(DSC法)により判別することが出来る。即ち、DSC測定において、融解熱量が測定されるものを指す。融解熱量の値としては、1J/g以上、好ましくは、2J/g以上、より好ましくは5J/g以上、さらには、10J/g以上であるポリマーであることが好ましい。この際、DSC測定は、30℃から、当該ポリマーの融点よりも30℃超える温度までの温度範囲を、20℃/分の昇温速度で1回昇温させた後に、1分間保持した後、20℃/分で0℃まで降温させ、1分間保持した後、再度20℃/分で昇温させた時に測定される融解熱量のことを指す。
【0065】
本発明におけるポリマーBとしては、そのSP値が20(J/cm
3)
1/2以上であることが良い。
【0066】
上記ポリマーBであると、ポリマーB相とポリマーA相との相分離状態を形成しやすく、なおかつ後述する貧溶媒による析出時において、ポリマーBの析出が発生しにくいため、粒子形成に悪影響を与えない。
【0067】
この際、ポリマーBのSP値としては、好ましくは21(J/cm
3)
1/2以上、より好ましくは23(J/cm
3)
1/2以上、さらに好ましくは25(J/cm
3)
1/2以上、特に好ましくは28(J/cm
3)
1/2以上、極めて好ましくは30(J/cm
3)
1/2以上である。
【0068】
ポリマーAとポリマーBの両者が有機溶媒にとけるのであれば、特に制限はないが、SP値の差の上限として、好ましくは20(J/cm
3)
1/2以下、より好ましくは、15(J/cm
3)
1/2以下であり、さらに好ましくは10(J/cm
3)
1/2以下である。
【0069】
ここでいう、SP値とは、Fedorの推算法に基づき計算されるものであり、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
【0070】
本方法により、計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用する(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
【0071】
本方法により、計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による、実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用する(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
【0072】
中でも、ポリマーBは、後述する貧溶媒との親和性が高いものが好ましく、その親和性の指標としては、水への溶解度をもって判断することができる。ポリマーBの水への溶解度は25℃で、水100gに対し1g溶解するものを、1g/100gと表記すると定義した場合、好ましくは、1g/100g以上であり、より好ましくは、2g/100g以上であり、さらに好ましくは、5g/100g以上であり、特に好ましくは、10g/100g以上であり、著しく好ましくは、15g/100g以上である。この範囲であれば、後述する貧溶媒との親和性が高く、本ポリマー微粒子製造法において、有利に機能する。
【0073】
ポリマーBの高分子の種類として、具体的に好ましいものとしては、その分子骨格中に、水酸基、エーテル基、アミド基、カルボキシル基を有するものがよい。
【0074】
ポリマーBを具体的に例示するならば、その分子骨格中に水酸基を持つものとしては、ポリビニルアルコール類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール−エチレン)共重合体などのポリ(ビニルアルコール−エチレン)共重合体類など)、ポリ(パラビニルフェノール)、マルトース、セルビオース、ラクトース、スクロースなどの二糖類、セルロースおよびその誘導体(ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロースなど)、セルロース、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル、キトサン等)、アミロースおよびその誘導体、デンプンおよびその誘導体、デキストリン、シクロデキストリン、アルギン酸ナトリウムおよびその誘導体等の多糖類またはその誘導体、ゼラチン、カゼイン、コラーゲン、アルブミン、フィブロイン、ケラチン、フィブリン、カラギーナン、コンドロイチン硫酸、アラビアゴム、寒天、たんぱく質等が挙げられ、その分子骨格中にエーテル基を持つものとしては、ポリアルキレングリコール、ショ糖脂肪酸エステル、ポリ(オキシエチレン脂肪酸エステル)、ポリ(オキシエチレンラウリン脂肪酸エステル)、ポリ(オキシエチレングリコールモノ脂肪酸エステル)、ポリ(オキシエチレンアルキルフェニルエーテル)、ポリ(オキシアルキルエーテル)、ポリビニルエーテル、ポリビニルホルマール等が挙げられ、その分子骨格中にアミド基を持つものとしては、ポリビニルピロリドン、アミノポリ(アクリルアミド)、ポリ(アクリルアミド)、ポリ(メタクリルアミド)、“AQナイロン(登録商標)”(A−90、P−70、P−95、T−70;東レ株式会社製)などの水溶性ナイロン等が挙げられ、その分子骨格中にカルボキシル基を持つものとしては、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム等が挙げられ、その他にも、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム、ポリビニルピロリジニウムクロライド、ポリ(スチレン−マレイン酸)共重合体、ポリアリルアミン、ポリ(オキシエチレンアミン)、ポリ(ビニルピリジン)、ポリアミノスルホン、ポリエチレンイミン等の合成樹脂が挙げられる。
【0075】
好ましくは、ポリビニルアルコール類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール−エチレン)共重合体などのポリ(ビニルアルコール−エチレン)共重合体類)、セルロース誘導体(カルボキシメチルセルロース、ヒロドキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース)、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル等)、ポリアルキレングリコール、ショ糖脂肪酸エステル、ポリ(オキシエチレンアルキルフェニルエーテル)、ポリ(オキシアルキルエーテル)、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸、ポリメタクリル酸であり、より好ましくは、ポリ(ビニルアルコール)類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール−エチレン)共重合体などのポリ(ビニルアルコール−エチレン)共重合体類)、セルロース誘導体(カルボキシメチルセルロース、ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース)、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル等)、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸であり、特に好ましくは、完全ケン化型や部分ケン化型のポリ(ビニルアルコール)などのポリビニルアルコール類、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸である。
【0076】
本発明におけるポリマーBとしては、著しく好ましくは、ポリビニルアルコール類を用いる。さらに詳しくは、ポリビニルアルコール類とは、分子内に一般式(7)の構造を有するポリマーのことを指す。
【0078】
ポリ(ビニルアルコール)(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)であってもよい。単にポリビニルアルコールと称する場合もある。)、ポリ(ビニルアルコール−エチレン)共重合体(完全ケン化型や部分ケン化型のポリ(ビニルアルコール−エチレン)共重合体であってもよい)などが挙げられるが、溶解性の点からポリビニルアルコールが好ましい。
【0079】
ポリマーBの分子量は、好ましくは、重量平均分子量で、1,000〜100,000,000、より好ましくは、1,000〜10,000,000、さらに好ましくは、5,000〜1,000,000であり、特に好ましくは、10,000〜500,000の範囲であり、最も好ましい範囲は、10,000〜100,000の範囲である。
【0080】
ここでいう重量平均分子量とは、溶媒として水を用いたゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリエチレングリコールで換算した重量平均分子量を指す。
【0081】
水で測定できない場合においては、ジメチルホルムアミドを用い、それでも測定できない場合においては、テトラヒドロフランを用い、さらに測定できない場合においては、ヘキサフルオロイソプロパノールを用いる。
【0082】
ポリビニルアルコール類は、酢酸ビニルを原料として重合した後に、アルカリ条件下にて加水分解することにより、ポリビニルアルコールを生成させることが一般的であり、その中には、一部酢酸ナトリウムが不純物として残留することが通常であり、市販品においても0.2質量%前後含まれているのが通常である。
【0083】
本発明においては、上記ポリビニルアルコールに含まれる酢酸ナトリウムが、何らかの形で影響し、ポリマーAと有機溶媒に溶解混合してエマルションを形成させる際、その温度が100℃以上であると微粒子が着色したり、ポリビニルアルコールが劣化してリサイクル性が悪化したりすることを見出した。
【0084】
すなわち、ポリマーBであるポリビニルアルコール類が、100℃以上での微粒子化条件下でも安定化するようにするためには、エマルションを形成させる系中に存在させる酢酸ナトリウム量を低減させることが好ましい。そのための方法としては、ポリビニルアルコール類を酢酸ナトリウム含量の少ないポリビニルアルコールを使用することが好ましい。
【0085】
この場合使用するポリビニルアルコール中の酢酸ナトリウムの量は、ポリビニルアルコール100質量部に対して、0.1質量部以下、好ましくは、0.05質量部以下、さらに好ましくは、0.01質量部以下である。
【0086】
この範囲に制御することにより、高温下でポリマーの微粒子化を行っても、ポリビニルアルコール類が、分解、架橋することなどに起因する変質を抑制することができ、高温下でのポリマー微粒子化を安定化することができる。
【0087】
また、好ましい下限は、0質量部である。
【0088】
酢酸ナトリウム含量の少ないポリビニルアルコール類を得るためには、例えば、メタノール、エタノールなどの有機溶媒での洗浄する方法や、水等に溶解した後に、ポリビニルアルコール類の貧溶媒に沈殿させて生成させる再沈殿法、限外ろ過法、イオン交換樹脂やイオン交換担体等により除去する方法などが挙げられる。
【0089】
また、エマルション形成の際、酢酸ナトリウムの影響を抑制する別の方法としては、エマルションを形成させる系に酸化合物を添加する方法が挙げられる。これにより、実質上酢酸ナトリウムが含まれない状態にすることができる。
【0090】
本発明に用いる酸化合物としては、ギ酸、酢酸、吉草酸、酪酸、バレリック酸、ヘキサン酸、ヘプタン酸、オクタン酸、アクリル酸、メタクリル酸、クロトン酸、シュウ酸、マロン酸、フマル酸、マレイン酸、グルタル酸、アジピン酸、セバシン酸、ピルビン酸、コハク酸、ポリアクリル酸などの脂肪族カルボン酸、乳酸、グリコール酸、L−アスコルビン酸、エリソルビン酸、リンゴ酸、シキミ酸、クエン酸、ヒドロコハク酸、酒石酸などのヒドロキシル基含有カルボン酸、安息香酸、2−フロロ安息香酸およびその位置異性体、2−クロロ安息香酸およびその位置異性体、2−ブロモ安息香酸およびその位置異性体、2−ニトロ安息香酸およびその位置異性体、2−トルイル酸およびその位置異性体、フェノキシ酢酸、桂皮酸、フェニルマロン酸、フタル酸、テレフタル酸、サリチル酸などの芳香族カルボン酸、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、プロリン、リジン、アスパラギン酸、グルタミン酸、システイン、メチオニン、フェニルアラニン、チロシン、ヒスチジン、アスパラギン、グルタミン、アルギニン、トリプトファン、オルニチン、サルコシン等などのアミノ酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸およびその位置異性体、p−ヒドロキシベンゼンスルホン酸およびその位置異性体などの有機スルホン酸類、フェニルホスホン酸、ジフェニルホスフィン酸、ジフェニルホスフェート、1−ナフチルホスフェートなどの有機リン酸類、硫酸マグネシウム、塩化マグネシウム、塩化アンモニウム、硫酸アンモニウム等の強酸と弱塩基からなる塩、塩酸、硫酸、燐酸、硝酸、ピロリン酸、トリポリ燐酸等の無機酸などが具体的に挙げられる。これらは1種または2種以上で用いることができる。
【0091】
これら酸化合物は、後述する製造工程のうち、エマルション形成のための加熱が始まる前であれば、いずれの段階で加えてもよく、また、原料の中にあらかじめ入れて使用しておいても良い。
【0092】
この際、酸化合物の添加量としては、使用するポリビニルアルコール類に含有している酢酸ナトリウムに対して、酸官能基のモル比として、0.1〜10倍モルの範囲が好ましく、より好ましくは、0.2〜8倍モルの範囲であり、さらに好ましくは、0.3〜5倍モルの範囲である。
