(58)【調査した分野】(Int.Cl.,DB名)
請求項1に記載のシステムであり、前記ひとつ又はそれ以上の論理的許可が前記患者の呼気に関する第一の論理的許可を含み、前記患者の呼気が完了しているとみなされる場合に前記第一の論理的許可が満たされる、システム。
請求項2に記載のシステムであり、ある期間に亘り患者流れを分析し、前記患者流れの微分と前記患者流れの絶対値のいずれもが既定値よりも小さいことを観測することにより、前記患者の呼気が完了したとみなす、システム。
請求項3に記載のシステムであり、前記分析が、前記患者流れを呼吸容量データに積分すること、及び前記呼吸容量データから既定の期間にそれぞれ応じる複数の呼吸容量群を生成することを含み、それぞれの呼吸容量群は前記呼吸容量群の前記呼吸容量データの和を含み、特定時点での微分を、特定の時点に関する前記呼吸容量群についての和と、前記特定の時点に関する直前の先立つ呼吸容量群の和との差の絶対値を決定することにより決定し、及び前記特定時点での前記患者流れの絶対値が、前記特定時点に関する前記呼吸容量群についての和の絶対値と等しい、システム。
請求項3に記載のシステムであり、さらに、前記患者流れを呼吸容量に積分する手段と、及び前記呼吸容量データから既定期間に応じる複数の呼吸容量群を生成し、それぞれの呼吸容量群が、前記呼吸容量群の前記呼吸容量データの和を含み、前記患者の呼気が、(i)特定時点に関する前記呼吸容量群の和と、前記特定時点での直前の呼吸容量群の和との差の絶対値の決定、及び(ii)特定時点での前記呼吸容量群の和の絶対値が前記既定値よりも小さいことを決定すること、の両方に応じて、完了したものと見なす、システム。
請求項2に記載のシステムであり、ある呼吸に亘る患者流れを分析することに応じて完了したとみなし、さらに、前記呼吸を通じて容量を決定する手段を含み、呼気に伴う前記容量の第一の部分が前記第一の部分の直前の吸気に伴う前記容量の第二の部分と合致する、システム。
請求項2に記載のシステムであり、前記タイミング手段が、保存性タイマを含み、前記タイマは、吸気から呼気への変化が検出されるとトリガされ、前記ひとつ又はそれ以上の論理的許可が前記第一の論理的許可のみを含む、システム。
請求項9に記載のシステムでありさらに、吸気から呼気への変化が検出されると前記タイミング手段がタイマ値を設定することを含み、前記タイマ値は、(i)前記患者の平均呼吸期間掛ける定数及び(ii)既定の前記最小呼吸速度に基づいて決定される最小呼吸期間掛ける更なる定数、のうちの小さい値である、システム。
請求項2に記載のシステムであり、前記タイミング手段は、呼気から吸気への変化が検出されるとトリガされるアグレッシブタイマであり、前記ひとつ又はそれ以上の論理的許可が複数の論理的許可を含む、システム。
請求項12に記載のシステムでありさらに、呼気から吸気への変化が検出されると前記タイミング手段がタイマ値を設定することを含み、前記タイマ値は、(i)前記患者の平均呼吸期間掛ける定数及び(ii)既定の前記最小呼吸速度に基づいて決定される最小呼吸期間、のうちの小さい値である、システム。
請求項12に記載のシステムであり、前記複数の論理的許可が、既定数の先立つ呼吸に亘る定時呼吸のパーセントに関する第二の論理的許可を含み、及び前記第二の論理的許可は、前記既定数の先立つ呼吸に亘る定時呼吸のパーセントが既定量よりも小さい場合に満たされると決定される、システム。
請求項12に記載のシステムであり、前記複数の論理的許可が毎分換気量に関する第二の論理的許可を含み、前記第二の論理的許可は、第一の期間に亘り測定される短期間毎分換気量が、前記第一の期間よりも長い第二の期間に亘り測定される長期間毎分換気量よりも小さい場合に、満たされると決定される、システム。
請求項12に記載のシステムであり、前記複数の論理的許可が、既定期間に亘る先立つ呼吸の標準偏差に関する第二の論理的許可を含み、前記第二の論理的許可は、前記標準偏差が既定値よりも小さい場合に満たされると決定される、システム。
請求項12に記載のシステムであり、前記複数の論理的許可が第二の論理的許可を含み、前記第二の論理的許可は、フラグがTRUEに設定されると満たされると決定され、前記フラグは、患者に定時呼吸が提供されるとTUREと設定され、3つの連続する定時呼吸が前記患者に提供される場合はFLASEと設定される、システム。
【背景技術】
【0003】
従来の人工呼吸器などの圧力支持システムを用いて、患者の自発呼吸努力を補強する又は置換するために患者の気道に、例えば酸素、空気又は他の酸素又は呼吸ガス混合物などの流体を輸送することが知られている。人工呼吸器で提供され得る圧力支持治療の基本的な方法は、双方向陽圧治療であり、患者に輸送されるガス圧力支持システム知力は患者の呼吸サイクルに合わせて変化するものである。双方向圧力支持システムでは、吸気陽気道圧(IPAP)が患者の呼吸サイクルでの吸気相で提供され、呼気陽気道圧(EPAP)が呼気相で提供される。前記EPAPは前記IPAPよりも低く、患者の呼吸を補助する。患者はIPAP圧と比べて相対的に低い圧に対して吐き出すことから患者の心地よさを増加させる。Respironics,Inc.of Murrysville,Paにより製造される一連の圧力支持システム装置のBiPAP(R)は、このような双方向圧力支持治療を提供する装置の例である。さらに、いくつかの米国特許がこれらの双方向圧力支持システムを詳細に開示する。例えば、U.S.Pat.Nos.5,433,193;5,313,937;5,239,995;5,148,802;6,532,960;及び6,640,806が挙げられ、これらの全内容は参照され本明細書の一部となる。
【0004】
さらに、従来の人工呼吸器を種々のモードで操作し、人工呼吸器の4つの基本的操作を制御することが知られている;(1)トリガポイント、呼吸サイクルの呼気相から吸気相への変化点であり、(2)吸気相、前記呼吸器が呼吸ガス流を輸送する、(3)前記サイクルポイント、吸気相から呼気相への変化点であり、及び(4)呼気相、ここで前記患者が輸送ガスを吐き出す。通常モニタされ、呼吸器のこれら4つのひとつ又はそれ以上の実行の制御に使用される4つの主な変数又はパラメータがある。これらの変数は、容積、圧力、患者へ又は患者からの流れ及び時間である。
【0005】
