(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5778092
(24)【登録日】2015年7月17日
(45)【発行日】2015年9月16日
(54)【発明の名称】データ伝送パラメータを動的に調整しH−ARQ処理を制御する方法および装置
(51)【国際特許分類】
H04L 1/18 20060101AFI20150827BHJP
H04W 28/06 20090101ALI20150827BHJP
H04L 1/00 20060101ALI20150827BHJP
【FI】
H04L1/18
H04W28/06
H04L1/00 E
【請求項の数】10
【全頁数】11
(21)【出願番号】特願2012-160547(P2012-160547)
(22)【出願日】2012年7月19日
(62)【分割の表示】特願2011-249663(P2011-249663)の分割
【原出願日】2005年6月3日
(65)【公開番号】特開2012-239202(P2012-239202A)
(43)【公開日】2012年12月6日
【審査請求日】2012年8月20日
(31)【優先権主張番号】60/578,728
(32)【優先日】2004年6月10日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】596008622
【氏名又は名称】インターデイジタル テクノロジー コーポレーション
(74)【代理人】
【識別番号】110001243
【氏名又は名称】特許業務法人 谷・阿部特許事務所
(72)【発明者】
【氏名】ステファン イー.テリー
【審査官】
森谷 哲朗
(56)【参考文献】
【文献】
国際公開第03/001681(WO,A2)
【文献】
国際公開第03/019960(WO,A1)
【文献】
特開2003−304291(JP,A)
【文献】
LG Electronics,Required signalling information for Node B controlled scheduling,3GPP TSG RAN WG1 #37 R1-040483,2004年 5月10日,pp.1-2,URL,http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_37/Docs/Zips/R1-040483.zip
【文献】
Qualcomm Europe,HARQ Protocol Requirements Overview,3GPP TSG-RAN WG2 meeting #42 R2-041008,2004年 5月10日,pp.1-3,URL,http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_42/Docs/R2-041008.zip
【文献】
Ericsson,E-DCH HARQ protocol,TSG-RAN Working Group 2 meeting #42 Tdoc R2-040918 ,2004年 5月10日,pp.1-4,URL,http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_42/Docs/R2-040918.zip
【文献】
Lucent Technologies,Signalling for H-ARQ Operation,3GPP TSG-WG1#31 R1-03-0285,2003年 2月17日,http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_31/Docs/Zips/R1-030285.zip
(58)【調査した分野】(Int.Cl.,DB名)
H04L 1/18
H04L 1/00
H04W 28/06
(57)【特許請求の範囲】
【請求項1】
エンハンスドアップリンクチャネル上でアップリンクデータ送信のための許容された制限を示している情報を受信するように構成された回路であって、前記許容された制限は許可されたトランスポートブロックサイズを含む、回路と、
送信時間間隔(TTI)に対して、前記エンハンスドアップリンクチャネル上でのデータの送信のために使用されるハイブリッド自動再送要求(H−ARQ)プロセスを識別するよう構成された回路であって、前記識別されたH−ARQプロセスは同期H−ARQプロセスである、回路と、
前記エンハンスドアップリンクチャネル上で送信するデータを選択するよう構成された回路と、
トランスポートブロックサイズを選択するよう構成された回路であって、前記トランスポートブロックサイズは、アップリンクデータ送信のための前記許容された制限を示している前記受信された情報に基づいて選択される、回路と、