【0093】
酸化合物の添加量が使用するポリビニルアルコール類中に含有している酢酸ナトリウムの量に対して、酸官能基のモル比が少な過ぎる場合は、ポリビニルアルコール類の架橋が進行し、微粒子化工程での粒径制御性が悪化する傾向にある。また、ポリビニルアルコール類の再利用を行う際、2回目以降の粒子径制御性が悪化する傾向にある。さらには、ポリビニルアルコール類の酸化によると推定される色調変化により、微粒子の変色が起きる傾向にある。また、酸官能基のモル比が多過ぎる場合は、酸による影響により、ポリビニルアルコール類の酸化・分解・架橋などが起こる傾向にある。
【0094】
本発明に係る方法に用いる酸化合物としては、酸化合物の第1解離指数(pKa1)が4.5以下のものを用いるのが好ましい。
【0095】
本発明に係る方法は、100℃以上の高温下で実施されることから、耐熱温度が100℃以上のものが好ましい。この際、耐熱温度とは、その酸化合物の分解温度のことを指す。
【0096】
なかでも、100℃以上の耐熱温度を有し、pKa1が、4.5以下であるものの例としては、L−アスコルビン酸、エリソルビン酸、乳酸、リンゴ酸、フマル酸、フタル酸、酒石酸、ギ酸、クエン酸、グリコール酸、サリチル酸、マレイン酸、マロン酸、グルタル酸、シュウ酸、アジピン酸、コハク酸、ヒドロコハク酸、ポリアクリル酸、グルタミン酸、アスパラギン酸、アルギニン、オルニチン、サルコシン、システイン、セリン、チロシン等のアミノ酸、塩酸、硫酸、燐酸、硝酸、ピロリン酸、トリポリ燐酸等の無機酸が使用可能である。中でもクエン酸、酒石酸、マロン酸、シュウ酸、アジピン酸、マレイン酸、リンゴ酸、フタル酸、コハク酸、ポリアクリル酸を好ましく用いることができる。
【0097】
ここでpKaとは、25℃での酸解離指数であり、水溶液中での酸化合物の解離定数の逆数の対数値のことを指す。酸化合物のpKa値については、化学便覧(改訂3版 化学便覧 基礎編 日本化学会編 丸善株式会社出版 昭和59年 発刊)などで参照できる。
【0098】
pKa値は、利便性の点から化学便覧記載のものを好ましく用いる。
【0099】
ポリマーAとポリマーBを溶解させる有機溶媒としては、用いるポリマーA、ポリマーBを溶解し得る有機溶媒であり、各ポリマーの種類に応じて選択される。
【0100】
具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、n−デカン、n−ドデカン、n−トリデカン、シクロヘキサン、シクロペンタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒、クロロホルム、ブロモホルム、塩化メチレン、1−2−ジクロロエタン、1,1,1−トリクロロエタン、クロロベンゼン、2,6−ジクロロトルエン等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン等のケトン系溶媒、メタノール、エタノール、1−プロパノール−2−プロパノール等のアルコール系溶媒、N−メチル−2−ピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、プロピレンカーボネート、トリメチルリン酸、1,3−ジメチル−2−イミダゾリジノン、スルホラン等の非プロトン性極性溶媒、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等のカルボン酸溶媒、アニソール、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジグライム、ジメトキシエタン等のエーテル系溶媒、あるいはこれらの混合物が挙げられる。好ましくは、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、非プロトン性極性溶媒、カルボン酸溶媒である。
【0101】
さらに好ましいものとしては、SP値が20(J/cm
3)
1/2以上のものである。ここでいう、SP値とは、「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)に688−701ページに記載されている値のことをいう。
【0102】
これに記載のないものは、Fedorの推算法に基づき計算を行う。この計算は、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、溶媒SP値の計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
【0103】
中でも好ましいものとしては、水溶性溶媒であるアルコール系溶媒、非プロトン性極性溶媒、カルボン酸溶媒であり、著しく好ましいのは、非プロトン性極性溶媒、カルボン酸溶媒である。
【0104】
本発明においては、100℃以上の高温下でエマルション形成が実施されることから、これら溶媒についても、耐熱性が100℃以上のものがよく、中でも常圧(100kPa)での沸点が100℃以上のものが好ましい。また常圧での沸点が100℃未満の溶媒を使用する場合は、耐圧容器内で、加圧することにより使用することが可能である。このような状況の考慮と、入手が容易で、かつ広範な範囲のポリマーを溶解し得る点でポリマーAへの適用範囲が広く、かつ水やアルコール系溶媒等など後述する貧溶媒として好ましく用い得る溶媒と均一に混合し得る点から、最も好ましくは、N−メチル−2−ピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノンである。
【0105】
これらの有機溶媒は、複数種用いてもよいし、混合して用いても良いが、粒子径が比較的小さく、かつ、粒子径分布の小さい粒子が得られる点、使用済みの溶媒のリサイクル時の分離の工程のわずらわしさを避け、製造上のプロセス負荷低減という観点で、単一の有機溶媒であるほうが好ましく、さらにポリマーA、およびポリマーBの両方を溶解する単一の有機溶媒であることが好ましい。
【0106】
本発明におけるポリマーAの貧溶媒とは、ポリマーAを溶解させない溶媒のことをいう。ポリマーAを溶解させないとは、ポリマーAの貧溶媒に対する溶解度が1質量%以下のものであり、より好ましくは、0.5質量%以下であり、さらに好ましくは、0.1質量%以下である。
【0107】
本発明の製造方法において、ポリマーAの貧溶媒を用いるが、かかる貧溶媒としてはポリマーAの貧溶媒でありかつ、ポリマーBを溶解する溶媒であることが好ましい。これにより、ポリマーAで構成されるポリマー微粒子を効率よく析出させることができる。また、ポリマーAおよびポリマーBを溶解させる溶媒とポリマーAの貧溶媒とは均一に混合する溶媒であることが好ましい。
【0108】
本発明における貧溶媒としては、用いるポリマーAの種類、望ましくは用いるポリマーA、B両方の種類によって、様々に変わるが、具体的に例示するならば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、n−デカン、n−ドデカン、n−トリデカン、シクロヘキサン、シクロペンタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒、クロロホルム、ブロモホルム、塩化メチレン、1、2−ジクロロエタン、1,1,1−トリクロロエタン、クロロベンゼン、2,6−ジクロロトルエン等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン等のケトン系溶媒、メタノール、エタノール、1−プロパノール−2−プロパノール等のアルコール系溶媒、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、トリメチルリン酸、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、スルホラン等の非プロトン性極性溶媒、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等のカルボン酸溶媒、アニソール、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジグライム、ジメトキシエタン等のエーテル系溶媒、水の中から少なくとも1種類から選ばれる溶媒などが挙げられる。
【0109】
ポリマーAを効率的に粒子化させる観点から好ましくは、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、水であり、最も好ましいのは、アルコール系溶媒、水であり、特に好ましくは、水である。
【0110】
なお、本発明は、100℃以上の温度でエマルション形成が実施されることから、常圧での沸点が100℃未満などの溶媒で、本発明を実施する場合や沸点が100℃以上であってもエマルション形成をその沸点以上の温度で実施する場合は、耐圧容器内で、加圧条件で使用することができる。
【0111】
本発明において、ポリマーA、ポリマーB、これらを溶解する有機溶媒およびポリマーAの貧溶媒を適切に選択して組み合わせることにより、効率的にポリマーAを析出させてポリマー微粒子を得ることが出来る。
【0112】
ポリマーA、B、これらを溶解する有機溶媒を混合溶解させた液は、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離することが必要である。この際、ポリマーAを主成分とする溶液相の有機溶媒と、ポリマーBを主成分とする溶液相の有機溶媒とは、同一でも異なっていても良いが、実質的に同じ溶媒であることが好ましい。
【0113】
2相分離の状態を生成する条件は、ポリマーA、Bの種類、ポリマーA、Bの分子量、有機溶媒の種類、ポリマーA、Bの濃度、発明を実施しようとする温度、圧力によって異なってくる。
【0114】
相分離状態になりやすい条件を得るためには、ポリマーAとポリマーBの溶解度パラメーター(以下、SP値と称することもある)の差が離れていた方が好ましい。
【0115】
この際、SP値の差としては1(J/cm
3)
1/2以上、より好ましくは2(J/cm
3)
1/2以上、さらに好ましくは3(J/cm
3)
1/2以上、特に好ましくは5(J/cm
3)
1/2以上、極めて好ましくは8(J/cm
3)
1/2以上である。SP値がこの範囲であれば、容易に相分離しやすくなる。
【0116】
ポリマーAとポリマーBの両者が有機溶媒にとけるのであれば、特に制限はないが、SP値の差の上限として好ましくは20(J/cm
3)
1/2以下、より好ましくは、15(J/cm
3)
1/2以下であり、さらに好ましくは10(J/cm
3)
1/2以下である。
【0117】
ここでいう、SP値とは、Fedorの推算法に基づき計算されるものであり、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
【0118】
本方法により、計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による、実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用する(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
【0119】
相分離状態になる条件を選択するためには、ポリマーA、ポリマーBおよびこれらを溶解する有機溶媒の3成分の比率を変化させた状態の観察による簡単な予備実験で作成できる、3成分相図で判別が出来る。
【0120】
相図の作成は、ポリマーA、Bおよび溶媒を任意の割合で混合溶解させ、静置を行った際に、界面が生じるか否かの判定を少なくとも3点以上、好ましくは5点以上、より好ましくは10点以上の点で実施し、2相に分離する領域および1相になる領域を峻別することで、相分離状態になる条件を見極めることが出来るようになる。
【0121】
この際、相分離状態であるかどうかを判定するためには、ポリマーA、Bを、本発明を実施しようとする温度、圧力にて、任意のポリマーA、Bおよび溶媒の比に調整した後に、ポリマーA、Bを、完全に溶解させ、溶解させた後に、十分な攪拌を行い、3日放置し、巨視的に相分離をするかどうかを確認する。しかし、十分に安定なエマルションになる場合においては、3日放置しても巨視的な相分離をしない場合がある。その場合は、光学顕微鏡・位相差顕微鏡などを用い、微視的に相分離しているかどうかで、相分離を判別する。
【0122】
図1は、ポリマーAとして、ポリアミド(ダイセル・エボニック社製 ‘TROGAMID(登録商標)’、CX7323)、ポリマーBとしてポリビニルアルコール(PVA、日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’GM―14)、有機溶媒として、N−メチル−2−ピロリドン(NMP)による180℃における、3成分相図の例であり、黒丸は、相分離をしなかった点を示し、白抜き丸は、相分離をした点を示す。この黒丸の点と白抜き丸の点から、相分離しない領域と相分離(2相に相分離)する領域を推定することが容易に出来る。この3成分図から、2相に相分離する領域の成分比率で本発明を実施する。
【0123】
具体的には、
図1に示した3成分相図から、相分離しない領域と相分離する領域の境界線が実線のように推定され、境界線の下方の成分比率で本発明を実施する。
【0124】