典型的な生命維持状況では、患者の自発的呼吸は実質的になく、呼吸のコントロールモードが提供される。そこで呼吸器は患者の呼吸に付き完全に責任を持つ。このモードの呼吸器では、呼吸器のトリガ及びサイクルポイントが時間を元に決められる。他の状況では、患者がある程度自発呼吸を行う場合、呼吸器のアシストモードが通常提供される。呼吸器のこれらのモードとも、患者の自発的呼吸努力を助ける又は強化する。このアシストモードでは、呼吸器トリガポイントの決定は患者の動作に基づき、サイクルポイントの決定は時間に基づく。サポートモードではトリガポイントもサイクルポイントも患者に基づき、時間には基づかない。
【0006】
自発的呼吸のできる患者は、それにもかかわらず、時々気流駆動することを数秒間止めることがある。この原因はいくつかの形があり得る。中枢神経性無呼吸として知られる発症は、脳が身体に呼吸する指示を欠いたときに起こる。閉塞性無呼吸として知られる発症は、患者の気道が、上気道散大筋の調性が低減により塞がれるときに生じる。該状況に合わせるために、アシスト及びコントロールモードを組み合わせることが知られている。これを呼吸器のアシストコントロールモードとして、又は呼吸器のS/T又は自発/定時モードとして参照されている。呼吸器のこのモードでは、患者が自発的に呼吸努力をある程度の時間行わない場合に、呼吸器は吸気流をトリガする(バックアップ呼吸、定時呼吸又は機械呼吸などと種々の言い方で知られている)。従って、呼吸器のアシスト/コントロールモードでは、トリガポイントが患者動作又は時間に基づく(ある程度の期間、患者からなんらの動作がない場合)。言い換えると、無呼吸の間、呼吸器は、自発呼吸活動の欠如を認識し、患者に一回換気量を駆動するために機械呼吸を輸送する。該機械呼吸により、ガス交換が生じ、無呼吸の悪影響が最小化される。
【0007】
多くの患者において、無呼吸は、夜間のある間で起こるだけであり、でなければ患者は通常の自発的呼吸パターンを示す。上で説明したように、現在利用可能な呼吸器は、患者の自発的呼吸速度が該呼吸器の既定された設定よりも下がったときには、医者により定時呼吸が輸送されるように構成されることができる。これらの装置は、通常、呼吸の決まった時間を持つ最小定時速度を提供するように設計されている。該装置は患者の自発的呼吸をモニタし、患者の自発的呼吸速度が定時速度設定よりも下がると、機械は定時呼吸を設定された速度で輸送し始める。呼吸器は、機械呼吸を、医者が選択した吸気設定と同じ吸気の決まった時間で輸送する。
【0008】
現在の呼吸器の問題点は、それぞれの患者のための最適な定時呼吸設定の決定に、訓練された技術者が必要であるということである。しばしば、夜通しの睡眠研究が必要であり、結果の設定は、患者の現在の代謝及び肺力学に適用するのみである。患者の要求が変化すると、該設定は呼吸器の設定を調節することでのみ変えることができる。
【0009】
現在の呼吸器の他の問題点は、患者がまだ以前の吸気を吐き出している間に定時呼吸器が輸送する可能性があるということである。例えば、呼吸器論理が吸気変化(EからIへの変化)が終了したことをモニタし、そのタイミングが、呼吸器の設定が自発呼吸速度が呼吸器設定よりも下がった場合、機械呼吸器は、患者が吐き出している間に、生じる可能性があり、かかる状態は通常患者にとって不愉快に感じるものであり、呼吸停止の原因になり、かかる状況では、肺中の残留容積を増加させ新しい呼吸の肺活量を減少させることとなる。残留肺容積はまた、肺ダイヤフラムを平坦化し、患者の筋的呼吸努力の効果を減少させる。
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、機械呼吸機能付圧力支持システムを提供する。
【課題を解決するための手段】
【0011】
ひとつの実施態様において、患者への圧力支持を提供するための方法が提供され、該方法は、前記患者の呼吸活性に関するデータをモニタし、タイマをモニタし、及び前記タイマが満了することを決定するステップを含む。前記タイマ満了の決定後、前記方法はさらに、ひとつ又はそれ以上の論理的許可の全てが、前記患者の呼吸活性に関する前記データに基づいて満たされるかどうかを決定し、及び前記ひとつ又はそれ以上の論理的許可が満たされたと決定される場合に、前記患者に機械呼吸を提供する。
【0012】
ひとつの具体的実施態様において、前記ひとつ又はそれ以上の論理的許可が、前記患者の呼気に関する第一の論理的許可を含み、前記第一の論理的許可が、前記患者の呼気が完了したとみなされる場合に、満たされたと決定される。他の実施態様において、前記タイマは、保存系タイマであり、吸気から呼気への変化が検出されるときにトリガされ、この実施態様においてひとつ又はそれ以上の論理的許可が前記第一の論理的許可のみを含む。
【0013】
他の実施態様において、前記タイマがアグレッシブタイマであり、呼気から吸気への変化が検出されるとトリガされ、ここでこの実施態様では前記ひとつ又はそれ以上の論理的許可が複数の論理的許可である。前記複数の論理的許可は、例えば最後の12呼吸などの先立つ既定数の呼吸よりも多い定時呼吸のパーセントに関連する第二の論理的許可を含み、ここで前記第二の論理的許可が、前記先立つ既定の数の呼吸よりも多い定時呼吸のパーセントが既定の量、例えば50%よりも少ない場合に、満たされると決定される。又は、前記複数の論理的許可が、換気量に関する第二の論理的許可を含み、前記第二の論理的許可が、第一の時間間隔(例えば、30秒)を超えて測定される短期間の換気量が、前記第一の時間間隔よりも長い第二の時間間隔(例えば120秒)を超えて測定される長期間の換気量よりも少ない場合に、満たされると決定される。
【0014】
他の実施態様において、前記複数の論理的許可が、既定の期間を超えた先立つ呼吸期間での標準偏差に関する第二の論理的許可を含み、ここで前記第二の論理的許可が、前記標準偏差が既定値、例えば0.25よりも小さい場合に、満たされると決定される。他の実施態様において、前記複数の論理的許可が、フラグがTRUEと設定されると満たされると決定される第二の論理的許可を含み、ここで前記フラグが、定時呼吸が前記患者に提供されると真(true)と設定され、連続する3つの定時呼吸が前記患者に輸送される場合のみFALSEと設定される。前記論理的許可は、自発呼吸が生じた後にのみTRUEに設定することができる。