前記識別されたH−ARQプロセスを使用して、前記エンハンスドアップリンクチャネル上で前記選択されたデータを送信するよう構成された回路と、
関連付けられた物理制御チャネル上で、前記選択されたトランスポートブロックサイズの表示を送信するよう構成された回路と
を備えたことを特徴とする無線送受信ユニット(WTRU)。
【請求項2】
前記選択されたデータが新規データである条件で、送信カウントを初期化するよう構成された回路であって、前記送信カウントは前記識別されたH−ARQプロセスに関連付けられた送信の数を示している回路をさらに備えたことを特徴とする請求項1に記載のWTRU。
【請求項3】
前記選択されたデータが新規データである条件で、前記データが選択されて、より高い優先順位データの送信を最大化することを特徴とする請求項1に記載のWTRU。
【請求項4】
前記データ送信が肯定的に応答されない条件で、および、送信カウントが許可された送信の最大数に満たない条件で、前記データを再送信するよう構成された回路をさらに備えたことを特徴とする請求項1に記載のWTRU。
【請求項5】
各々の再送信のための送信カウントを増加するよう構成された回路をさらに備えたことを特徴とする請求項4に記載のWTRU。
【請求項6】
無線送受信ユニット(WTRU)によって実行される、アップリンクデータ送信のための方法において、
エンハンスドアップリンクチャネル上でアップリンクデータ送信のための許容された制限を示している情報を受信するステップであって、前記許容された制限は許可されたトランスポートブロックサイズを含む、受信するステップと、
送信時間間隔(TTI)に対して、前記エンハンスドアップリンクチャネル上でのデータの送信のために使用されるハイブリッド自動再送要求(H−ARQ)プロセスを識別するステップであって、前記識別されたH−ARQプロセスは同期H−ARQプロセスである、識別するステップと、
前記エンハンスドアップリンクチャネル上で送信するデータを選択するステップと、
トランスポートブロックサイズを選択するステップあって、前記トランスポートブロックサイズは、アップリンクデータ送信のための前記許容された制限を示している前記受信された情報に基づいて選択される、選択するステップと、
前記識別されたH−ARQプロセスを使用して、前記エンハンスドアップリンクチャネル上で前記選択されたデータを送信するステップと、
関連付けられた物理制御チャネル上で、前記選択されたトランスポートブロックサイズの表示を送信するステップと
を備えることを特徴とする方法。
【請求項7】
前記選択されたデータが新規データである条件で、送信カウントを初期化するステップあって、前記送信カウントは前記識別されたH−ARQプロセスに関連付けられた送信の数を示しているステップをさらに備えることを特徴とする請求項6に記載の方法。
【請求項8】
前記選択されたデータが新規データである条件で、前記データが選択されて、より高い優先順位データの送信を最大化することを特徴とする請求項6に記載の方法。
【請求項9】
前記データ送信が肯定的に応答されない条件で、および、送信カウントが許可された送信の最大数に満たない条件で、前記データを再送信するステップをさらに備えることを特徴とする請求項6に記載の方法。
【請求項10】
各々の再送信のための送信カウントを増加するステップをさらに備えることを特徴とする請求項9に記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
本発明は、無線送受信ユニット(Wireless Transmit/Receive Unit:WTRU)およびノードBを含む無線通信システムに関する。より詳細には、変調および符号化方式(Modulation and Coding Scheme:MCS)並びにトランスポート・ブロック群(Transport Block Set:TBS)サイズなどのデータ伝送パラメータを動的に調整し、WTRUおよびノードB間のデータ転送を制御するために使用されるハイブリッド自動再送要求(Hybrid-Automatic Repeat Request:H−ARQ)の処理を割り当て、リリースする方法および装置に関する。
【0002】
第3世代セルラーシステムにおいては、少ない伝送遅延時間、より高いスループット、および物理リソースのより効率的な使用を提供するべく設計されたエンハンスト・アップリンク(Enhanced Uplink:EU)動作へ取り込むために、適応変調符号化(Adaptive Modulation and Coding:AM&C)、およびH−ARQ方式が検討されている。
【0003】
AM&C方式は、MCSが送信時間間隔(Transmit Time Interval:TTI)毎に動的に調整されることを可能とし、それぞれのTTIに対して、無線リソースを最も効率的に使用し、可能な限り高いデータ速度を提供するようにMCSが選択される。
【発明の概要】
【発明が解決しようとする課題】
【0004】
あまり堅固でない(less robust)MCSであれば、物理リソースの使用は少ないが、誤りに対してぜい弱となる。より堅固な(robust)MCSは、より多くの物理リソースを使用するが、誤りに対してより強い保護を与える。
【0005】
H−ARQ方式は、低遅延で伝送および再伝送を発生させるために使用される。H−ARQ方式の第1の側面は、失敗した伝送で受信されたデータが引き続く再伝送にソフト結合され、受信成功の確率を増加させることが可能であるということである。チェイス結合(Chase Combining:CC)またはインクリメンタル・リダンダンシ(付加的冗長性、Incremental Redundancy:IR)のいずれかを適用することができる。CCが適用されるとき、再送信に対して同一のMCSが選択される。IRが適用されるときは、それぞれの再送信においてはより堅固なMCSが使用される。
【課題を解決するための手段】
【0006】
本発明は、データをノードBへ転送するWTRUを含む無線通信システムにおいて実装される。TBSサイズなどのデータ伝送パラメータは、TTI毎に動的に調整される。選択的に、MCSもまた調整することができる。必要に応じて、WTRUおよびノードBの間のデータ転送を制御するために使用されるH−ARQ処理が割り当てられ、リリースされる。ノードBから受信された応答情報により、WTRUは、エンハンスト・アップリンク(Enhanced Uplink:EU)の専用チャンネル(Enhanced uplink Dedicated CHannel:E−DCH)を通して、ノードBへデータを送信し、再送信する。WTRUは送信するデータを待ち行列に入れ(queue)、データの送信状態を決定する。送信状態は、WTRUにおける制御装置によって、「新規送信」、「送信成功」、「再送信」、および「送信再起動」のうちの1つに設定される。WTRUは、それぞれのTTIに対して、再送信番号、新規データ表示、割り当てられたH−ARQ処理、TBSサイズ、および任意的なMCSを、明示的または暗示的に特定するノードBへのEU送信を起動する。
【0007】
送信状態は、WTRUにおける制御装置によって、データが新規データである場合は「新規送信」に、ノードBから肯定応答(ACK)メッセージが受信された場合は「送信成功」に、新規データの送信に対応してノードBから否定応答(NACK)メッセージが受信されたか無応答の場合は「再送信」に、並びに再送信カウントが予め定められた再送信の最大数を超えた場合は任意的に「送信再起動」に、それぞれ設定される。
【0008】
送信状態が「新規送信」であれば、最初のH−ARQ処理が割り当てられる。送信状態が「再送信」であれば、再送信カウントを増加させ、同一のH−ARQ処理が割り当てられる。送信が「送信成功」であれば、H−ARQ処理がリリースされる。任意的であるが、送信状態が「送信再起動」であれば、再送信カウントを初期化し、新規データインジケータ(New Data Indicator:NDI)を増加させ、H−ARQ処理が割り当てられる。
【0009】
一例として与えられ、添付された図面とともに理解されるべき、好適な実施例に関する以下の記述から、本発明をより詳細に理解することができる。
【発明の効果】
【0010】
以上説明したように、本発明により、データをノードBに転送する無線送受信ユニットを含む無線通信システムにおいて、変調および符号化方式並びにトランスポート・ブロック群サイズなどの、データ伝送パラメータが伝送時間間隔毎に動的に調整され、WTRUおよびノードB間のデータ転送制御に使用されるハイブリッド自動再送要求処理が、必要に応じて起動されリリースされるシステムが提供される。
【図面の簡単な説明】
【0011】
【
図1】本発明に従って動作する無線通信システムのブロック図である。
【
図2】本発明による、H−ARQ処理を起動し、リリースする処理のフロー図である。
【
図3】本発明による、CCを実施する方法ステップを含む処理のフロー図である。
【
図4】本発明による、IRを実施する方法ステップを含む処理のフロー図である。
【発明を実施するための形態】
【0012】
これ以後、用語「WTRU」は、限定するものではないが、ユーザ装置(User Equipment:UE)、移動体端末、固定または移動体の加入者ユニット、ページャ、または無線環境において動作可能ないかなる他のタイプの装置をも含む。用語「ノードB」は、これ以後参照された場合には、限定するものではないが、基地局、サイト制御装置、アクセスポイント、または無線環境におけるいかなる他のタイプのインタフェース装置をも含む。