相分離は、有機溶媒中でポリマーAを主とするポリマーA溶液相と、ポリマーBを主とするポリマーB溶液相に分離することによって形成される。この際、ポリマーA溶液相は、ポリマーAが主として分配された相であり、ポリマーB溶液相はポリマーBが主として分配された相である。この際、ポリマーA溶液相とポリマーB溶液相は、ポリマーA、Bの種類と使用量に応じた体積比を有するようである。
【0125】
相分離の状態が得られ、且つ工業的に実施可能な濃度として、有機溶媒に対するポリマーA、Bの濃度は、有機溶媒に溶解する可能な限りの範囲内であることが前提であるが、全質量に対して好ましくは、それぞれ1質量%超〜50質量%、より好ましくは、それぞれ1質量%超〜30質量%、さらに好ましくは、それぞれ2質量%〜20質量%である。
【0126】
本発明における、ポリマーA溶液相とポリマーB溶液相の2相間の界面張力は、両相とも有機溶媒であることから、その界面張力が小さく、その性質により、生成するエマルションが安定に維持できることから、粒子径分布が小さくなるようである。特に、ポリマーA相とポリマーB相の有機溶媒が同一である時は、その効果が顕著である。
【0127】
本発明における2相間の界面張力は、界面張力が小さすぎることから、通常用いられる溶液に異種の溶液を加えて測定する懸滴法などでは直接測定することは出来ないが、各相の空気との表面張力から推算することにより、界面張力を見積もることが出来る。各相の空気との表面張力をr
1、r
2とした際、その界面張力r
1/2は、r
1/2=r
1−r
2の絶対値で推算することができる。この際、このr
1/2の好ましい範囲は、0超〜10mN/mであり、より好ましくは0超〜5mN/mであり、さらに好ましくは、0超〜3mN/mであり、特に好ましくは、0超〜2mN/mである。
【0128】
このようにして得られた相分離する系を用い、相分離した液相を混合させ、エマルション化させた後、貧溶媒を接触させることによりポリマー微粒子を製造する。
【0129】
微粒子化を行うには、通常の反応槽でエマルション形成および貧溶媒を接触させる工程(以下、微粒子化工程と称することもある。)が実施される。
【0130】
本発明は、高耐熱ポリマーを微粒子化する方法であり、その工業的な操作の面で、エマルションの形成のしやすさから、エマルションを形成する温度は100℃以上である。上限としてはポリマーA、Bが溶解し、相分離する温度であって、所望の微粒子が得られるならば特に制限はないが、通常100℃〜300℃の範囲であり、好ましくは、100℃〜280℃であり、より好ましくは、120℃〜260℃であり、さらに好ましくは、120℃〜240℃であり、特に好ましくは、120℃〜220℃であり、最も好ましくは、120℃〜200℃の範囲である。
【0131】
ポリマー微粒子が、材料として使用される場合、使用する環境により、よりいっそう粒度分布が狭いものが求められる場合がある。
【0132】
このような要求に対しては、エマルションを形成させた後に続く、貧溶媒を接触させる工程(微粒子化工程)における温度制御が有効であり、その温度としては、通常100℃〜300℃の範囲であり、好ましくは、100℃〜280℃であり、より好ましくは、120℃〜260℃であり、さらに好ましくは、120℃〜240℃であり、特に好ましくは、120℃〜220℃であり、最も好ましくは、120℃〜200℃の範囲である。中でも製造工程の管理の容易さから、エマルション形成温度と同じ温度にするのが好ましい。
【0133】
ポリマー微粒子は、材料として使用される状況に応じて粒子の表面形状を設計することが必要な場合があり、特に粉体の流動性を向上させたり、粉体のすべり性を向上させたり、触感を向上させたりするためには、表面形状の制御が重要であり、粒度分布が狭いだけでなく、より高度に真球状化した微粒子が求められることがある。
【0134】
このような要望に向けて、本発明における微粒子化法では、その粒子形状を真球化させるためには、エマルション化工程および微粒子化工程の温度を、以下のように制御することでより高度に真球化させることができる。
【0135】
即ち、ポリマーAの熱特性である降温結晶化温度よりも高い温度でエマルション形成および貧溶媒を接触させる工程を行い、微粒子化を行うことで、よりいっそう粒度分布を狭くし、かつより高度に真球状化した微粒子を得ることができる。
【0136】
ここで、降温結晶化温度とは、示差走査熱量測定法(DSC法)により、測定される結晶化温度のことを指し、30℃から、当該ポリマーの融点よりも30℃超える温度までの温度範囲を、20℃/分の昇温速度で1回昇温させた後に、1分間保持した後、20℃/分で0℃まで降温させたときに、観測させる発熱ピークのピークトップのことを指す。
【0137】
本発明を実施するにふさわしい圧力は、工業的な実現性の観点から、常圧状態から100気圧(10.1MPa)の範囲であり、好ましくは、1気圧(101.3kPa)〜50気圧(5.1MPa)の範囲であり、さらに好ましくは、1気圧(101.3kPa)〜30気圧(3.0MPa)であり、特に好ましくは、1気圧(101.3kPa)〜20気圧(2.0MPa)である。
【0138】
本発明における微粒子化は、高い温度領域であり、場合によっては高圧下もあり得るため、ポリマーA、ポリマーBや有機溶媒の熱分解を促進しやすい状態にあることから、極力酸素濃度が低い状態で行うことが好ましい。この際、反応槽の雰囲気の酸素濃度は、5体積%以下が好ましく、より好ましくは、1体積%以下、より好ましくは、0.1体積%以下、さらに好ましくは、0.01体積%以下、特に好ましくは、0.001体積%以下である。
【0139】
なお、微量酸素濃度の測定は、実質的には難しいため、酸素濃度は、反応容器内の容積、不活性ガスの酸素体積濃度、容器内の置換圧力及びその回数から理論的に算出するものとする。
【0140】
また、反応槽は不活性ガスを使用することが好ましい。具体的には、窒素、ヘリウム、アルゴン、二酸化炭素であり、好ましくは、窒素、アルゴンである。
【0141】
また、微粒子化に使用する原料の酸化劣化を防止する観点から、酸化防止剤を添加剤として使用しても良い。
【0142】
酸化防止剤としては、ラジカルを補足する目的で添加することから、フェノール系酸化防止剤、硫黄系酸化防止剤、芳香族アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などが挙げられる。
【0143】
これら酸化防止剤の具体例としては、フェノール、ハイドロキノン、p−メトキシフェノール、ベンゾキノン、1,2−ナフトキノン、クレゾール 、カテコール、安息香酸、ヒドロキシ安息香酸、サリチル酸、ヒドロキシベンゼンスルホン酸、2,5−ジ−t−ブチルハイドロキノン、6−t−ブチル −m−クレゾール 、2,6−ジ−t−ブチル −p−クレゾール 、4−t−ブチルカテコール、2,4−ジメチル−6−t−ブチルフェノール、2−t−ブチルハイドロキノン、2−t−ブチル −4−メトキシフェノール等が挙げられる。
【0144】
酸化防止剤の濃度については、特に限定されないが、ポリマーBの質量に対して0.001〜10質量%が好ましく、0.01〜5質量%がさらに好ましく、0.05〜3質量%が最も好ましい。
【0145】
このような条件下にて、相分離系状態を混合することにより、エマルションを形成させる。すなわち上記で得られた相分離溶液に、剪断力を加えることにより、エマルションを生成させる。
【0146】
本製造法で得られる微粒子は、粒子径分布が極めて小さい微粒子になるが、これは、エマルション形成を高温で行うことにより、そうでない場合に比較してよりいっそう均一なエマルションが得られるからである。この傾向はポリマーA、Bの両方を溶解する単一溶媒を用い、ポリマーAとして高耐熱性のポリマー、特に結晶性のポリマーを使用する際に顕著である。このため、エマルションを形成させるに十分な剪断力を得るためには、従前公知の方法による攪拌を用いれば十分であり、攪拌羽による液相攪拌法、連続2軸混合機による攪拌法、ホモジナイザーによる混合法、超音波照射等通常公知の方法で混合することが出来る。
【0147】
特に、攪拌羽による攪拌の場合、攪拌羽の形状にもよるが、攪拌速度は、好ましくは50rpm〜1,200rpm、より好ましくは、100rpm〜1,000rpm、さらに好ましくは、200rpm〜800rpm、特に好ましくは、300〜600rpmである。
【0148】
攪拌羽としては、具体的には、プロペラ型、パドル型、フラットパドル型、タービン型、ダブルコーン型、シングルコーン型、シングルリボン型、ダブルリボン型、スクリュー型、ヘリカルリボン型などが挙げられるが、系に対して十分に剪断力をかけられるものであれば、これらに特に限定されるものではない。また、効率的な攪拌を行うために、槽内に邪魔板等を設置してもよい。
【0149】
また、エマルションを発生させるためには、攪拌機だけでなく、乳化機、分散機など広く一般に知られている装置を用いてもよい。具体的に例示するならば、ホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー(特殊機化工業社製)等のバッチ式乳化機、エバラマイルダー(荏原製作所社製)、TKフィルミックス、TKパイプラインホモミキサー(特殊機化工業社製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機社製)、超音波ホモジナイザー、スタティックミキサーなどが挙げられる。
【0150】
このようにして得られたエマルションは、引き続き微粒子を析出させる工程に供する。
ポリマーAの微粒子を得るためには、ポリマーAに対する貧溶媒を、前記工程で製造したエマルションに接触させることでエマルション径に応じた径で、微粒子を析出させる。
【0151】
貧溶媒とエマルションの接触方法は、貧溶媒にエマルションを入れる方法でも良いし、エマルションに貧溶媒を入れる方法でも良いが、エマルションに貧溶媒を入れる方法が好ましい。
【0152】
この際、貧溶媒を投入する方法としては、本発明で製造するポリマー微粒子が得られる限り特に制限はなく、連続滴下法、分割添加法、一括添加法のいずれでも良いが、貧溶媒添加時にエマルションが凝集・融着・合一し、粒子径分布が大きくなったり、1000μmを超える塊状物が生成しやすくならないようにするために、好ましくは連続滴下法、分割滴下法であり、工業的に効率的に実施するためには、最も好ましいのは、連続滴下法である。
【0153】
また、貧溶媒を加える時間としては、10分以上50時間以内であり、より好ましくは、30分以上10時間以内であり、さらに好ましくは1時間以上5時間以内である。
【0154】
この範囲よりも短い時間で実施すると、エマルションの凝集・融着・合一に伴い、粒子径分布が大きくなったり、塊状物が生成したりする場合がある。また、これ以上長い時間で実施する場合は、工業的な実施を考えた場合、非現実的である。
【0155】
この時間の範囲内で行うことにより、エマルションからポリマー微粒子に転換する際に、粒子間の凝集を抑制することができ、粒子径分布の小さいポリマー微粒子を得ることができる。
【0156】
加える貧溶媒の量は、エマルションの状態にもよるが、好ましくは、エマルション総重量1質量部に対して、0.1質量部から10質量部、より好ましくは、0.1質量部から5質量部、さらに好ましくは、0.2質量部から3質量部であり、特に好ましくは、0.2質量部から2質量部であり、最も好ましくは、0.2質量部から1.0質量部である。
【0157】
貧溶媒とエマルションとの接触時間は、微粒子が析出するのに十分な時間であればよいが、十分な析出を引き起こしかつ効率的な生産性を得るためには、貧溶媒添加終了後5分から50時間であり、より好ましくは、5分以上10時間以内であり、さらに好ましくは10分以上5時間以内であり、特に好ましくは、20分以上4時間以内であり、最も好ましくは、30分以上3時間以内である。
【0158】
このようにして作られたポリマー微粒子分散液は、ろ過、減圧濾過、加圧ろ過、遠心分離、遠心ろ過、スプレードライ等の通常公知の方法で固液分離することにより、微粒子粉体を回収することが出来る。
【0159】
固液分離したポリマー微粒子は、必要に応じて、溶媒等で洗浄を行うことにより、付着または含有している不純物等の除去を行い、精製を行う。
【0160】
本発明の方法においては、微粒子粉体を得る際に行った固液分離工程で分離された有機溶媒及びポリマーBを再度活用するリサイクル化を行うことが可能であることが有利な点である。
【0161】
この際、リサイクルする上では、有機溶媒及びポリマーBが一連の微粒子製造工程において、物質の変化が抑制されていることが安定な製造を継続する要件になる。本発明の方法を用いれば、これまで課題であったポリマーBの変化を抑えることができるため、有機溶剤及びポリマーBのリサイクルをしても、製造バッチごとに品質が変化することなく、安定的に製造できるという利点を有する。
【0162】
固液分離で得た溶媒は、ポリマーB、有機溶媒および貧溶媒の混合物である。この溶媒から、貧溶媒を除去することにより、エマルション形成用の溶媒として再利用することが出来る。貧溶媒を除去する方法としては、通常公知の方法で行われ、具体的には、単蒸留、減圧蒸留、精密蒸留、薄膜蒸留、抽出、膜分離などが挙げられるが、好ましくは単蒸留、減圧蒸留、精密蒸留による方法である。
【0163】
単蒸留、減圧蒸留等の蒸留操作を行う際は、ポリマー微粒子製造時と同様、系に熱がかかり、ポリマーBや有機溶媒の熱分解を促進する可能性があることから、極力酸素のない状態で行うことが好ましく、より好ましくは、不活性雰囲気下で行う。具体的には、窒素、ヘリウム、アルゴン、二酸化炭素条件下で実施することが好ましい。また、酸化防止剤としてフェノール系化合物を再添加しても良い。
【0164】