他の実施態様において、患者に圧力支持を提供する方法であり、該方法は、第一のタイマをモニタし、前記第一のタイマが満了したかを決定することを含み、かつ前記第一のタイマが満了したことが決定される場合:(i)前記患者の呼気に関する第一の論理的許可が満たされるかを決定し、ここで前記第一の論理的許可が、前記患者の呼気が完了したともなされる場合に、満たされると決定され、及び(ii)前記第一の漏斗が満たされると決定される場合に、前記患者に機械呼吸器を提供する。前記方法はまた、第二のタイマをモニタし、前記第二のタイマが満了したかどうかを決定するステップを含み、前記第二のタイマが満了したことを決定される場合に、(i)複数の論理的許可の全てが満たされるかを決定し、前記複数の論理的許可が前記第一の論理的許可を含み、及び(ii)前記複数の論理的許可の全てが満たされると決定される場合に、前記患者に機械呼吸を提供する。
方法のひとつの具体的な実施態様において、前記第一のタイマは保存タイマであり、吸気から呼気への変化が検出されるときにトリガされ、前記方法はさらに、吸気から呼気への変化を検出されるたびに前記第一のタイマを第一のタイマ値の設定し、前記第一のタイマ値が:(i)前記患者の平均呼気時間掛ける第一の定数による値、及び(ii)既定の最小呼吸期間のいずれよりも小さい値であり、かつ前記第二のタイマはアグレッシブタイマであり、呼気から吸気への変化が検出される場合にトリガされ、かつ前記方法がさらに呼気から吸気への変化を検出されるたびに前記第二のタイマを第二のタイマ値の設定し、前記第二のタイマ値が:(i)前記患者の平均呼気時間掛ける第二の定数による値、及び(ii)既定の最小呼吸期間のいずれか小さい値である。
【0015】
他の実施態様においては、患者に圧力支持を提供する方法であり、前記方法が、前記患者の自発呼吸に関するデータの基づき最小呼吸を決定すること、ここで前記決定された最小呼吸が前記患者の合計呼吸に相対する前記患者の先立つ自発呼吸の量の関数であり、及び前記患者の機械呼吸を提供すべきかどうかの決定に前記決定された最小呼吸速度を用いる。
【0016】
本方法のひとつの具体的実施態様で、前記決定される最小呼吸速度は、前記患者の合計呼吸に相対して前記患者の先立つ自発呼吸の量が減少すると、増加する。ひとつの具体的実実施では、前記患者の先立つ自発呼吸に相対する前記データは、前記患者によりトリガされる先立つ呼吸のパーセントを含み、前記決定される鎖司法呼吸器速度は、前記患者によりトリガされる前記先立つ呼吸の前記パーセントが減少すると、増加する。より具体的な実施では、前記決定される最小呼吸速度は、前記患者によりトリガされる先立つ呼吸の前記パーセントが第一のパーセントよりも小さい場合に、第一の速度であり、前記決定される最小呼吸速度は、前記患者によりトリガされる先立つ呼吸の前記パーセントが第一のパーセント以上であるが第二のパーセントより小さい場合に、第二の速度であり、かつ前記決定される最小呼吸速度は、前記患者によりトリガされる先立つ呼吸の前記パーセントが第二のパーセント以上である場合に、第三の速度である。前記第一の速度は10BPMであってよく、前記第一のパーセントは20%であってよく、第二の速度は9BPMであってよく、前記第二のパーセントは400%、及び第三の速度は8BPMであってよい。
【0017】
本発明の例示的実施態様には、前記決定される最小呼吸速度がタイマのタイマ値を決定するために使用され、ここで前記タイマは前記機械呼吸を前記患者に提供するかどうかを決定するために使用される。
【0018】
本発明はまた、上で説明した呼吸器又は圧力支持システムの技術を実施することを含む。例えばひとつの実施態様において、本発明は圧力支持システムを提供し、前記圧力支持システムは、前記患者の呼吸活性に関するデータをモニタするための手段、時間の経過期間が満了したことを決定するための手段、及び前記時間の経過期間が満了したことの決定に応じて、ひとつ又はそれ以上の論理的許可の全てが前記患者の呼吸活性に関する前記データの基づいて満たされるかどうかを決定するための手段を含む。前記システムはさらに、ひとつ又はそれ以上の論理的許可の全てが満たされる場合、前記患者に機械呼吸を提供するための手段を含む。
【0019】
さらなる実施態様において、前記呼吸器又は圧力支持システムは、第一の期間が満了したかどうかを決定するための手段、及び前記第一の期間が満了することの決定に応じて、(a)前記患者の呼気に関する第一の論理的許可が満たされるかどうかを決定するための手段と、ここで前記患者の呼気が完了したとみなされる場合に前記第一の論理的許可が満たされると決定される、及び(b)前記第一の論理的許可が満たされると決定される場合に前記患者へ機械呼吸を提供するための手段とを含む。第二のタイミング手段が、第二の時間間隔が満了したかどうかを決定するために提供され、同様に、前記第二の期間が満了したかどうかの決定に応じて,(a)複数の論理的許可の全てが満たされるかどうかを決定する手段と、ここで前記複数の論理的許可は前記大日の論理的許可を含み、及び(b)前記複数の全ての論理的許可が満たされる場合に前記患者に機械呼吸を提供する手段とを含む。
【0020】
他の実施態様では、前記システムは、前記患者の先立つ自発呼吸に関するデータに基づいて最小呼吸速度を決定するための手段を含み、前記決定される最小呼吸速度は、前記患者の合計呼吸に相対する前記患者の先立つ自発呼吸器の量の関数であり、及び前記決定される最小呼吸速度に基づいて前記患者に機械呼吸を提供するための手段を含む。
【0021】
本発明のこれらの及び他の目的、構成及び特徴は、関連する構成要素の操作方法及び機能及び部品の組み合わせ及び製造上の経済性と共に、以下の記載及び添付の特許請求の範囲を、添付図面、本明細書の一部分を形成する全て、例えば種々の図面で対応する部品を参照する参照番号を考慮することでより明確になるであろう。以下の点明確に理解されるべきである。図面は説明及び記載のためであり、本発明をなんら限定する意図はないことである。明細書及び特許請求の範囲に記載される「ひとつの」、「前記」などは、記載上明確に指示されていないかぎり、複数の参照を含むものとする。
【発明を実施するための形態】
【0023】
ここで使用される用語、例えば限定するものではないが、トップ、ボトム、左、右、上、下、前、後ろ及びそれらの誘導語は、図面に示される要素の方向に関するものであり、明確に引用されない限り特許請求の範囲ではなんら限定するものではない。
【0024】
ここで採用される、2つ又はそれ以上の部品又はコンポーネントが「結合(coupled)される」とは、該部品が共に結合されるか又は、直接又は1つ又はそれ以上の中間部品又はコンポーネントを介して共に操作されることを意味する。ここで採用される、2つ又はそれ以上の部品又はコンポーネントをお互いに「作動(engage)」するとは、該部品に他の部品に対して力を与えて働かせることを意味し、直接又は中間に1つ又はそれ以上の部品を介して働かせることを意味する。ここで採用される用語「数」とは、1又はそれ以上の整数(即ち複数)を意味する。
【0025】
ここで詳細に記載されるとおり(即ち、
図1に関して圧力支持システム50の説明に従って)、本発明は、ひとつの具体的実施態様において、呼吸器及び前記患者への定時バックアップ速度を自動的に決定する呼吸器の操作を提供する。より具体的には、患者の自発的呼吸器パターンが前記呼吸器により分析され、最適化定時呼吸速度が計算される。さらに、シグナル処理技術が、前記患者に実際に機械呼吸が輸送されているかどうかを決定する。
【0026】
ここでまた詳細に記載されるとおり(即ち、
図1に関して圧力支持システム50の説明に従って)、ひとつの例示的実施態様において、機械呼吸器が行われるべきかどうかを決定するための使用される2つのメカニズムがある。これらメカニズムはともに独立に機械呼吸をトリガすることができる。それぞれのメカニズムは、ひとつ又はそれ以上の論理的許可と結合する基本的タイミングエレメントからなる。前記タイミングエレメント及びひとつ又はそれ以上の論理的許可は、前記メカニズムが前記機械呼吸をトリガするために満たされる必要がある。2つのメカニズムはお互いにユニークであり、ひとつは前記機械呼吸のタイミングについて保存性であり、他のひとつは前記機械呼吸のタイミングについてアグレッシブである。ひとつの例示的実施態様で、前記保存性メカニズムは長持続タイミングエレメントでありシングル論理的エレメントのみであり、前記アグレッシブメカニズムは短持続タイミングエレメントを持ち、多重の論理的許可のより複雑なセットである。
【0027】
図1は、本発明の種々の実施態様で実施され得るひとつの非限定的実施態様による圧力支持システム50の模式的ダイヤグラムである。
図1によれば、圧力支持システム50は、例えば従来のCPAP又は双方向圧力支持システムで使用されるガス流生成装置52を含み、吸気ガス(一般的に矢印Cで示される)をすべての適切な源、例えば加圧タンク又は酸素又は空気又は他のガス源、又は常圧のそれら又はそれらの組み合わせ源から受け取る。ガス流生成装置52は、吸気ガスの流れを生成し、該ガスが空気、酸素又はそれらの混合物であり、患者54の気道へ、相対的に高いかつ低い圧力(即ち一般的に通常の大気圧と等しいかそれより高い)で輸送する。
【0028】
呼吸ガスの加圧流れ(一般的にガス生成装置52から矢印Dで示される)が、ガス流生成装置52から輸送管56を介して全ての知られる構成の呼吸マスク又は患者インタフェース58に輸送される。通常患者54の気道へ吸気流を通すためにこれは患者に装着されているか付着されている。ひとつの実施態様において、患者インタフェース58には、前記患者に輸送されるガス圧力を測定するための前記制御装置64に操作的に結合される圧力センサを含む。
【0029】
図1の圧力支持システム50は、シングルリムシステムとして知られているものである。この意味は、患者回路が、圧力支持システム50と患者を結ぶ輸送管56のみを含むことである。排気管57が輸送管56に設けられ、前記システムから排気を行う。排気は矢印Eで示される。次の点に留意すべきである。排気57は他の位置にでも設けることができ、吸気57ではなく例えば患者インタフェース58に設けることもできる。また留意すべき点は、排気57は、圧力支持システム50から排気されるべきガスの望ましい方法に依存して種々の構成が可能であるということである。
【0030】
本発明ではまた、該圧力支持システム50が2リムシステムであってよく、輸送管及び排気管が患者54に結合されている。2リムシステム(デュアルリムシステムとも参照される)では、排気管は患者からの呼気を排気し、患者から離れたところに排気バルブを含む。この実施態様において排気バルブは通常望ましい圧力レベル又はシステムの圧力を維持するためにアクティブに制御する、これは通常、陽圧呼吸終圧(PEEP)として知られている。
【0031】
さらに、
図1に示される例示的実施態様では、患者インタフェース58が鼻マスクである。しかし次の点、理解されるべきである。患者インタフェース58は、鼻/口マスク、全顔面マスク、鼻カニュール、鼻枕、気管チューブ又は気管内チューブなど、適切なガス流を通じることができるものを含むことができるということである。また本発明の目的のために、用語「患者インタフェース」とは、輸送管56及び圧力吸気ガス源と患者54とを結ぶ全ての他の構成を含むことができる。
【0032】
図示された実施態様では、圧力支持システム50は、輸送管56に設けられるバルブ60の形状で圧力制御装置を含む。バルブ60は、ガス流生成装置52から患者54へ輸送される吸気ガス流の圧力を制御する。本発明の目的のために、ガス流生成装置52及びバルブ60は一緒になって圧力制御システムと参照される。というのは、これらは協働して患者54に輸送されるガス流の圧力及び/又は流れを制御するからである。しかし、患者54へのガス輸送の圧力を制御する他の技術、例えばガス流生成装置52の噴出し速度を変更するなどの技術を、それだけで又は圧力バルブと組み合わせて使用することもまた、本発明の範囲に含まれる。従って、バルブ60が必要かどうかは、患者54へ輸送する吸気ガス流の圧力を制御するために用いる技術に依存する。バルブ60が除かれる場合、圧力生成システムは、ガス流生成装置52にのみ依存し、患者回路へのガスの圧力は、例えばガス流生成装置52のモータ速度を制御することで制御される。
【0033】
圧力支持システム50はさらに、フローセンサ62を含む。これは輸送管56内の吸気ガス流を測定する。
図1に示される具体的な実施態様では、フローセンサ62は輸送管56の途中に設けられ最も通常はバルブ60の下流に設けられる。フローセンサ62はフローシグナル、Q
MEASUREDを生成する。これは制御装置64へ送られ制御装置64が患者54でのガス流(Q
pt)を決定するために用いられる。もちろん、患者の吸気流測定のための他の技術を本発明の範囲に含まれる。例えば限定されるものではないが、患者54で直接測定する、輸送管56の他の位置で測定する、ガス流生成装置52の操作に基づいて患者への流れを測定する、及びバルブ60の上流でフローセンサを用いて患者への流れを測定する、などが挙げられる。
【0034】
制御装置64は、例えば、マイクロプロセッサ、マイクロ制御装置又は他の適切な制御装置であってよく、メモリ(図示されていない)を含むか操作的に結合するメモリを含んでいてよい。該メモリはデータの保存媒体及び圧力支持システム50の操作を制御するための前記制御装置64により実行されるソフトウェアの保存を提供する。前記ソフトウェアには、前記患者54の定時バックアップ速度の自動的決定及び以下詳細に説明するとおり、実際に機械呼吸が患者54に輸送されるべきかどうかを決定する。最後に、インプット/アウトプット装置66が、圧力支持システム50で使用される種々のパラメータの設定と、同じく情報及びデータをユーザ、例えば医者又は介護者に表示及びアウトプットするために、設けられる。本発明にはまた、前記タイミング機能及びバックアップ呼吸制御が別々の装置で実行されることも含まれてよい。即ち別々のプロセッサ又は他の別々の専用コンポーネントなどである。
【0035】
ひとつの例示的な非限定的な本発明の実施態様において、圧力支持システム50は本質的に双方向(bi−level)圧力支持システムとして機能する。従って患者54へIPAP及びEPAPを別々に提供するための該システムで必要な全ての可能性を含む。これには、必要なパラメータ(インプットコマンドシグナルを介し)、シグナル又は他の情報を受け取り、最大及び最小IPAP及びEPAP設定などの双方向圧力を提供する。流れセンサからの流れシグナルQ
MEASUREDはまた、制御装置64に提供され、望まれる吸気及び呼気波形を出力するために圧力生成システム50を制御する。通常、前記圧力支持操作を実行することは、流れシグナルQ
MEASUREDに基づく実際の患者流れ(Q
PATIENT)の評価及び決定、患者54が呼吸サイクルの吸気相か又は呼気相かを決定して、I/E状態シグナル(バイナリ型で)であって患者54の知覚する呼吸状態を示すシグナルを提供し(Iは吸気相、Eは呼気相を示す)、及び圧力支持システム50をトリガしサイクルさせる、ことを含む。
【0036】
または、I/E状態の非バイナリ型が適用されてもよく(例えば吸気及び呼気の相関係)、前記装置は、定時呼吸を提供することによりどの程度迅速にサイクルするか、及び程度前記相自体が進行するかを決定することができる(U.S.Patent No.6,532,959の
図3及び9欄33行〜10欄54行、参照)。さらに、例示的実施態様において、圧力支持システム50は、ここで説明された本方法に従って患者54へ機械呼吸を提供するためのバックアッププロセスを実行するように構成される。従って、圧力支持システム50は、呼吸器のコントロールモード、アシストモード、サポートモード及びアシスト/コントロールモードを提供することができる。
【0037】
本発明の例示実施態様においては、シングルリムシステムであり、制御装置64が圧力支持システムからのガスリークを、全ての従来技術を用いて評価し、該リーク評価を実際の患者への流れの決定に組み入れる。該リーク評価は、シングルリムシステムで要求される。というのは、シングルリムシステムは、排気管からの既知のリーク及び、他の未知のリーク例えば患者インタフェースの患者との接触部分及び患者回路との種々の管接続部分からのリークが含まれる。2リムシステムではリーク評価は必要がない。というのはフローセンサが通常排気管で直接排気ガス流を測定するからである。該システムでは、患者ガス流は、患者へ輸送される測定されるガス流から排気ガス流を引き算することで決定される。リーク検出は、患者流れ決定の精度を増加するために2リムシステムで実施されることができることは、理解されるであろう。
【0038】
前記患者に別々のIPAP及びEPAPレベルを提供するために用いる機能をどのように達成するかについての例には以下の特許が挙げられ、これらの内容は、参照されて本明細書の一部とする。すなわち、Sanders等のU.S.Pat.No.5,148,802、Zdrojkowski等のU.S.Pat.No.5,313,937、Sanders等のU.S.Pat.No.5,433,193、Zdrojkowski等のU.S.Pat.No.5,632,269、Zdrojkowski等のU.S.Pat.No.5,803,065、Zdrojkowski等のU.S.Pat.No.6,029,664、及びHill等のU.S.Pat.No.6,920,875である。
【0039】
以下詳細に説明するが、本発明の方法は、あるパラメータを採用するものであり、前記パラメータは患者54の自発呼吸に関するデータに基づき決定/更新され、前記データは制御装置64で収集されるものである。記載を明瞭・簡潔にするために、これらのパラメータは以下最初に説明され、その後の前記方法の説明により、それぞれのパラメータの目的及び機能についてより明瞭に理解されるであろう。
【0040】
具体的には、制御装置64は、平均満了時間E
T−avgとしてある運転値を維持する。前記平均満了時間は、先立つ自発呼吸の既定の数、例えば最後の12自発呼吸など、における(制御装置64で生成される上で記載されたI/Eシグナルに基づき)満了の平均時間である。前記E
T−avgは、呼吸ごとに更新される。E
T−avgに基づいて、制御装置64はまた、それぞれの呼吸につき比例平均満了時間E
propを維持し及び更新する。比例平均満了時間は、E
T−avgとある比例関係にある(即ち、E
T−avg掛ける定数である)。非限定的実施態様において、E
prop=E
T−avg*1.66(前記定数が1.66)である。制御装置64はまた、平均呼吸期間P
avgをある運転値に維持する。前記平均呼吸期間は、先立つ自発呼吸の既定の数、例えば最後の12自発呼吸など、における(制御装置64で生成される上で記載されたI/Eシグナルに基づき)平均の合計呼吸時間である。P
avgは、呼吸ごとに更新される。P
avgに基づいて制御装置64はまた、それぞれの呼吸につき、比例平均呼吸期間P
propを維持及び更新する。前記比例平均呼吸期間はP
avgに比例する(即ち、P
avg掛ける定数)。非限定的実施態様において、P
prop=P
T−avg*1.33(前記定数が1.33)である。
【0041】
さらに、制御装置64は、最小呼吸速度R
minを維持し更新する。これは最近の患者の呼吸活性に基づく。特にひとつの例示的非限定的実施態様において、R
minは、制御装置64でモニタされ決定される、患者のトリガする呼吸(自発呼吸)の最近のパーセントに基づく。具体的には、患者トリガ呼吸のパーセントは、アル時間間隔での自発呼吸(即ち非機械呼吸)を全ての呼吸数(自発及び機械)で割り、それに100を掛けて得られる。時間の移動窓が前記2つの変数を観察するために使用される。通常の時間間隔は約1分である。圧力支持システム50のR
minは、どの程度患者54が圧力支持システム50の呼吸サポートとして信頼しているかによって調整され、R
minは、患者54が圧力支持システム50をより信頼する場合に増加する。
【0042】
ひとつの例示的非限定的実施態様において、R
minは以下のように決められる:(i)患者トリガ呼吸のパーセント<20%、R
min=10呼吸/分(BPM);(ii)患者トリガ呼吸のパーセント<40%、R
min=9呼吸/分(BPM);でなければR
min=8呼吸/分(BPM)。従って、患者が100%自発呼吸の場合、R
minは8BPMとなる。患者が無呼吸となり始めると、患者トリガ呼吸のパーセントが減少し40〜20%となり、R
minは9BPMに増加される。最後に患者トリガ呼吸のパーセントが20%よりも低くなると、R
minは10BPMに増加される。
【0043】
図2はこの具体的実施態様によるR
minの決定を説明するフローチャートである。ステップ100でR
minを決定する制御装置64でのルーチンが、最後の呼吸が患者トリガか機械呼吸かどうかを示す最新の呼吸トリガ情報を受け取る。ステップ102で、制御装置64が、患者トリガ呼吸の現在のパーセントを決定する。これは、例えば上で説明した移動窓方法を用いる。ステップ104で、患者トリガ呼吸の現在のパーセントが20%より小さいかどうかについての決定がなされる。答えがYESの場合ステップ106に移り、現在のR
minが10BPMに設定される。これは6秒間の呼吸間隔に等しい。ステップ104で前記答えがNOの場合、ステップ108に移り、患者トリガ呼吸のパーセントが40%より小さいかどうかについて決定がなされる。答えがYESの場合、ステップ110へ移り、R
minが9BPMに設定される。これは6.66秒間の呼吸間隔に等しい。ステップ108での答えがNOの場合ステップ112へ移り、現在R
minを8BPMに設定する。これは7.5秒間の呼吸間隔に等しい。それぞれのR
minによる呼吸間隔は、P
minとして参照される。
図2に示される具体的なパーセント及び具体的な速度は、ひとつの具体的な実施態様についてであり、他のパーセント/速度もまた適用可能であることは理解されるべきである。
【0044】
ここで記載されたように、ひとつの例示的実施態様において、機械呼吸がなされるかどうかを決定するために用いられる2つのメカニズムがある。これらのメカニズムはともに、制御装置64で実行され、同時に評価される。どちらのメカニズムも独立して機械呼吸をトリガできる。それぞれのメカニズムは、ひとつ又はそれ以上の論理的許可と結合される基本的タイミングエレメントからなる。これらのメカニズムはともに、前記タイミングメカニズムが前記機械呼吸をトリガするためには、ひとつ又はそれ以上の論理的許可のそれぞれが満たされなければならない。
【0045】
前記最初のメカニズムは、
図3のフローチャートに具体的実施態様として示されており、呼気での時間に基づく保存性メカニズムである。前記第一のメカニズムの前記タイミングエレメント、ここで保存性タイマと参照する、は、(i)上記の現在のE
prop及び(ii)現在のP
minの2/3よりも小さい間隔及びIからE変化(即ち呼気相の始まり)でのリセット/スタート(トリガ)を持つ。さらに、前記第一のメカニズムは、シングル論理的許可のみを採用する(即ち、以下説明する呼気完了許可)。これは前記第一のメカニズムが機械呼吸をトリガさせるためには満たされなければならない。前記第一のメカニズムは呼気時間のみを評価し、長時間吸気時間は影響しない。より具体的にはこの利点は2重である。短い吸気は、このメカニズムが必要な患者への定時呼吸開始する前にはほとんど遅延を生じないこと、及び長い吸気は、このメカニズムを必要としない患者にとってこのメカニズムの開始を遅らせる、ということである。
【0046】
第二のメカニズムは、
図4のフローチャートで示される具体的な実施態様であり、呼吸時間間隔に基づく積極的メカニズムである(第一の保存性メカニズムに比べてややより迅速に変化させる)。第二のメカニズムのタイミングエレメント、ここではアグレッシブタイマと参照される、は(i)上記のP
prop及び(ii)現在のP
min及びEからIへの変化(即ち、吸気相の開始)のリセット/スタート(トリガ)のいずれよりも小さい間隔を持つ。さらに、第二のメカニズムは、以下説明する多重の論理的許可を採用し、そのそれぞれは前記第二のメカニズムが機械呼吸をトリガするためには満たされなければならない。
【0047】
前記第一(保全性)及び第二(アグレッシブ)メカニズムは
図3及び4に基づいて詳細に請説明する前に、本発明の例示実施態様で適用される論理的許可のそれぞれにつき以下説明する。
【0048】
前記第一の論理的許可はここで呼気完了許可として参照される。この論理的許可は前記第一の(保存性)メカニズムで使用されるシングル論理的許可である(これはまた、前記第二の(アグレッシブ)メカニズムの多重許可のひとつとして使用される)。例示的実施態様において、前記呼気完了許可は患者の流れシグナルQ
patientを分析する。これは、ここで説明されたQ
MEASUREDシグナルの基づくものであり、数秒間に亘って前記流れの微分及び流れの絶対値がゼロとなる瞬間時間を観察する。例示的実施態様において、患者流れは呼吸容量が積算され、呼吸容量の1秒間の容量「バケット」の和のデータを生成する。微分関数は呼吸容量の最後の2つの「バケット」につきその差を調べる。静的流れ関数が前記最後の秒内の絶対吸気容量を見出す。呼気が完了したと考えられるために、両方の測定が同時に100mlよりも少なくなる必要がある。従って、呼気完了許可フラグを、この条件が満たされるとTRUEと設定され、この条件が満たされないとFALSEと設定する。移動窓方法がまたこの許可のために使用され得ることは理解されるべきである。他の実施態様において、容量が全体の呼吸を通じて積算され(患者流れシグナルから)、呼気容量が直前の吸気からの容量と一致した場合呼気が完了したとみなされる。
【0049】
第二の論理的許可はここでは最近バックアップ呼吸生成許可(Recent Backup Breaths issued permit)と参照される。最近バックアップ呼吸生成許可フラグは、全ての定時(機械呼吸)呼吸が開始されるとTRUEと設定され、3定時呼吸(機械呼吸)が生じるとFALSEと設定される。最近バックアップ呼吸生成許可フラグは、自発呼吸が生じた後のみ再びTRUEと設定されることができる。
【0050】
