【課題を解決するための手段】
【0012】
この課題は本発明によると、請求項1の構成要件を備える方法によって解決され、ならびに、請求項9の構成要件を備えるコントロール装置によって解決される。
【0013】
製品が搬送方向に(通常は1つの共通のコンベヤベルトの上で)複数のトラックで特に等間隔に相並んで搬送される、並列式の製品流の
放射線透視では、特に次のような問題の原因を発見することができている。
【0014】
工業用のX線検査では、コスト上の理由により安価なX線源が使用され、さらにこのようなX線源は労働安全保護の理由により低い強度を有している。このような種類のX線源は、遮蔽措置によって扇形の光束(横断面でライン状)を発する点状の放射源である(残りの放射はたとえばスリットにより光遮断されていてよい)。点状の放射源に基づき、(1行または複数行で構成される)放射受信器(検出器)が、製品流よりも幅広く施工されていなくてはならない(
図1参照)。
【0015】
光源から検出器までの放射経路が垂直方向ではなく、この(中心の)垂線に対して角度をなして延びている場合、光源から検出器までの放射経路もこの角度に依存して長くなる。
【0016】
製品流で検査されるべき製品の幅や高さによっては、製品流に対して
横断する方向に(検出器ラインに沿って)隣接する各製品の間で光遮断現象が生じ、こうした光遮断現象は、
放射線透視ないしX線透視で生成される画像ピクセルを、製品に一義的に割り当てることを妨げる。同一のX線放射が、側方で隣接する2つの製品を同時に通過するからである(
図2参照)。並列式の製品流に光遮断部が存在していると、特定の製品ないし製品トラックへの、放射画像(ピクセルのグレー値)の一義的な割当てはもはや不可能となる。本発明の意味においてX線検査とは
放射線透視ないしX線透視を意味しており、X線検査という概念は、この関連においては明らかにテラヘルツ放射をも含んでいる。
【0017】
本発明によると、搬送方向に対して
横断する方向に見て(1つないし複数の検出器ラインに縦に沿って)隣接する複数の製品を有している並列式の製品流において、側方で隣接する各製品の間での光遮断が回避されると、
放射線透視が検査結果の十分な品質を供給することが見出されている。
【0018】
あらゆる光遮断現象を回避するために、放射源と製品の間の間隔を無限に広げることが理論上はできるはずであり、そうすれば、いわば並列のX線放射が生じることになる。しかしそれは装置の必要な設計スペース(全高)を、望ましくなく許容もされない程度まで広げてしまう。小さい全高や、放射源と製品との間の短い間隔を求める一般的な要求は、光遮断現象の必要な回避とは相反している。
【0019】
本発明によると、製品流に対して
横断する方向に隣接する(搬送方向に対して
横断する方向のあらゆる角度で、すなわち側方で、相上下して、その他)複数の製品は、
放射線透視のために1つのグループとして一緒に放射線防護されたX線室に引き取られ、
放射線透視プロセス中に
放射線透視が簡素化され、特に光遮断現象が低減され、あるいは完全に回避されるような形で、再配置ないし再グループ分けされる(既存の配置の変更をともなう)。
【0020】
ここで放射線防護室とは、内部に存在する放射が外部に出ることがない、もしくはわずかな許容される形(労働安全保護)でしか出ることがない室を意味している。
【0021】
さらに本発明によると、製品流で隣接する複数の製品はただ1回のプロセスで自動的に、手作業で影響を及ぼすことなく(たとえばアクチュエータを用いて、モータ駆動式、空気圧式、圧縮空気式など、および相応の制御部を用いて)、放射防護室の中に収容され、特に再び排出される。このようにして、隔壁、カーテン、ランプ等の放射線防護装置を複数の隣接する製品について1度だけ開放し、および/または通過させるだけでよいので、(複数回の開放および/または通過のための)時間的な遅れが生じないという利点がある。それにより、放射線防護室の外部における周囲の危険を、安全性(労働安全保護)を変わらずに保ちながら、回避することができる。
【0022】
検査されるべき製品とは、本発明の意味においては、特に一定のコンシステンシーを有するあらゆる種類の製品であり、特に食料品、たとえば棒状食料品である。
【0023】
本発明に基づく再配置は、以下において説明するように、製品の直列化および/またはトラック間隔の変更を含んでおり、それにより、少なくとも1つの製品が
放射線透視プロセスごとに、特にライン状に(スライス片ごとに)検査される。
【0024】
本発明の1つの実施形態では、側方で大きく外側に位置するトラックないし部分流を
放射線透視のために側方で互いに引き離すことができ、それにより、部分流が大きく外側に位置していればいるほど、隣接するそれぞれの部分流の間の間隔がいっそう広くなり、およびそれに伴って放射源に対する角度が(法線ないし垂線に関して)大きくなる。このとき製品の高さに依存して、および製品と光源の間の間隔に依存して、外側のそれぞれのトラックの間でも光遮断現象が生じないように、側方の間隔を広げることができるのが好ましい。
【0025】
本発明の別の実施形態では、マルチトラック式の製品流が製品の
放射線透視のためにn個のトラックからm個のトラックへと機械的に削減され、それにより、十分に間隔をおいた製品のグループだけが(m>1)、または単一の製品が(m=1)、X線放射を通過するように動いていく(
放射線透視プロセス)。このとき再グループ化は、結果として生じるm個のトラックの製品流が光源に向かって、ないしは放射の中心垂線に向かって、センタリングされるように行われるのが好ましい。それにより、複数の製品のグループの場合でも(マルチトラック式ないし並列式の