リサイクルする際、貧溶媒は、極力除くことが好ましいが、具体的には、貧溶媒の残存量が、リサイクルする有機溶媒及びポリマーBの合計量に対して、10質量%以下、好ましくは5質量%以下、より好ましくは、3質量%以下、特に好ましくは、1質量%以下である。この範囲よりも超える場合には、微粒子の粒子径分布が大きくなったり、粒子が凝集したりするので、好ましくない。
【0165】
リサイクルで使用する溶媒中の貧溶媒の量は、通常公知の方法で測定でき、ガスクロマトグラフィー法、カールフィッシャー法などで測定できる。
【0166】
貧溶媒を除去する操作において、現実的には、有機溶媒、ポリマーBなどをロスすることもあるので、適宜、初期の組成比に調整し直すのが好ましい。
【0167】
このようにして得られた微粒子の粒径は、通常1000μm以下、好ましい態様によれば、500μm以下であり、より好ましい態様によれば、300μm以下、さらに好ましい態様によれば、100μm以下、特に好ましい態様によれば、50μm以下のものを製造することが可能である。下限としては、通常50nm以上、好ましい態様によれば、100nm以上であり、より好ましい態様によれば、500nm以上、さらに好ましい態様によれば、1μm以上、特に好ましい態様によれば、10μm以上のものを製造することが可能である。
【0168】
また、本発明において得られる微粒子の粒子径分布は、エマルション形成を100℃未満で行う場合に比較して小さい粒子径分布指数となる。多くの場合、粒子径分布指数として3以下であり、好ましい態様によれば、2以下であり、より好ましい態様によれば、1.5以下であり、特に好ましい態様によれば、1.2以下であり、最も好ましい態様によれば、1.1以下であるものを製造することが可能である。また、好ましい下限は1である。本発明において特記すべきはエマルション形成を100℃以上で行うことにより、100℃未満で行った場合に比較して、より小さい粒子径分布指数を有する微粒子を製造できる点である。かかる効果は、高耐熱性のポリマー、特に結晶性熱可塑性樹脂の微粒子を製造する場合に特に顕著であり、これにより結晶性熱可塑性樹脂微粒子において、粒度分布の狭い微粒子を簡便に形成させることができる。
【0169】
微粒子の平均粒子径は、走査型電子顕微鏡写真から任意の100個の粒子直径を特定し、その算術平均を求めることにより算出することが出来る。上記写真において、真円状でない場合、即ち楕円状のような場合は、粒子の最大径をその粒子径とする。粒子径を正確に測定するためには、少なくとも1000倍以上、好ましくは、5000倍以上の倍率で測定する。
【0170】
粒子径分布指数は、上記で得られた粒子直径の値を、下記数値変換式に基づき、決定される。
【0172】
尚、Ri:粒子個々の粒子径、n:測定数100、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
【0173】
本方法は、ポリマーA溶液相とポリマーB溶液相からなるエマルションを経由した微粒子の製造法であり、高温下でのポリマー溶液を利用することから、特にこれまで製造が困難であった、耐熱性の高いポリマー、即ちガラス転移温度あるいは融点が100℃以上を有するポリマー微粒子を製造するのに好適である。
【0174】
しかし、本発明の製造法は、高耐熱のポリマーAの微粒子を製造するための技術であるが、必ずしも高耐熱のポリマーAの微粒子に限定されるものではない。すなわち耐熱性の指標となる、ガラス転移温度や融点が比較的低くても100℃未満におけるポリマーAの溶媒に対する溶解性が十分でなく、高温下での溶解が必要な樹脂などにおいても、本方法は好適に用いられる。よってポリマーの中でも、ガラス転移温度または融点が50℃以上のものについても適用可能であり、好ましくは、100℃以上のもの、さらに好ましくは、150℃以上のものに対して好適であり、その上限は、溶解性の観点から、400℃以下のものについて、好適である。
【0175】
特に、近年ポリマー微粒子には、粒子径分布を小さくすることと同時に、材質の高耐熱化が要求される用途が多数あり、ビニル系ポリマーでは、一般的に架橋を行ったり、特殊なモノマーを用いたりすることによりかかる課題の解決がなされているが、本発明によりかかる特別なポリマー設計を要せずとも、高耐熱性のポリマーをそのままのポリマー設計で微粒子化するができるので、好適である。
【0176】
ここでいう、ガラス転移温度とは、示差走査熱量測定法(DSC法)を用いて、30℃から予測されるガラス転移温度よりも30℃高い温度以上まで、昇温速度、20℃/分の昇温条件で昇温し、1分間保持した後、20℃/分の降温条件で0℃まで一旦冷却し、1分間保持した後、再度20℃/分の昇温条件で測定した際に観察されるガラス転移温度(Tg)を指す。また、融点は、二度目の昇温時に融解熱量を示した際のピークトップの温度のことを指す。
【0177】
また本発明では、ポリエーテルスルホン、ポリカーボネート、ビニル系ポリマー、ポリアミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリオレフィン、ポリスルホン、ポリエステル、ポリエーテルケトン、ポリエーテルエーテルケトンなどのような熱可塑性樹脂のポリマー微粒子、より好ましくはポリアミド、ポリエステル、ポリフェニレンスルフィドのような結晶性熱可塑性樹脂のポリマー微粒子で、特に耐熱性の高いポリマー微粒子を得るのに好適である。
【0178】
このように本発明の方法で作成された微粒子は、粒子径分布の小さい粒子が得られることや、ポリマーでの微粒子化、特に耐熱性に優れるポリマーの微粒子を品質よく、安定的に製造できることから、産業上、各種用途で、極めて実用的に利用することが可能である。
【0179】
特に本発明における微粒子は、その粒度分布が狭く、材質の選択が容易であることから、液晶ディスプレイなどに使われる導光板と反射板とのスペーサーに好適である。中でも、CCFLまたはLEDを用いたサイドライト方バックライトで用いられる反射板用途で、筐体の凹凸によって導光板と反射板の間に押圧力がかかる場合や静電気が生じる場合に、導光板と反射板との間に貼り付きが生じ、その結果、導光板表面に印刷された凹凸が削られたり、点灯時の液晶ディスプレイに部分的な白点の発生による不具合を生じる場合があり、これを防止するため反射板等の表面に凹凸を付与するために粒子を含む塗液を塗布することが行われることがあるが、その際の粒子として本発明の有機粒子(プラスティックビーズ)に好適である。
【0180】
このような有機粒子は、本発明の方法で製造することができ、その中でも特に、エーテル結合を含む熱可塑性樹脂からなるものは、エーテル結合を含むことによって、有機粒子とバインダー樹脂との親和性を増し脱落を防ぐことができるため、非常に優れている。
【0181】
エーテル結合を含む熱可塑性樹脂としては、ポリエーテル樹脂やポリエーテルと他の樹脂との共重合により形成される樹脂などが挙げられる。具体的には、ポリオキシメチレン、ホルマール樹脂、ポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルスルホン、ポリフェニルスルホン、ポリエーテルイミド、ポリエーテルエステル、ポリエーテルエステルアミド、ポリエーテルアミド、スピログリコールを含有するポリエステル等が挙げられるが、透明性、再生性の観点から、ポリエーテルエステル、スピログリコールを含有するポリエステルが好ましく用いられる。特に好ましくは、弾性率を共重合比率で調整可能なポリエーテルエステルである。ポリエーテルエステルの具体例としては、種々の商品名、例えば、デュポン社、もしくは東レ・デュポン株式会社の「ハイトレル(HYTREL)」(登録商標)、チコナ(Ticona)社の「リテフレックス(RITEFLEX)」(登録商標)およびDSM社の「アーニテル(ARNITEL)」(登録商標)などがあり、多くの会社から販売されている。
【0182】
本用途において用いられる有機粒子の素材である熱可塑性樹脂は、その曲げ弾性率が500MPaよりも大きく
2500MPa以下であ
る。曲げ弾性率の上限として
は、2500MPa以下であり、さらに好ましくは、2000MPa以下である。また、曲げ弾性率の下限としては、500MPaよりも大きい範囲であるが、より好ましくは、550MPa以上であり、さらに好ましくは、600MPa以上であり、特に好ましくは、800MPa以上であり、著しく好ましくは、1000MPa以上である。本発明での曲げ弾性率とはASTM−D790−98で測定された値をいう。このときの測定には有機粒子を構成する熱可塑性樹脂を90℃で3時間以上熱風乾燥したペレットを、射出成形機(日精樹脂工業製 NEX−1000)を用いて、シリンダー温度240℃、金型温度50℃の成形条件で成形して得られる、127×12.7×6.4mmの曲げ試験片をサンプルとして使用するものとする。曲げ弾性率が上記範囲よりも小さいと、白色フィルム上に塗布し反射板として液晶ディスプレイに組み込んだ時に白点が生じる場合がある。曲げ弾性率が上記範囲より大きいと導光板と反射板がこすれ合った時に導光板に傷が生じる場合がある。熱可塑性樹脂の曲げ弾性率を上記範囲内に調整するためには、例えば上記ポリエーテルエステル樹脂中の長鎖のポリアルキレングリコールの共重合量を適宜調節すればよい。また、デュポン社もしくは東レ・デュポン株式会社の「ハイトレル(HYTREL)」シリーズではハイトレル7247(東レ・デュポン株式会社製)やハイトレル8238(デュポン社製)がエーテル結合を含有する熱可塑性樹脂として上記範囲内の曲げ弾性率を達成する。
【0183】
上記反射板等の用途に用いられる有機粒子の数平均粒子径は3μm以上60μm以下であることが好ましく、4μm以上20μm以下であることがより好ましく、5μm以上15μm以下であることがさらに好ましい。3μm未満であると、反射フィルム上に塗布し液晶ディスプレイに組み込んだ時に白点が生じる場合があり、また60μmより大きいと粒子が脱落する場合がある。また、板の表面に凹凸を付与し、他の板との層間の貼り付きを防止する観点からは、1μm以上であることが好ましく、2μm以上であることがより好ましい。上限としては用途にもよるが電子情報機器に使われる材料としてでは一般に100μm以下が好ましい。
【0184】
本発明のエーテル結合を有する熱可塑性樹脂からなる微粒子はその粒子径分布指数が1〜3とされる。より好ましくは1〜2であり、最も好ましくは1〜1.5である。粒子径分布指数が上記範囲にあることによって、導光板に反射板が押し付けられる状況下において、一部の粒径が大きな粒子のみが導光板に密着および粒子が変形することによって、白点が生じやすくなることを防ぐことが出来る。また、粒子分布指数が上記範囲より大きい場合(つまり、粗大粒子を含む場合)、塗布工程においてメイヤーバーの粒子詰まりが起こり、塗布スジが発生する場合があり、塗布外観の観点から好ましくない場合がある。粒子径分布指数を上記範囲にする方法としては、前記したエマルションを形成させ、貧溶媒を添加することで微粒子を得る方法において、エマルジョン形成および微粒子化工程を実施する温度が100℃以上であることが好ましく用いることができる。
【0185】
上記反射板等に用いられる積層フィルムは、通常基材フィルムと少なくともその一方の表面に設けられたバインダー樹脂および有機粒子を含有する塗布層とからなる。
本発明に係る積層フィルムは、曲げ弾性率が500MPaよりも大きく2500MPa以下であるエーテル結合を含む熱可塑性樹脂からなり、粒子径分布指数が1〜3であるポリマー微粒子およびバインダー樹脂を含有する塗布層と、少なくとも一方の表面に前記塗布層が設けられた基材フィルムからなる積層フィルムであり、本発明に係る液晶ディスプレイ用反射板は、このような積層フィルムを用いてなるものである。
【0186】
有機粒子は塗布層中でバインダー樹脂によって被覆されていることが好ましい。有機粒子がバインダー樹脂によって被覆されることで、脱落しにくくすることができる。有機粒子をバインダー樹脂によって被覆させるためには、有機粒子がエーテル結合を含む熱可塑性樹脂であり、塗液に含まれるバインダー樹脂が水溶性樹脂であることが好ましい。なかでもスルホン酸基、カルボン酸基、水酸基およびそれらの塩から選ばれた少なくとも1種の官能基を含有する樹脂であることが好ましい。さらに好ましくはカルボン酸基および/またはカルボン酸基塩を有するモノマーが共重合された樹脂である。また、被覆状態については、粒子断面のSEMもしくはTEMにより確認することができる。このときルテニウム染色などを用いることによってより明確に確認することができる。
【0187】
上記バインダー樹脂が水溶性であると、後述する基材フィルムおよび有機粒子との親和性がよく、表面の凹凸の状態と塗布厚みのバランスを好ましい状態とし、有機粒子の脱落が少ない塗布層を形成することができる。また、バインダー樹脂が水溶性樹脂であることにより、バインダー樹脂および有機粒子を水に溶解および分散させた塗液状態にして使用することができる。もちろん、バインダー樹脂と有機粒子を予め別々に水に溶解または分散させたものを任意に混合して使用してもよい。水を用いた塗液を用いることによって、インラインコーティング法において塗布が可能となるため省コストの観点からも好ましい。バインダー樹脂に上記の官能基を有するモノマーを共重合する方法は公知の方法をとることができる。水溶性樹脂はポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂からなる群より選ばれる少なくとも一種から形成されることが好ましく、ポリエステル樹脂またはアクリル樹脂であることがより好ましい。バインダー樹脂は、基材フィルムとの密着性がよく、また透明であることが好ましく、上記樹脂はこれらの特性を満たすことができる。これら水溶性樹脂としては、DIC(株)製の製品名ウォーターゾール(登録商標)や高松油脂(株)のペスレジン等が入手可能である。
【0188】
また塗布層を形成するバインダー樹脂には、発明の効果を阻害しない範囲内で各種の添加剤を添加することが出来る。添加剤としては、例えば、酸化防止剤、架橋剤、蛍光増白剤、帯電防止剤、カップリング剤などを用いることができる。
【0189】
本発明の有機粒子は、反射板として好適に使用できるが、その際この反射板の基材フィルムは、特に限定されず、透明であっても不透明であっても良い。透明なフィルムとしてはポリエステルフィルム、ポリオレフィンフィルム、ポリスチレンフィルム、ポリアミドフィルムなどが挙げられるが、成形のしやすさの観点からポリエステルフィルムが好ましく用いられる。また、不透明なフィルムとしては特開平4−239540号公報、特開2004−330727号公報などに例示される白色フィルムや、特開平6−305019号公報などに例示されるポリフェニレンスルフィドフィルムなどが挙げられる。
【0190】
上記粒子を液晶ディスプレイの反射板として用いる場合は、積層構造をもつ積層フィルムであることが好まし
いので、本発明に係る積層フィルムでは、基材フィルムと少なくともその一方の表面に設けられたバインダー樹脂および有機粒子を含有する塗布層とからなる
構成を有する。
【0191】
塗布層の形成方法としては、二軸延伸後の基材フィルムに塗液を塗布する方法(オフラインコーティング法)のほか、塗液の塗布後にフィルムを延伸して熱処理する方法(インラインコーティング法)がある。塗布層と基材フィルムとの密着性および省コストの観点からは、インラインコーティング法が好ましい。インラインコーティング法としては、未延伸フィルム表面に塗液を塗布した後に二軸方向に延伸する方法、または、一軸延伸フィルム表面に塗液を塗布した後に先の一軸延伸方向と交差する方向(例えば一軸延伸方向と直交する方向)にさらに延伸する方法などが挙げられるが、後者が好ましい。
【0192】
このようにして得られる反射板は、本発明の粒子の効果により、CCFLまたはLEDを用いたサイドライト方式バックライトで用いる用途で、筐体の凹凸によって導光板と反射板の間に押圧力がかかる場合や静電気が生じる場合に、導光板と反射板との間に貼り付きによる導光板表面に印刷された凹凸が削られや、点灯時の液晶ディスプレイに部分的な白点の発生による不具合を防止することができる。
【実施例】
【0193】
以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらに限定されるものではない。
【0194】
(1)平均粒子径および粒子径分布測定方法
微粒子の個々の粒子径は、走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM−6301NF)にて、微粒子を1000倍で観察し、測長した。尚、粒子が真円でない場合は、長径をその粒子径として測定した。平均粒子径は、写真から任意の100個の粒子直径を測長し、その算術平均を求めることにより算出した。
【0195】
粒子径分布を示す粒子径分布指数は、上記で得られた個々の粒子直径の値を、下記数値変換式に基づき算出した。
【0196】
【数2】
【0197】
尚、Ri:粒子個々の粒子直径、n:測定数100、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
【0198】
(2)界面張力の測定法
協和界面科学株式会社 自動接触角計 DM−501を装置として用い、ホットプレート上で、ポリマーA溶液相、ポリマーB溶液相について、各相と空気との表面張力との関係から、各相の表面張力の結果をr
1、r
2とし、その差である(r
1−r
2)の絶対値から界面張力を算出した。
【0199】
(3)ポリビニルアルコール類の分子量測定
重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリエチレングリコールによる校正曲線と対比させて分子量を算出した。
装置:株式会社島津製作所製 LC−10Aシリーズ
カラム:昭和電工株式会社製 GF−7MHQ ×2本
移動相:10mmol/L 臭化リチウム水溶液
流速:1.0ml/min
検出:示差屈折率計
カラム温度:40℃。
【0200】
(4)示差走査熱量測定
示差走査熱量計(セイコーインスツル株式会社製 ロボットDSC RDC220)を用い、窒素雰囲気下、前述の方法で測定した。
【0201】
(5)溶媒中の水分測定
リサイクル溶媒中の水分を測定するにあたり、カールフィッシャー法(機種名:水分測定機 CA−06 三菱化学社製)を用い測定した。
【0202】
(6)ポリビニルアルコール類に含まれる酢酸ナトリウムの定量方法
日本工業規格「ポリビニルアルコール試験方法」(K6726−1994年度)に記載の酢酸ナトリウム溶解滴定法によって測定を行った。
【0203】
参考例1<ポリビニルアルコール類中の酢酸ナトリウムの洗浄1>
ポリビニルアルコール(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’ GM−14 重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含量0.23質量%)をソックスレー抽出装置中の円筒ろ紙(直径26cm×高さ13cm)に、12gを加え、メタノール150mlにより、加熱還流を8時間行った。得られたポリビニルアルコールを加熱真空乾燥機にて、80℃10時間乾燥することにより、酢酸ナトリウムの含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.01質量%であった。
【0204】
参考例2<ポリビニルアルコール類中の酢酸ナトリウムの洗浄2>
1Lのナスフラスコ中に、ポリビニルアルコール(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’ GM−14 重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含量0.23質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.05質量%であった。
【0205】
参考例3<ポリビニルアルコール類中の酢酸ナトリウムの洗浄3>
1Lのナスフラスコ中に、ポリビニルアルコール(日本合成化学工業株式会社製 A型‘ゴーセノール(登録商標)’ AL−06R 重量平均分子量 11,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含量0.23質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.04質量%であった。
【0206】
参考例4<ポリビニルアルコール類中の酢酸ナトリウムの洗浄4>
1Lのナスフラスコ中に、ポリビニルアルコール(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’ GL−05 重量平均分子量 11,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含量0.23質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.05質量%であった。
【0207】
参考例5<ポリビニルアルコール類中の酢酸ナトリウムの洗浄5>
1Lのナスフラスコ中に、ポリビニルアルコール(和光純薬学工業株式会社製 PVA−1500 重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含量0.20質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.05質量%であった。
【0208】
参考実施例1<酢酸ナトリウム含量の少ないポリビニルアルコールを使用したポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN−メチル−2−ピロリドン(SP値23.1(J/cm
3)
1/2) 287g、ポリマーBとして参考例1で作成した酢酸ナトリウム含量の少ないポリビニルアルコール 28gを加え、99体積%以上の窒素にて、置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 24.0μm、粒子径分布指数 1.11のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、250℃、融解熱量は、23.7J/gであり、降温結晶化温度は検出されなかった。SP値は、計算法により、23.3(J/cm
3)
1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0209】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,800であり、使用前とほとんど変化は無かった。
【0210】
参考実施例2<酢酸ナトリウム含量の少ないポリビニルアルコールを使用した製造方法2>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN−メチル−2−ピロリドン 287g、ポリマーBとして参考例2で作成した酢酸ナトリウム含量の少ないポリビニルアルコール 28gを加え、99体積%以上の窒素で置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 24.8μm、粒子径分布指数 1.23のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0211】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,100であり、使用前とほとんど変化は無かった。
【0212】
参考実施例3<酸の添加によるポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を28g、有機溶媒としてN−メチル−2−ピロリドン 301g、ポリマーBとしてポリビニルアルコール 21g(日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’、GM−14、重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含量0.23質量%)を加え、酸として酒石酸(pKa1=2.82、熱分解温度275℃)0.21g(酸官能基量が、酢酸ナトリウムに対して4.74倍モル)を添加し、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gの水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を27.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 77.5μm、粒子径分布指数 2.00のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0213】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,200であり、使用前とほとんど変化は無かった。
【0214】
参考実施例4<非晶ポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 12,300、エムザベルケ社製 ‘グリルアミド(登録商標)’ TR55)を35g、有機溶媒としてN−メチル−2−ピロリドン 287g、ポリマーBとして参考例2で作成した酢酸ナトリウムの少ないポリビニルアルコール 28g(重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を33.8g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 20.6μm、粒子径分布指数1.19のポリアミド微粒子であった。なお、本実施例で用いたポリアミドは、融点を有さず、融解熱量は観測されなかった。SP値は、計算法により求め、23.3(J/cm
3)
1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0215】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0216】
参考実施例5<ナイロン1010微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド1010(重量平均分子量 38,000、アルケマ社製 ‘リルサン(登録商標)’ AESNOTL−44)を35g、有機溶媒としてN−メチル−2−ピロリドン 273g、ポリマーBとして参考例2で作成した酢酸ナトリウムの少ないポリビニルアルコール 42g(重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約110gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 11.8μm、粒子径分布指数1.21のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、207℃、融解熱容量は、29.0J/g、降温結晶化温度は、144℃であった。SP値は、計算法により求め、22.47(J/cm