第三の論理的許可はここでは50%より低いパーセントトリガ呼吸許可(Percent Timed Triggered Breaths Less Than 50% permit)として参照される。この論理的許可の例示的実施態様においては、12位置ボックスカーが、前記最後の12呼吸に亘る定時呼吸のパーセントをモニタするために使用される。最後の12呼吸に亘る定時呼吸のパーセントが50%を下回ると、前記50%より低いパーセントトリガ呼吸許可フラグがTUREと設定され、その他はFALSEと設定される。
【0051】
第四の論理的許可は、ここでは長期間
毎分換気量より少ない短時間
毎分換気量許可(Short Term Minute Ventilation Less Than Long Term Minute Ventilation permit)と参照される。これは、
毎分換気量の2つの移動窓を調べ、第一の長さを持つひとつの窓で短時間
毎分換気量を、第二の長さを持つもうひとつの窓で長期間
毎分換気量を測定する。ひとつの例示的非限定的実施態様において、前記第一の長さは30秒であり第二の長さは120秒である。長期間
毎分換気量より少ない短時間
毎分換気量許可フラグは、前記短時間
毎分換気量が前記長期間
毎分換気量よりも小さい場合にTRUEと設定する。その他の場合はFALSEと設定する。
【0052】
第五の論理的許可は、ここでは最近の急激呼吸なし許可(No Recent Burst Breathing permit)として参照される。最近の急激呼吸なし許可は、2つの呼吸窓のデータを調べ、ある許容される呼吸(即ち、以下説明される具体的な判断に適合する)の呼吸間隔の標準偏差をある閾値と比較し、前記標準偏差が前記閾値よりも小さい場合最近の急激呼吸なし許可フラグをTUREと設定し、その他の場合にはFALSEと設定する。例示的実施態様において、前記測定された標準偏差が閾値0.25秒より小さい場合、最近の急激呼吸なし許可フラグをTRUEと設定し、その他の場合にはFALSEと設定する。
【0053】
上で説明したように、具体的呼吸器が前記標準偏差計算に使用され得るが、ある判断基準に合致しなければならない。具体的には、2つの試験判断基準がそれぞれの具体的な呼吸器を調べるために用いられ、前記呼吸が許容されるためにはそれらの少なくともひとつの判断基準にパスしなければならない。最初の試験は、呼吸器が正常かどうかを決定するために行われる。呼吸が正常とされるのは、すべての次の許容試験につきTRUEでなければならない:(i)ピーク流れが0より大きい、(ii)呼吸器間隔が2秒より長いこと、(iii)吸気時間が0.5秒より大きいこと、(iv)呼気容量及び吸気容量がそれぞれの65%以内であること、及び(v)吸気容量が150mlよりも大きいこと、である。上の全ての判断基準が満たされる場合に、正常とされ許容され、TURE値がインプットして次の試験に送られる。上のどれかの試験に失敗した場合、FALSEが設定されインプットして次の試験に送られる。第二の試験は第一の試験からの結果がパスされる。即ち、TRUE又はFALSEという値が第二の試験に送られる。第二の試験は前記TURE及びFALSEの生成をモニタして、いつFALSE値の大多数が送られてくるかを同定する。最後の10呼吸の5呼吸が最初の試験でFALSE値を持つ場合、その後第二の試験は現在の呼吸を送り、及び前記内部カウントメカニズムをゼロにする。
【0054】
図3は、呼気での時間に基づく前記最初の(保存性)メカニズム(制御装置64で実行される)の操作を説明するフローチャートである。上記のように、前記第一のメカニズムの前記タイミングエレメント(保存性タイマ)は、制御装置64で決められるように、IからEへの変化(即ち呼気相の開始)の全ての時間をリセット/スタートする。従って、操作はステップ120で開始する。ここでIからE変化が検出されたかどうかの決定がされる。答えがNOの場合操作はステップ120へ戻る。答えがYESの場合は、IからEへの変化が検出され、操作はステップ122に移ることを意味する。ここで前記保存タイマが現在のE
prop及び現在のP
minの2/3よりも小さい値に設定される。ステップ124では、前記保存性タイマが開始される(カウントダウン開始)。ステップ126で前記保存性タイマが満了したかどうか決定される。答えがNOの場合、ステップ128へ移り、EからIへの変化が検出されたかどうか決定される(即ち、呼吸(自発又は機械)の吸気開始)。答えがYESの場合、操作はステップ120へ戻る(IからEへの変化を待つ)。さらに答えがNOの場合には、操作はステップ126へ戻る(本発明前記音声タイマの満了をモニタする)。
【0055】
しかし、ステップ126での答えがYESである場合、これは前記保存性タイマが満了したことを意味し、ステップ130へ移り、呼気完了許可フラグが現在TUREに設定されているかどうかを決定する。答えがYESなら、ステップ132へ移り、制御装置64は機械呼吸を生じさせ機械呼吸のための既定のパラメータ(例えば、吸気時間、IPAPレベル、EPAPレベルなど)に従って輸送する。例示的実施態様においては、機械呼吸のために使用される吸気時間は自動的に決定され、計算される自発呼吸の運転平均吸気時間(自発呼吸の吸気時間)に等しい。ステップ132に続いて、操作はステップ120へ戻る。ステップ130で答えがNOの場合、EからIへの変化が検出されたかどうかを決定する(即ち、呼吸(自発又は機械)のための吸気の開始)。答えがNOの場合、操作はステップ130へ戻り、呼気完了許可フラグの状態をモニタする。しかしステップ134での答えがYESの場合、操作はステップ120へ戻る(IからEへの変化を待つ)。
【0056】
図4は、呼吸間隔に基づく、第二の(アグレッシブ)メカニズム(制御装置64で実行される)の操作を説明するフローチャートである。上で説明したように、第二のメカニズム(アグレッシブタイマ)のタイミングエレメントは、制御装置64で決められ、EからIへの変化(即ち吸気相の開始)での全ての時間をリセット/スタートする。従って、操作はステップ150で開始する。ここでEからIへの変化が検出されたかどうかが決定される。答えがNOの場合には操作はステップ150へ戻る。答えがYESの場合、EからIへの変化が検出されたことを意味し、操作はステップ152へ移る。ここで前記アグレッシブタイマは、現在のP
prop及び現在のP
minのどちらか小さいほうに等しく設定される。その後、ステップ154で前記アグレッシブタイマが開始される(カウントダウン開始)。ステップ156で前記アグレッシブタイマが満了したかどうかを決定する。ステップ158での答えがNOの場合、EからIへの変化が検出されたかどうかが決定される(即ち、呼吸(自発又は機械)の吸気の開始)。答えがYESの場合、操作はステップ152へ戻る(タイマリセット)。答えがNOの場合、操作はステップ156へ戻る(アグレッシブタイマの満了をモニタする)。