【0013】
本発明の特徴は、集積回路(IC)に組み込むか、または多数の相互接続された部品を備える回路において構成することができる。
【0014】
図1は、本発明に従って動作する無線通信システム100のブロック図である。システム100は、WTRU102、ノードB104、および無線ネットワーク制御装置(Radio Network Controller:RNC)106を備えている。WTRU102は、起動されたH−ARQに基づいて、E−DCH108を通して送信機120によりデータを送信し、ノードB104から下り回線(DL)シグナリングチャンネル110を通して受信機122によりフィードバックを受信する。ノードB104が、WTRU102によって送信されたデータの復号に失敗した場合、ノードB104はDLシグナリングチャンネル110を介してWTRU102にNACKメッセージを送信するか、または応答を送信しない(これはWTRU102によりNACKとして解釈される)。ノードB104が、WTRU102により送信されたデータの復号に成功すると、ノードB104はWTRU102にACKメッセージを送信し、H−ARQ処理を他の送信のためにリリースする。H−ARQ処理は、CCまたはIRのいずれかを実施するように設計することができる。RNC106は、無線リソースの配分を含んで、ノードB104およびWTRU102間で起こるデータ転送の総合的な動作を制御する。WTRU102は、E−DCHデータを格納するためのデータ・バッファ112、期間が過ぎたデータを廃棄する必要があるかどうかを決定するため使用される任意のデータ有効期間タイマ114、並びにWTRU102により送信されたがノードB104によって受信されていないデータが再送されるべきであるか、H−ARQ伝送が終了されるべきであるか、もしくは任意的に再起動されるべきであるか、を決定するために使用される再送信カウンタ116を含む。バッファ112、有効期間タイマ114、および再送信カウンタ116は、制御装置118によって制御される。制御装置118は、H−ARQ処理に関連付けられたそれぞれの伝送の状態を設定する(すなわち、経過を記録する)。
【0015】
図2は、本発明によるH−ARQ処理を制御する方法ステップを含む処理200のフロー図である。H−ARQ処理は、同期式でも、または非同期式でも良い。同期式H−ARQ動作においては、WTRU102およびノードB104間のデータ伝送への応答が何時に予期されるかの経過をWTRU102が追跡し、H−ARQ再送の周期性が予め定められる。非同期式H−ARQ動作においては、WTRU102は、データを送信し、予め定められた時間期間、フィードバックを待つ。
【0016】
WTRU102がH−ARQ処理および再送信カウンタ116を起動した後に、WTRU102は、その時点のTTIの間にE−DCH108を介してノードB104にデータを送信する(ステップ202)。ステップ204において、WTRU102はノードB104からのフィードバックを待つ。WTRU102がノードB104からACKメッセージを受信した場合には、WTRU102は送信状態を「送信成功(successful transmission)」に設定し、H−ARQ処理をリリースし、引き続くデータ送信のため再送信カウンタ116を再起動する(ステップ208)。
【0017】
ステップ206において、WTRU102がNACKメッセージを受信したか、または何の応答も受信しなかった場合は、WTRU102は再送信カウンタ116により示される再送信カウントが、再送信の最大許容数以下であるかどうかを判定する(ステップ212)。
【0018】
ステップ212において、判定された再送信カウントが再送信の最大許容数未満である場合は、WTRU102は送信状態を「再送信」に設定または維持し、再送信カウンタ116を増加させる(ステップ214)。再送信カウンタ116は、WTRU102により同一データが再送される毎に増加される。
【0019】
ステップ212にて判定された再送信カウントが再送信の最大許容数以上の場合には、H−ARQ処理の送信は終了され、引き続くデータ送信に対応するために再設定される(ステップ213)。任意的に、WTRU102が送信状態を「送信再起動(restarted transmission)」に設定し、そして再送信カウンタを再起動する場合がある(ステップ216)。送信状態を「送信再起動」に設定した後に、WTRU102はH−ARQ送信処理を「新規送信」として再起動するか、またはWTRU102が任意的にH−ARQ処理をリリースする場合がある(ステップ218)。
【0020】
図3は、本発明によるCCを実施するための方法ステップを含む処理300に関するフロー図である。処理300は、TTI毎に実行される(ステップ302)。ステップ304において、WTRU102は、EU物理リソースがノードB104により割り当てられているか、およびE−DCH108を介してノードB104にデータを送信するためにWTRU102がH−ARQ処理を利用可能であるか、を判定する。EU物理リソースが割り当てられていない場合には、WTRU102はEU物理リソースの配分を待ち、データの伝送は次のTTIまで遅れることになる(ステップ302)。EU物理リソースが配分され、H−ARQ処理が利用可能であれば、WTRU102は、データが新規データであるかどうかを判定する(ステップ306)。ステップ306においてデータが新規データであると判定された場合は、WTRU102は最優先データを選択し、送信する(ステップ308)。さらに、WTRU102は許容限界の中で最優先データの伝送を最大にするMCSおよびTBSサイズを選択する(ステップ310)。TBSサイズは、ノードB104がシグナリングした最大のMCSおよびTBSサイズ、E−DCH108にとって利用可能な送信電力、MCS、並びにバッファ112中で送信に対して利用可能なデータに基づいて選択される。
【0021】
それぞれのトランスポート・チャンネル(Transport CHannel:TrCH)に対して、専用チャンネル媒体アクセス制御(dedicated channel Medium Access Control:MAC−d)のフローもしくは論理チャンネル、許容TBSサイズの一覧、再送信限界、並びに許容送信遅延(すなわち、MACデータの「有効期間(lifespan)」)が決定される。許容可能なMCSおよびTBSサイズとは、その時点の物理リソース配分期間に対して、WTRU102が送信することを許容される最大のものである。その構成は、無線リソース管理(Radio Resource Control:RRC)手順に従ってRNC106からシグナリングされるか、または標準規格によって一意に指定されるかのいずれかである。選択されたMCSおよびTBSサイズは、明示的にシグナリングされる(望ましくはノードBから)ことができるか、またはチャンネル品質インジケータ(Channel Quality Indicator:CQI)、および/またはTFC(Transport Format Combination)指標などの関連パラメータから導くことができるかのいずれかである。CQIは、WTRUに許容される最大の干渉または送信電力を表すことができる。ノードB104は、最初のチャンネル割り当てにおいてこの情報をシグナリングすることができる。あるいはノードB104は、WTRU102が追加的EUチャンネル配分を要求して来たときに、この情報を送ることができる。
【0022】
次にWTRU102は、ステップ312において、選択されたTBSサイズに基づき少なくとも1つのEU MAC(MAC−e)プロトコル・データ・ユニット(Protocol Data Unit:PDU)を生成し、そしてそのMAC−e PDUの送信のためのH−ARQ処理を割り当てる。ステップ314において、WTRU102は再送信カウンタ116を初期化し、NDIを増加させ、かつ任意的にWTRU102中の有効期間タイマ114を設定する。新規データがいつ送られているか、および、送信されているH−ARQ処理に関連付けられたソフト・バッファをノードB104がいつクリアする必要があるかを示すために、NDIが使用される。再送信カウンタ116の初期値が、新規データの送信と解釈できる場合があり、このような場合にはNDIパラメータは必要ない。次にWTRU102は、その時点のH−ARQ処理、TBSサイズ(ノードB104が割り当てていない場合に)、およびMCSを特定するEU送信を、ノードB104に対して起動する。H−ARQ処理およびMCSは、指定されたH−ARQ処理動作によりノードB104によって暗示的に知ることができ、そのため、WTRU102によってノードB104にシグナリングされる必要はない場合がある。
【0023】
CCがサポートされている場合には、物理チャンネル配分においてTBSがノードB104によって特定されていない限りは、ノードB104に対してそれぞれの送信および再送信についてTBSサイズ情報が特定される。CCの場合には、再送信は最初の送信において適用されたものと同一のMCSおよびTBSを有する。
【0024】
ステップ306に戻って、データが新規データでないと判定されると、WTRU102が有効期間タイマ114を利用するかどうかについて判定される(ステップ315)。WTRU102が有効期間タイマ114を利用するなら、処理300はステップ316に進み、有効期間タイマ114が満了しているかどうかを判定する。有効期間タイマ114が満了していれば、WTRU102はデータを廃棄し、H−ARQ処理をリリース(解放)し(ステップ318)、処理300はステップ302に戻る。有効期間タイマ114が満了近くのときには、WTRU102は、任意的に送信成功の確率を増加させるためにより堅固なMCSを使用することができる。