3)
1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0217】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0218】
参考実施例6<ナイロン610微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド610(重量平均分子量 37、000、東レ株式会社製‘アミラン(登録商標)’CM2001)を42g、有機溶媒としてN−メチル−2−ピロリドン 266g、ポリマーBとして参考例3で作成した酢酸ナトリウムの少ないポリビニルアルコール 42g(重量平均分子量 11,000、SP値32.8(J/cm
3)
1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約50gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を41.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 5.4μm、粒子径分布指数5.25のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、225℃、融解熱容量は、53.2J/g、降温結晶化温度は、167℃であった。SP値は、計算法により求め、23.60(J/cm
3)
1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0219】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0220】
参考実施例7<ナイロン11微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド11(重量平均分子量 38、000、アルケマ社製 ‘リルサン(登録商標)’ BMNO)を24.5g、有機溶媒としてN−メチル−2−ピロリドン 301g、ポリマーBとして参考例2で作成した酢酸ナトリウムの少ないポリビニルアルコール 24.5g(重量平均分子量 11,000、SP値32.8(J/cm
3)
1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約50gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を24.1g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 10.5μm、粒子径分布指数1.40のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、196℃、融解熱容量は 25.8J/g、降温結晶化温度は、144℃であった。SP値は、計算法により求め、22.04(J/cm
3)
1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0221】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0222】
参考実施例8<ナイロン12微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド12(重量平均分子量 38、000、アルケマ社製 ‘リルサン(登録商標)’ AESNOTL−44)を17.5g、有機溶媒としてN−メチル−2−ピロリドン 315g、ポリマーBとして参考例4で作成した酢酸ナトリウムの少ないポリビニルアルコール 17.5g(重量平均分子量 11,000、SP値32.8(J/cm
3)
1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約50gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を17.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 3.8μm、粒子径分布指数2.98のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は183℃、融解熱容量は27.3J/g、降温結晶化温度は、138℃であった。SP値は、計算法により求め、21.70(J/cm
3)
1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0223】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0224】
参考実施例9<酸の添加によるポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミドCX7323(重量平均分子量 17,000、ダイセル・エボニック社製)を21g、有機溶媒としてN−メチル−2−ピロリドン 287g、ポリマーBとしてポリビニルアルコール 42g(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’GM−14、重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2)および酒石酸 0.21gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約30gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を20.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 22.4μm、粒子径分布指数1.15のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0225】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0226】
参考実施例10<酸の添加によるポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミドCX7323(重量平均分子量 17,000、ダイセル・エボニック社製)を28g、有機溶媒としてN−メチル−2−ピロリドン290.5g、ポリマーBとしてポリビニルアルコール 31.5g(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’GM−14、重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2)およびL−酒石酸 0.16gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約30gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を27.5g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 32.6μm、粒子径分布指数1.18のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0227】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
【0228】
参考実施例11<酸の添加によるポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミドCX7323(重量平均分子量 17,000、ダイセル・エボニック社製)を10.5g、有機溶媒としてN−メチル−2−ピロリドン297.5g、ポリマーBとしてポリビニルアルコール 42.0g(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’GM−14、重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2)およびL−酒石酸 0.21gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約30gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を9.8g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 14.6μm、粒子径分布指数1.11のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0229】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0230】
実施例12<ポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000、曲げ弾性率600MPa)28g、N−メチル−2−ピロリドン(関東化学株式会社製)304.5g、ポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体26.5gを得た。この固体を走査型電子顕微鏡により観察を行ったところ、真球状微粒子であり、平均粒子径5.5μm、粒子径分布指数1.12であった。また、この白色固体をレーザー粒度分布計(島津製作所社製 SALD−2100)にて分析した結果、体積平均粒子径が5.5μm、粒子径分布指数が1.12であった。このポリエステルエラストマーの融点は、218℃、融解熱容量は、24.3J/g、降温結晶化温度は、157℃であった。SP値は計算法により、19.5(J/cm
3)
1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。
【0231】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
【0232】
なお、本実施例で得られた粒子(白色固体)をレーザー粒度分布計(株式会社島津製作所製 SALD−2100)にて分析した結果、体積平均粒子径5.5μm、粒子径分布指数1.22であった。
【0233】
実施例13<ポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)28g、N−メチル−2−ピロリドン(関東化学株式会社製)308g、ポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)14gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体25.5gを得た。この固体を走査型電子顕微鏡により観察を行ったところ、真球状微粒子であり、平均粒子径8.6μm、粒子径分布指数1.22であった。また、本系の界面張力の推算値は、2mN/m以下であった。本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。
【0234】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,800であり、使用前とほとんど変化は無かった。
【0235】
なお、本実施例で得られた粒子(白色固体)をレーザー粒度分布計(株式会社島津製作所製 SALD−2100)で分析した結果、体積平均粒子径8.6μm、粒子径分布指数1.22であった。
【0236】
実施例14<ポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)28g、N−メチル−2−ピロリドン(関東化学株式会社製)301g、ポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)10.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体26.0gを得た。この固体を走査型電子顕微鏡により観察を行ったところ、真球状微粒子であり、平均粒子径12.6μm、粒子径分布指数1.22であった。また、本系の界面張力の推算値は、2mN/m以下であった。本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。
【0237】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 27,500であり、使用前とほとんど変化は無かった。
【0238】
なお、本実施例で得られた粒子(白色固体)をレーザー粒度分布計(株式会社島津製作所製 SALD−2100)にて分析した結果、体積平均粒子径12.5μm、粒子径分布指数1.28であった。
【0239】
実施例15<ポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000、曲げ弾性率1100MPa)17.5g、N−メチル−2−ピロリドン 315g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体14.9gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径4.3μm、体積平均粒子径 5.4μm、粒子径分布指数 1.25のポリエステルエラストマー微粒子であった。
【0240】
走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。このポリエステルエラストマーの融点は、224℃、融解熱容量は、25.8J/g、このポリエステルエラストマーの降温結晶化温度は、161℃であった。SP値は計算法により、19.8(J/cm
3)
1/2であった。
【0241】
本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。本系の界面張力の推算値は、2mN/m以下であった。
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0242】
実施例16<ポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000)33.25g、N−メチル−2−ピロリドン299.25g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体28.3gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径12.0μm、体積平均粒子径 14.7μm、粒子径分布指数 1.23のポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
【0243】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
【0244】
実施例17<ポリエステルエラストマー微粒子の製造方法>
テレフタル酸48.0部、1,4−ブタンジオール42.0部および重量平均分子量約3000のポリテトラメチレングリコール10.0部を、チタンテトラブトキシド0.01部とモノ−n−ブチル−モノヒドロキシスズオキサイド0.005部を、ヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190〜225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物にテトラ−n−ブチルチタネート0.06部を追添加し、“イルガノックス”1098(チバ・ジャパン(株)製ヒンダードフェノール系酸化防止剤)0.02部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を30Paの減圧とし、その条件下で2時間50分重合を行わせて、脂肪族ポリエーテルエステル共重合体(D1)を得た。融点は、226℃であり、重量平均分子量は、28,000、曲げ弾性率は1800MPaであった。
【0245】
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエーテルエステル共重合体(D1)33.25g、N−メチル−2−ピロリドン299.25g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体28.3gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径12.0μm、体積平均粒子径14.7μm、粒子径分布指数 1.23のポリエーテルエステル共重合体からなるポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
【0246】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
【0247】
参考実施例18<ポリエステルエラストマー微粒子の製造方法>
テレフタル酸26.7部、1,4−ブタンジオール23.3部および重量平均分子量約3000のポリテトラメチレングリコール50.0部を、チタンテトラブトキシド0.01部とモノ−n−ブチル−モノヒドロキシスズオキサイド0.005部をヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190〜225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物にテトラ−n−ブチルチタネート0.06部を追添加し、“イルガノックス”1098(チバ・ジャパン(株)製、ヒンダードフェノール系酸化防止剤)0.02部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を30Paの減圧とし、その条件下で2時間50分重合を行わせて、脂肪族ポリエーテルエステル共重合体(D2)を得た。融点は、210℃であり、重量平均分子量は、28,000、曲げ弾性率は450MPaであった。
【0248】
次いで、1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)製、ハイパーグラスターTEM−V1000N)の中に、ポリエーテルエステル共重合体(D2)33.25g、N−メチル−2−ピロリドン299.25g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製、PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体28.3gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径12.0μm、粒子径分布指数 1.23のポリエーテルエステル共重合体からなるポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
【0249】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
【0250】
実施例19 <ポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)製、ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー(“ハイトレル”(登録商標)8238、デュポン株式会社製、重量平均分子量27,000、曲げ弾性率1100MPa)14.6g、N−メチル−2−ピロリドン300g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製、PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体12.4gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径 1.5μm、粒子径分布指数 1.21のポリエステルエラストマー微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
【0251】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 27,500であり、使用前とほとんど変化は無かった。
【0252】
実施例20<ポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)製、ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー(“ハイトレル”(登録商標)8238、デュポン株式会社製、重量平均分子量27,000、曲げ弾性率1100MPa)15.2g、N−メチル−2−ピロリドン300g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製、PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体12.9gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径 2.2μm、粒子径分布指数 1.22のポリエステルエラストマー微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
【0253】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 26,500であり、使用前とほとんど変化は無かった。
【0254】
実施例21<酸の添加によるポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000)24.5g、N−メチル−2−ピロリドン 308g、ポリマーBとしてポリビニルアルコール 17.5g(日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’、GM−14、重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含量0.23質量%)を加え、酸として酒石酸(pKa1=2.82、熱分解温度275℃)0.21g(酸官能基量が、酢酸ナトリウムに対して4.74倍モル)を加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体23.9gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径 23.4μm、粒子径分布指数 1.25のポリエステルエラストマー微粒子であった。
【0255】
走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。
【0256】
本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。本系の界面張力の推算値は、2mN/m以下であった。
【0257】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
【0258】
実施例22<降温結晶化温度以下でのポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)17.5g、N−メチル−2−ピロリドン315.0g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、140℃まで降温し、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体17.0gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ多孔質の微粒子であり、平均粒子径9.3μm、体積平均粒子径 11.8μm、粒子径分布指数 1.27のポリエステルエラストマー微粒子であった。
【0259】
走査型電子顕微鏡により観察を行ったところ、多孔質状微粒子であった。このポリエステルエラストマーの融点は、224℃であり、このポリエステルエラストマーの降温結晶化温度は、161℃であった。本系の界面張力の推算値は、2mN/m以下であった。粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,800であり、使用前とほとんど変化は無かった。
【0260】
実施例23<降温結晶化温度以下でのポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000)17.5g、N−メチル−2−ピロリドン315.0g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、140℃まで降温し、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体17.2gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ多孔質の微粒子であり、平均粒子径16.4μm、体積平均粒子径 19.3μm、粒子径分布指数 1.28のポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、多孔質微粒子であった。このポリエステルエラストマーの融点は、224℃であり、このポリエステルエラストマーの降温結晶化温度は、161℃であった。本系の界面張力の推算値は、2mN/m以下であった。
【0261】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,800であり、使用前とほとんど変化は無かった。
【0262】
参考実施例24<リサイクル溶媒によるポリアミド微粒子の製造方法>
実施例1で得た濾液を窒素雰囲気下、80℃、50kPaの減圧条件下にて水を留去していき、水分測定機(三菱化学株式会社製 水分測定機 CA−06)にて含水率が1質量%以下になるまで行った。この際の水分量は0.45質量%であり、残液中のポリマーBであるポリビニルアルコールをゲルパーミエンデーションクロマトグラフィーで定量したところ、ポリビニルアルコールの濃度は8.2質量%であった。残った残液のうち、305g(内 N−メチル−2−ピロリドン 280g、ポリビニルアルコール25gを含む。)を1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスター TEM−V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35.0g、ポリマーBとしてポリビニルアルコール 3.0g(和光純薬工業株式会社製 PVA−1500、重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含有率 0.2%、)(リサイクルしたポリビニルアルコール中の酢酸ナトリウムを添加前と同じと仮定するとリサイクル分と新たに添加した分を合計したポリビニルアルコール中に含まれる酢酸ナトリウムの含有率は0.03%程度と計算される)を加え、有機溶媒としてN−メチル−2−ピロリドン 7.0gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を33.6g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 23.8μm、粒子径分布指数 1.14のポリアミド微粒子であり、実施例1とほぼ同等の平均粒子径、粒子径分布および収率を持つものが得られた。
【0263】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,400であり、リサイクル使用ができることがわかった。即ち、リサイクル使用をしても安定的に製造できるといえる。
【0264】
参考実施例25<通常のPVAを使用したポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN−メチル−2−ピロリドン 287g、ポリマーBとしてポリビニルアルコール 28g(日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’ GM−14 重量平均分子量 29,000、酢酸ナトリウム含量0.23質量%、SP値32.8(J/cm
3)
1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、灰色に着色した固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 15.0μm、粒子径分布指数 1.11のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融解熱量は、23.7J/gであり、SP値は、実験法により求め、23.3(J/cm
3)
1/2だった。
【0265】
また、本有機溶媒とポリマーA、ポリマーBを別途180℃下にて溶解させ、静置観察したところ、本系では、体積比 3/7(ポリマーA溶液相/ポリマーB溶液相(体積比))で2相分離することが分かり、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0266】
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 41,800であり、分子量が増加した。得られたろ液は、褐色に変色していた。実施例1と比較し、ポリビニルアルコールの分子量が増加しているため、濾液の再利用は難しいものの、粒度分布の狭い微粒子が得られている。
【0267】
参考実施例26<通常のPVAを使用したポリアミド微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN−メチル−2−ピロリドン 287g、ポリマーBとしてポリビニルアルコール 28g(和光純薬工業株式会社製 PVA−1500、重量平均分子量 29,000、SP値32.8(J/cm
3)
1/2、酢酸ナトリウム含有率 0.2%)を加え、空気雰囲気下(酸素濃度 約20%)の状態で、外部と遮断をし、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、褐色の固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 15.2μm、粒子径分布指数 1.30のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融解熱量は、23.7J/gであり、SP値は、実験法により求め、23.3(J/cm
3)
1/2だった。
【0268】
また、本有機溶媒とポリマーA、ポリマーBを別途180℃下にて溶解させ、静置観察したところ、本系では、体積比 3/7(ポリマーA溶液相/ポリマーB溶液相(体積比))で2相分離することが分かり、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
【0269】
粒子化終了後のろ液は、褐色に変化しており、ポリビニルアルコールの分子量を測定したところ、重量平均分子量 80,000を示した。
実施例1と比較し、ポリビニルアルコールの分子量が増加しているため、濾液の再利用は難しいものの、粒度分布の狭い微粒子が得られている。
【0270】
比較例1<100℃未満でのポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM−V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)3.5g、N−メチル−2−ピロリドン343.0g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)3.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、80℃まで降温し、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体3.30gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ多孔質の微粒子であった。走査型電子顕微鏡により平均粒子径を算出したところ、体積平均粒子径 55.6μm、粒子径分布指数 20.0のポリエステルエラストマー微粒子を得た。得られた微粒子は、約10μm程度の微粒子の凝集体であり、本手法では、微粒子それ自体は得られるものの、実施例12、13などで得られるものに比較し、十分な品質なものではなかった。
【0271】
実施例27(エーテル結合を含む熱可塑性樹脂からなるポリマー微粒子を用いた反射板)
(1)塗液の調製
下記材料を、[1]から[4]の順番にて塗液の原料を調合し、万能攪拌機にて10分間攪拌して塗布層形成塗液を調製した。
[1]精製水
[2]材料A:<ポリエステル系バインダー樹脂>
ペスレジン A−215E(高松油脂(株)製、30重量%溶液:カルボン酸基および水酸基を含有する。)を精製水で希釈し、25重量%溶液を調製した。
[3]材料B:<界面活性剤>
「ノベック」(登録商標)FC−4430(菱江化学(株)製、5重量%溶液)を用いた。
[4]有機粒子分散液
有機粒子に精製水を加え、有機粒子が40質量%になるように調整したものを、有機粒子分散液とした。
なお、使用した有機粒子は、以下のものである。
(i)実施例14
(ii)実施例15
(iii)実施例16
(iv)実施例17
(v)対比用粒子○1 :弾性率の低い粒子を以下の方法で製造し、用いた。
100mlの4口フラスコの中に、(“ハイトレル”(登録商標)3046、東レ・デュポン株式会社製、重量平均分子量23,000、曲げ弾性率20MPa)3.5g、有機溶媒としてN−メチル−2−ピロリドン43g、ポリビニルアルコール(日本合成化学工業株式会社‘ゴーセノール(登録商標)’ GL−05)3.5gを加え、90℃に加熱し、ポリマーが溶解するまで攪拌を行った。系の温度を80℃に戻した後に、450rpmで攪拌しながら、貧溶媒として50gのイオン交換水を、送液ポンプを経由し、0.41g/分のスピードで滴下を行った。全量の水を入れ終わった後に、30分間攪拌し、得られた懸濁液を、ろ過し、イオン交換水 100gで洗浄し、80℃ 10時間真空乾燥を行い、白色固体3.1gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、数平均粒子径13.2μm、体積平均粒子径 15.4μm、粒子径分布指数 1.17のポリエーテルエステル共重合体微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。
(vi)対比用粒子○2 :エーテル結合を含まない以下のものを用いた。
テクポリマーMBX−8(架橋PMMA粒子、数平均粒子径8μm、体積平均粒子径11.7μm、粒子径分布指数1.46)(積水化成品工業(株)社製)を精製水に混合した40重量%溶液の水分散体。粒子内にエーテル結合を含まない。
【0272】
なお、[1]〜[4]の配合比率は、表1のとおりである。
【0273】
【表1】
【0274】
(2)製膜
PET80重量部と環状オレフィン共重合体樹脂20重量部との混合物を180℃の温度で3時間真空乾燥した後に押出機Aに供給し、280℃の温度で溶融押出した。また、PET100重量部を180℃の温度で3時間真空乾燥した後に押出機Bに供給し280℃の温度で溶融押出した。それぞれの押出機A、Bからの樹脂を厚み方向にB/A/Bの順に積層するように合流させた後、Tダイ口金に導入した。
【0275】
次いで、Tダイ口金内より、シート状に押出して溶融積層シートを形成し、該溶融積層シートを、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸積層フィルムを得た。このとき、ドラムに接しているフィルム面を裏面、空気に接している面を「おもて」面とした。続いて、該未延伸積層フィルムを80℃の温度に加熱したロール(予熱ロール)群で予熱した後、長手方向にロールの周速差を利用して、3.5倍延伸を行い、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。
【0276】
さらに続いて一軸延伸フィルムの「おもて」面に空気中でコロナ放電処理を施し、その処理面に上記塗布層形成塗液を、ワイヤーバーを用いたバーコート方式にて塗布厚み15μmになるように塗布した。
【0277】
上記の塗布層形成塗液が塗布された一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の予熱ゾーンに導き乾燥後、引き続き連続的に100℃の加熱ゾーンで長手方向に垂直な方向(横方向)に3.5倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで190℃ の熱処理を施し、さらに190℃で6%横方向に弛緩処理を行った後、次いで均一に徐冷後に巻き取って、厚み188μmのフィルム上に、厚み200nmの塗布層が設けられた白色の積層フィルムを得た。B層の膜厚は10μmであった。
【0278】
(3)フィルム特性評価
フィルムの特性評価は、以下の方法で行った。
【0279】
(3.1)有機粒子の塗膜内被覆状態の確認
積層フィルムを断面方向にミクロトームにて70〜100nmの厚みの切片を切り出し、四酸化ルテニウムで染色した。染色した切片を透過型電子顕微鏡”TEM2010”(日本電子(株)製)を用いて500〜10,000倍に拡大観察して撮影した断面写真より、有機粒子の塗膜内被覆状態を確認し、以下のように判定した。
粒子の全部を塗膜が被覆している場合:A
粒子の8割以上塗膜が被覆している場合:B
粒子の塗膜による被覆が4割以上の場合:C
粒子の塗膜による被覆が4割未満の場合:D
【0280】
(3.2)ディスプレイ白点評価
AUO社製LEDディスプレイ(T240HW01)のバックライトユニットに積層フィルムを組み込み画面が水平になるように設置し点灯する。所定の重さの重りで画面中央を押さえた時に
重りなしで白点が発生する場合をF
0.5kgの重りで白点が発生する場合をE
1.0kgの重りで白点が発生する場合をD
1.5kgの重りで白点が発生する場合をC
2.0kgの重りで白点が発生する場合をB
2.0kgの重りで白点が発生しない場合をA
とした。なお、用いたバックライトは、サイドライト型バックライトであり、導光板および光源(LED)を有し、光源が導光板のエッジ部に位置するものである。この白点評価においては、例えば
図2に白点の評価例を示すように、白点(ホワイトスポット)が発生しない場合(
図2(A))と白点(ホワイトスポット)が発生する場合(
図2(B))とを明確に区別できる。
【0281】
(3.3)塗布外観
評価例あるいは比較評価例にて得られた積層フィルムについて、蛍光灯反射光にて外観観察を行った。評価基準は、
A:塗布ムラ、塗布抜けが観察されない。
B:塗布ムラ、塗布抜けが一部観察されるが、AUO社製LEDディスプレイ(T240HW01)のバックライトユニットに積層フィルムを組み込み画面が水平になるように設置し点灯したときに、ムラが観察されない。
C:塗布ムラ、塗布抜けが観察され、AUO社製LEDディスプレイ(T240HW01)のバックライトユニットに積層フィルムを組み込み画面が水平になるように設置し点灯したときに、ムラがわずかに観察される。
D:塗布ムラ、塗布抜けにより外観が著しく損なわれている。
であり、A〜Bを良好、Dを不可とした。
【0282】
(3.4)粒子の密着性評価
底面4cm×4cmのSUSブロック(重さ300g)の底面に市販のトレシーMKクロス(登録商標、東レ(株)製)を両面テープで貼り付けた。積層フィルムの塗布面上を、上記SUSブロックを10回滑らせ、削れテストとした。
削れテスト前後の光沢度を比較した。光沢度はデジタル変角光沢度計UGV−5B(スガ試験機(株)製)を用いて、白色積層フィルムのコーティング層側よりJIS Z−8741(1997)に準じて測定した。なお、測定条件は入射角=60゜、受光角=60゜とした。サンプル数はn=5とし、それぞれの光沢度を測定して、その平均値を算出した。また、表面SEM写真を撮影し脱落痕を観察し、(粒子数+脱落痕)の合計で100点観察し、
脱落痕のない場合をA
5点以下の脱落痕がある場合をB
10点以下の脱落痕がある場合をC
30以下の脱落痕がある場合をD
30点より多い脱落痕がある場合E
とした。
【0283】
(3.1)〜(3.4)のフィルム特性の評価結果を表2に示す。
【0284】
【表2】
【0285】
実施例14,15,16,17で作成した粒子は、いずれも反射板に用いた際、良好な性能を示すことがわかった。この結果から、曲げ弾性率が500MPaよりも大きく
2500MPa以下であるエーテル結合を含む熱可塑性樹脂であることを特徴とするポリマー微粒子が効果の高いことがわかる。