【0057】
しかし、ステップ156での答えがYESの場合は、アグレッシブタイマが満了したことを意味し、ステップ160へ移る。ここで上で説明した全ての許容フラグ(呼気完了許容フラグ、最近バックアップ呼吸生成許容フラグ、50%より低い定時呼吸パーセント許容フラグ、長時間
毎分換気量よりも小さい短時間
毎分換気量許容フラグ)が現在TUREに設定されているかどうかを決定する。答えがYESの場合、ステップ162へ移り、制御装置64が機械呼吸を生じさせ、機械呼吸のための既定のパラメータ(例えば吸気時間、IPAPレベル、EPAPレベルなど)により輸送される。例示的実施態様では、機械呼吸のために使用される吸気時間は自動的に決められ、計算された運転平均自発呼吸の吸気時間(自発呼吸の吸気時間)に等しい。続くステップ162では、操作はステップ152へ戻る。ステップ160での答えがNOの場合(ひとつ又はそれ以上のフラグがTURE)、ステップ164でEからIへの変化が検出されたかどうかが決定される(即ち、呼吸(自発又は機械)の吸気開始)。答えがNOの場合、操作はステップ160へ戻り、許容フラグの状態をモニタする。しかしステップ164での答えがYESの場合、操作はステップ152へ戻る(タイマリセット)。
【0058】
本発明は現在最も実用的でかつ好ましいものと考えられる実施態様に基づいて例示する目的で詳細に説明してきたが、次の点につき理解されるべきである。かかる詳細な説明の目的は、本発明が開示された実施態様には限定することを意図するものではなくむしろ、添付の特許請求の範囲の本発明の本質的考え及び範囲内で、種々の変法・変更及び均等な構成をカバーすることを意図するものであるということである。例えば、本発明には、拡張できる範囲において、全ての実施態様のひとつ又はそれ以上の構成を、他の全ての実施態様の構成と組み合わせることができることは、理解されるべきである。
なお、他の実施態様では、患者に圧力支持を提供するシステムであり、前記システムは:第一の期間が満了したかどうかを決定するための第一のタイミング手段;前記第一の期間が満了することの決定に応じて、(a)前記患者の呼気に関する第一の論理的許可が満たされるかどうかを決定するための手段と、ここで前記患者の呼気が完了したとみなされる場合に前記第一の論理的許可が満たされると決定される、及び(b)前記第一の期間が満了しかつ前記第一の論理的許可が満たされることの決定に応じて前記患者へ機械呼吸を提供するための第一の許可手段と:第二の時間間隔が満了したかどうかを決定するための第2のタイミング手段;前記第二の期間が満了したかどうかの決定に応じて、(a)複数の論理的許可の全てが満たされるかどうかを決定する手段と、ここで前記複数の論理的許可は前記第1の論理的許可を含み、及び(b)前記第二の期間が満了しかつ前記複数の全ての論理的許可が満たされるという決定に応じて前記患者に機械呼吸を提供する、第二の許可手段と;を含み、前記第一のタイミング手段、前記第二のタイミング手段、前記第一の許可手段及び前記第二の許可手段が同時に操作されて機械呼吸を提供するかどうかを決定する。
また、他の実施態様では、前記システムは、前記第一のタイミング手段が、吸気から呼気への変化が検出されるとトリガされる、保存性タイマであり、吸気から呼気への変化が検出されるときはいつも前記第一のタイミング手段は第一のタイマ値に設定され、前記第一のタイマ値は、(i)前記患者の呼気の平均時間掛ける第一の定数、及び(ii)既定の最小呼吸期間の部分のうちの小さい値であり、及び前記第二のタイミング手段が呼気から吸気への変化が検出されるとトリガされるアグレッシブタイマであり、前記第二のタイミング手段は、呼気から吸気への変化が検出されるときはいつも、前記第二のタイマ値に設定され、前記第二のタイマ値は、(i)前記患者の呼気の平均時間掛ける第二の定数、及び(ii)既定の最小呼吸期間のうちの小さい値である。
また、他の実施態様では、前記システムは、前記第一の定数が1.66であり、前記第2の定数が1.33であり、前記部分が2/3である。
また、他の実施態様では、患者に圧力支持を提供するシステムであって、前記システムは:前記患者の複数の先立つ呼吸であって患者によりトリガされた自発呼吸のみに関するデータに基づいて最小呼吸速度を決定する手段を含み、前記決定される最小呼吸速度が、前記患者の全呼吸の相対する患者の自発呼吸の量の関数であり;及び前記決定される最小呼吸速度に基づいて前記患者に機械呼吸を提供するかどうかを決定する手段を含む。
また、他の実施態様では、前記システムは、前記患者の先立つ自発呼吸に関するデータが、前記患者によりトリガされる先立つ呼吸のパーセントを含み、前記決定される呼吸速度が、前記患者によりトリガされる先立つ呼吸のパーセントが減少すると増加する。
また、他の実施態様では、前記システムは、ある既定期間に亘り前記患者によりトリガされる先立つ呼吸のパーセントを決定する手段を含む。
また、他の実施態様では、前記システムは、前記既定期間が1分間である。
また、他の実施態様では、前記システムは、前記既定期間が、前記患者によりトリガされる先立つ呼吸のパーセントを決定する直前1分間である。
また、他の実施態様では、前記システムは、前記決定される最小呼吸速度は、患者によりトリガされる先立つ呼吸のパーセントが第一のパーセントよりも小さい場合に、第一の速度であり、前記決定される最小呼吸速度は、患者によりトリガされる先立つ呼吸のパーセントが前記第一のパーセントよりも大きいか等しいがしかし第二のパーセントよりは小さい場合に、第二の速度であり、患者によりトリガされる先立つ呼吸のパーセントが前記第二のパーセントよりも大きいか等しい場合、第三の速度である。
また、他の実施態様では、前記システムは、前記第一の速度が10BPMであり、前記第一のパーセントが20%であり、前記第二の速度が9BPMであり、前記第二のパーセントが40%であり、前記第三の速度が8BPMである。
また、他の実施態様では、前記システムは、前記患者に機械呼吸を提供するかどうかを決定する手段が、あるタイマのあるタイマ値を決定するために前記決定される最小呼吸速度を用い、前記タイマが、前記患者に前記機械呼吸を提供するかどうかの決定に用いられる。
また、他の実施態様では、前記システムは、前記決定される最小呼吸速度が、前記患者の全呼吸に相対して前記患者の先立つ自発呼吸の量が減少すると、増加する。