【0025】
データ送信が不成功で、そのためノードB104から肯定応答を受けられない場合は毎回、WTRU102中の再送信カウンタ116が増加される。有効期間タイマ114がまだ満了していない場合、またはWTRU102が有効期間タイマ114を利用していない場合は、処理300はデータの再送信のためにステップ320に進む。ここで、WTRUは、再送信カウントが許容再送信の最大数未満であるかどうかを判定する。再送信カウントが許容再送信の最大数未満である場合は、送信状態は「再送信」として設定されるか、または「再送信」が維持され、WTRU102は再送信カウンタ116を増加させ(ステップ322)、そして同一のH−ARQ処理、TBS、MCS、およびNDI(再送信カウンタと合体されていない場合)を使用する(ステップ324)。次にWTRU102は、ノードB104に対して、H−ARQ処理(これは暗示的に知ることができ、そしてノードB104にシグナリングされる必要はない場合がある)、TBSサイズ(ノードB104により割り当てられていない場合)、および関連付けられた物理制御チャンネルにおけるMCSを特定するEU送信を起動する(ステップ330)。
【0026】
再送信カウントが許容再送信の最大数以上となった場合には、処理300はステップ318に進み、データを廃棄し、H−ARQ処理をリリースする。あるいは、任意的ステップ325において再起動された送信が許可されるべく判定された場合には、送信状態は「送信再起動」に設定され、WTRU102は再送信カウンタ116を初期化し、NDIを増加させ、新規H−ARQ処理を割り当てる(ステップ326)。ソフト結合バッファに格納されている以前に送信されたデータが引き続く再送信を混乱させる(disrupt)場合には、送信成功の確率を増加させるために、ソフト・バッファをクリアし、そしてH−ARQ送信を再起動する方が良い。したがって、特定のH−ARQ処理に対して再送信の最大数に到達した場合には、NDI(または、初期化された再送信カウント)が送信され、H−ARQ送信が再起動されたことを示す。ノードB104が増加されたNDI(または初期値に設定された送信カウント)を受信すると、ノードB104はソフト結合バッファから以前に受信されたデータをクリアする。
【0027】
ステップ328において、同一TBSを使用して新規H−ARQ送信が起動され、任意的に、配信成功の確率を増加させるために「新規送信」に対してより堅固なMCSを選択することができる(ステップ328)。MCSにおけるこの変更を可能とするために、TBSをいくつかの独立した送信に分割することができる。送信がより多くの冗長性をもって(MCSの変更、または単にパンクチャがより少ないがためのいずれかにより)再起動された場合には、割り当てられた物理リソースには前のTBSが適合しない場合がある。この場合には、元の送信を、要求条件を超過しない複数の独立した送信に分割することができる。次にWTRU102は、ノードBに対して、その時点のH−ARQ処理(ノードBとしては暗示的に知ることができる)、TBSサイズ、および関連付けられた物理制御チャンネルにおけるMCS(ノードBにより割り当てられていない場合)を特定するEU送信を起動する(ステップ330)。
【0028】
図4は、本発明によるIRを実施する方法ステップを含む処理400のフロー図である。処理400は、TTI毎に実行される(ステップ402)。ステップ404において、WTRU102は、EU物理リソースがノードB104により割り当てられているか、およびE−DCH108を介してノードB104にデータを送信するためにWTRU102がH−ARQ処理を利用可能であるか、を判定する。EU物理リソースが割り当てられていない場合は、WTRU102はEU物理リソースの配分を待ち、データの伝送は次のTTIまで遅れることになる(ステップ402)。EU物理リソースが配分され、H−ARQ処理が利用可能であれば、WTRU102は、データが新規データであるかどうかを判定する(ステップ406)。ステップ406においてデータが新規データであると判定された場合は、WTRU102は最優先データを選択し、送信する(ステップ408)。さらに、WTRU102は最大のTBSサイズと、許容される中で最も堅固なMCSを使用して最優先データの伝送を最大にする対応するTFCとを選択する(ステップ410)。
【0029】
次にWTRU102は、ステップ412において、選択されたTBSサイズに基づき少なくとも1つのMAC−e PDUを生成し、そのMAC−e PDUの送信のためのH−ARQ処理を割り当てる。ステップ414において、WTRU102は再送信カウンタ116を初期化し、NDIを増加させ、任意的にWTRU102中の有効期間タイマ114を設定する。新規データがいつ送られているか、並びに、送信されているH−ARQ処理に関連付けられたソフト・バッファをノードB104がいつクリアする必要があるか、を示すために、NDIが使用される。再送信カウンタ116の初期値が、新規データの送信と解釈できる場合があり、このような場合にはNDIパラメータは必要ではない。次にWTRU102は、ノードB104に対して、その時点のH−ARQ処理、TBSサイズ、および関連付けられた物理制御チャンネルにおけるMCSを特定するEU送信を起動する(ステップ430)。H−ARQ処理およびMCSは、指定されたH−ARQ処理動作によりノードB104によって暗示的に知ることができる。そのため、WTRU102によってノードB104にシグナリングされる必要はない場合がある。
【0030】
ステップ406に戻って、データが新規データでないと判定されると、WTRU102が有効期間タイマ114を利用するかどうかについて判定される(ステップ415)。WTRU102が有効期間タイマ114を利用するなら、処理400はステップ416に進み、有効期間タイマ114が満了しているかどうかを判定する。有効期間タイマ114が満了していれば、WTRU102はデータを廃棄し、H−ARQ処理をリリース(解放)し(ステップ418)、処理400はステップ402に戻る。有効期間タイマ114が満了の近くにあるときには、WTRU102は、任意的に送信成功の確率を増加させるためにより堅固なMCSを使用することができる。
【0031】
データ送信が不成功で、そのためノードB104から肯定応答を受けられない場合は毎回、WTRU102中の再送信カウンタ116は増加される。有効期間タイマ114がまだ満了していない場合、またはWTRU102が有効期間タイマ114を利用していない場合には、処理400はデータの再送信のためにステップ420に進み、WTRU102は再送信カウントが許容再送信の最大数未満であるかどうかを判定する。再送信カウントが許容再送信の最大数未満である場合には、送信状態は「再送信」として設定されるか、または「再送信」が維持され、WTRU102は再送信カウンタ116を増加させ、許容されるならより堅固なMCSを選択する(ステップ422)。ステップ424において、WTRU102は同一のH−ARQ処理、TBS/TFC、およびNDIを使用する。
【0032】
IRに関しては、MCSおよびTBSサイズを決定する際には、最も堅固なMCSに対応すること、WTRU102において送信の準備ができているデータにより必要とされる条件、およびWTRUが利用可能な送信電力の3点を考慮に入れる。それぞれの再送信においては、同一のTBSに対してより堅固なMCSを選ぶことができる。それほど堅固でないMCSでの最初の送信では、より大きいTBSサイズが可能となるが、このサイズは、最も堅固なMCSがその同一のTBSに対応できるサイズまでに制限されてしまう。また、TBSを決定するためには、WTRUが利用可能なEUに対する送信電力は、送信成功のために最も堅固なMCSが必要とされてはいない場合があるにもかかわらず、許容される最も堅固なMCSが考慮されねばならない。
【0033】
再送信カウントが許容再送信の最大数以上となった場合には、処理400はステップ418に進み、データを廃棄し、H−ARQ処理をリリースする。あるいはまた、任意的ステップ425において再起動された送信が許可されるべく判定された場合には、送信状態は「送信再起動」に設定され、WTRU102は再送信カウンタ116を初期化し、NDIを増加させ、新規H−ARQ処理を割り当てる(ステップ426)。ステップ428において、同一のTBS/TFCが使用され、MCSが選択される。
【0034】
本発明の機能および要素が、好適な実施形態において、特定の組み合わせにて説明された。それぞれの機能または要素は、好適な実施形態の他の機能および要素なしに単独で、または本発明の他の機能および要素のあるなしにかかわらず様々な組み合わせによって、使用することが可能である。
【0035】
本発明が、好適な実施形態とともに説明された。特許請求の範囲に概要を描かれているような本発明の範囲の中にある他の変形が可能なことも当業者には明らかであろう。
【産業上の利用可能性】
【0036】
本発明は、無線送受信ユニットおよびノードBを含む無線通信システムに利用することができる。
【符号の説明】
【0037】
100 無線通信システム
102 WTRU
104 ノードB
106 RNC
118 制御装置
120 送信機
122 受信機