放射線透視)、光源に対する広い側方の間隔に基づいて強い光遮断現象が生じることになる、大きく外側に位置する製品ないしトラックが回避される。
【0026】
このようなトラックの個数の削減(n個からm個へ)は直列化として理解することもでき、本発明の意味において直列化とは、トラックの数が
放射線透視のときに(それ以前に存在していたトラックの数に比べて)減少している限りにおいて、個々の製品のスキャンだけではなく、グループの中にある(製品流に対して
横断する方向に)隣接する複数の、たとえば2つの製品のスキャンも意味している。
【0027】
並列式の
放射線透視では、それぞれの製品は(製品流の方向で見て)同一の寸法(長さ)を有しており、製品流に対して
横断する方向に互いにオフセットなしに、すなわち頭部と頭部ないし前側側面と前側側面を接するように、X線放射を通過するように動くのが好ましい。あるいは、異なる長さの製品および/またはオフセットを有する製品を、X線放射を通過するように動かすことも考えられる。発生する移行部(同時に
放射線透視される製品の数の変化)は、たとえば検出器での値(吸収値)の飛躍的な変化を手がかりに検出することができる。
【0028】
本発明の別の実施形態では、
放射線透視のために、マルチトラック式の製品流の並列して準備されたトラックがそれ自体として個別に、たとえばそれぞれ異なる速度および/または異なるステップで前方に向かって動き、たとえば定置の扇形のX線放射を通過する。このような実施形態によっても、隣接する製品の光遮断を回避できるという利点があり、製品流速度が下がったり、X線検査装置について望ましくない、あるいは許容されない全高を超えたりすることがない。
【0029】
本発明の好ましい実施形態では、製品(および/またはトラック)は
放射線透視の後に、特に二次加工の前に、
放射線透視室の中でそれぞれ相互の相対的な位置および/または製品流に対する相対的な位置が
放射線透視の前の位置に相当するように配置される。それにより、二次加工のために必要な配置に対する影響なしに、X線検査を行うことができるという利点がある。本発明の特別に好ましい実施形態では、X線検査全体が時間的にも、製品流の動きおよび先行する作業ステップおよび/または後続する作業ステップに関して遅れが生じず、もしくは最低限の遅れしか生じないことを可能にするような形で行われる。このことは、たとえば
放射線透視室の外部における製品流の搬送速度に比べて高い、
放射線透視室内での個々のベルトないしトラックの搬送速度によって実現することができる。
【0030】
それにより、製品流の(それまでの)制御や運動でX線装置を考慮に入れる必要なしに、生産ラインを構築するばかりでなく追加装備することが可能であるという利点がある。このことは、既存の進行手順を大幅に変更することなく、さまざまな数多くのプロセス作業ステップを含む包括的な生産ラインへ、X線検査ユニットないしX線検査装置を統合することを可能にする。
【0031】
当然ながら、X線源および/または検出器を定置に構成するだけでなく、
製品流に対してゼロよりも大きい角度で、特に製品流に対して
横断する方向に、および/または平行に可動に構成することが考えられる。それにより、搬送速度の引上げおよび/またはトラック案内部(個別ベルト)の変更のほか、
放射線透視のための製品の配置の変更も実現することができ、および/または
放射線透視の速度が高くなる。
【0032】
本発明の別の実施形態では、
放射線透視の途中、または後に、
横断する方向および/または搬送方向で隣接する個々の製品の重量が、および/またはその全重量が、少なくとも1つのロードセルまたは秤によって判定される。判定された重量を、たとえば所定の正しい質量の食料品スライス片の密度決定/密度監視、脂質分析、切断幅判定など、さまざまな検査課題のために利用できるという利点がある。
【0033】
重量の判定は、X線検査により得られた値の、高いコストのかかる評価を通じても可能ではあるが、(並列式の計量のための)秤ないしロードセルによる個々の製品の重量または製品グループの全重量の判定のほうが、いっそう迅速かつ正確である。
【0034】
製品の重量およびラインごとに(一定の厚み)得られた個々の吸収値(密度および厚み/幅/高さに比例)が既知であることに基づき、個々のスライス片の重量を求めることが簡単な仕方で可能である。このようにスキャンされたスライス片の厚みは、特に、1つないし複数の検出器ラインの幅に左右される。このようなデータは、スライサーを相応に制御するために、たとえば上に挙げた切断幅判定のためにトラックごとに利用することができる。
【0035】
このとき、少なくとも1つのロードセルまたは少なくとも1つの秤はX線装置に、特に放射線防護室(X線室)に、統合されているのが好ましい。このことは、秤ないしロードセルが独自のハウジングや防風部をもつのを省けるという利点がある。X線検査装置の内部空間には、X線放射が外に出ることだけでなく、(計量にとって不都合な)風が入ることも確実に防止する放射線防護措置が設けられているからである。
【0036】
当然ながら、以上に説明した本発明の実施形態を任意に相互に組み合わせることもでき、それにより数多くの混合形態が可能となる。
【0037】
本発明のその他の好ましい実施形態は、従属請求項から明らかとなる。
【0038】
次に、図面に示された実施例を参照しながら、本発明について詳しく説明する。
【0039】
図面には次のものが示されている: