特許第5781188号(P5781188)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社フジクラの特許一覧

特許5781188導光装置、製造方法、及び、LDモジュール
<>
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000002
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000003
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000004
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000005
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000006
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000007
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000008
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000009
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000010
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000011
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000012
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000013
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000014
  • 特許5781188-導光装置、製造方法、及び、LDモジュール 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】5781188
(24)【登録日】2015年7月24日
(45)【発行日】2015年9月16日
(54)【発明の名称】導光装置、製造方法、及び、LDモジュール
(51)【国際特許分類】
   G02B 6/42 20060101AFI20150827BHJP
   H01S 5/022 20060101ALI20150827BHJP
   H01S 5/40 20060101ALI20150827BHJP
【FI】
   G02B6/42
   H01S5/022
   H01S5/40
【請求項の数】16
【全頁数】20
(21)【出願番号】特願2014-64289(P2014-64289)
(22)【出願日】2014年3月26日
【審査請求日】2014年11月21日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000005186
【氏名又は名称】株式会社フジクラ
(74)【代理人】
【識別番号】110000338
【氏名又は名称】特許業務法人HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】阪本 真一
(72)【発明者】
【氏名】粂田 祥平
【審査官】 河原 正
(56)【参考文献】
【文献】 特開昭60−091301(JP,A)
【文献】 特開2001−215443(JP,A)
【文献】 国際公開第2014/034428(WO,A1)
【文献】 特開2008−028109(JP,A)
【文献】 特開2002−107660(JP,A)
【文献】 国際公開第2001/082163(WO,A1)
【文献】 特開平7−098402(JP,A)
【文献】 特開2004−252428(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/42
H01S 5/022
H01S 5/40
(57)【特許請求の範囲】
【請求項1】
複数の入力ビームからなる入力ビーム束を複数の出力ビームからなる出力ビーム束に変換する導光装置において、
各入力ビームに対応する2連ミラーであって、他の入力ビームに対応する2連ミラーから分離された2連ミラーを備えており、
各入力ビームに対応する2連ミラーは、特定の平面上に載置された第1ミラーと、該第1ミラー上に載置された第2ミラーとにより構成されており、
上記第1ミラーは、上記特定の平面に当接する第1側面と、入力ビームを反射する第1反射面として機能する第2側面と、上記第1側面と平行な第3側面とを有しており、
上記第2ミラーは、一部分が上記第1ミラーの上記第3側面に当接し、残りの部分が上記第1ミラーの上記第2側面に対向する第1側面と、上記第1反射面にて反射され、当該第2ミラーの上記第1側面を介して当該第2ミラー内に入射した入力ビームを反射する第2反射面として機能する第2側面とを有する柱状のプリズムであり、上記第2反射面において生じる反射は、当該プリズムの内部で生じる全反射である、
ことを特徴とする導光装置。
【請求項2】
上記第1反射面の法線と上記特定の平面の法線との成す角は45°であり、上記第2反射面の法線と上記特定の平面の法線との成す角は135°である、ことを特徴とする請求項1に記載の導光装置。
【請求項3】
各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きは、上記出力ビーム束を構成する各出力ビームの伝搬方向が特定の方向に一致するように調整されている、ことを特徴とする請求項1又は2に記載の導光装置。
【請求項4】
各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの位置は、上記出力ビーム束を構成する各出力ビームの光軸が特定の平面内に等間隔で並ぶように調整されている、ことを特徴とする請求項3に記載の導光装置。
【請求項5】
各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きは、上記出力ビーム束を構成する各出力ビームの光軸の延長が1点で交差するように調整されている、ことを特徴とする請求項1又は2に記載の導光装置。
【請求項6】
上記特定の平面と上記第1ミラーの上記第1側面とは、これらの面の間に形成された厚みが均一な接着剤層によって接着されており、
上記第1ミラーの上記第3側面と上記第2ミラーの上記第1側面とは、これらの面の間に形成された厚みが均一な接着剤層によって接着されている、ことを特徴とする請求項1〜5の何れか1項に記載の導光装置。
【請求項7】
上記特定の平面と上記第1ミラーの上記第1側面との間に形成された接着剤層の厚み、及び、上記第1ミラーの上記第3側面と上記第2ミラーの上記第1側面との間に形成された接着剤層の厚みは、上記2連ミラーの寸法公差よりも小さい、ことを特徴とする請求項1〜6の何れか1項に記載の導光装置。
【請求項8】
上記第2ミラーの重心が上記第1ミラーの上面の上に配置されている、ことを特徴とする請求項1〜7の何れか1項に記載の導光装置。
【請求項9】
上記第2ミラーは、上記第2反射面にて反射された入力ビームが出射する第3側面と、上記第3側面に対向する第4側面とを更に有する柱状のプリズムであり、一方の底面が上記第1反射面に入射する入力ビームの光源と対向するように上記第1ミラー上に載置されている、
ことを特徴とする請求項1〜8の何れか1項に記載の導光装置。
【請求項10】
請求項1に記載の導光装置を製造する製造方法であって、
各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きを、上記出力ビーム束を構成する各出力ビームの伝搬方向が特定の方向に一致するように調整する工程を含んでいる、ことを特徴とする製造方法。
【請求項11】
各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの位置を、上記出力ビーム束を構成する各出力ビームの光軸が特定の平面内に等間隔で並ぶように調整する工程を更に含んでいる、ことを特徴とする請求項10に記載の製造方法。
【請求項12】
各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの向き、上記出力ビーム束を構成する各出力ビームの光軸の延長が1点で交差するように調整する工程を更に含んでいる、ことを特徴とする請求項10に記載の製造方法。
【請求項13】
複数のLD素子と、上記複数のLD素子の各々から出射されたレーザビームからなる入力ビーム束を複数の出力ビームからなる出力ビーム束に変換する導光装置とを備えたLDモジュールにおいて、
上記導光装置は、各LD素子に対応する2連ミラーであって、他のLD素子に対応する2連ミラーから分離された2連ミラーを備えており、
各LD素子に対応する2連ミラーは、特定の平面上に載置された第1ミラーと、該第1ミラー上に載置された第2ミラーとにより構成されており、
上記第1ミラーは、上記特定の平面に当接する第1側面と、対応するLD素子から出射されたレーザビームを反射する第1反射面として機能する第2側面と、上記第1側面と平行な第3側面とを有しており、
上記第2ミラーは、一部分が上記第1ミラーの上記第3側面に当接し、残りの部分が上記第1ミラーの上記第2側面に対向する第1側面と、上記第1反射面にて反射され、当該第2ミラーの上記第1側面を介して当該第2ミラー内に入射したレーザビームを反射する第2反射面として機能する第2側面とを有する柱状のプリズムであり、上記第2反射面において生じる反射は、当該プリズムの内部で生じる全反射である、ことを特徴とするLDモジュール。
【請求項14】
上記出力ビーム束を光ファイバの入射端面に集束する集束レンズを更に備えおり、
各LDに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きは、上記出力ビーム束を構成する各出力ビームの伝搬方向が特定の方向に一致するように調整されており、第1ミラー及び第2ミラーの位置は、上記出力ビーム束を構成する各出力ビームの光軸が特定の平面内に等間隔で並ぶように調整されている、
ことを特徴とする請求項13に記載のLDモジュール。
【請求項15】
上記出力ビーム束を光ファイバの入射端面に集束する集束レンズを更に備えおり、
各LDに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きは、上記出力ビーム束を構成する各出力ビームの光軸の延長が1点で交差するように調整されている、ことを特徴とする請求項13に記載のLDモジュール。
【請求項16】
上記第2ミラーは、上記第2反射面にて反射されたレーザビームが出射する第3側面と、上記第3側面に対向する第4側面とを更に有する柱状のプリズムであり、一方の底面が上記第1反射面に入射するレーザビームの光源と対向するように上記第1ミラー上に載置されている、
ことを特徴とする請求項13〜15の何れか1項に記載のLDモジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の入力ビームからなる入力ビーム束を複数の出力ビームからなる出力ビーム束に変換する導光装置に関する。また、そのような導光装置の製造方法、及び、そのような導光装置を備えたLDモジュールに関する。
【背景技術】
【0002】
LD(Laser Diode)素子(半導体レーザ素子)から出射されたレーザビームを光ファイバに結合するために、LDモジュールが広く用いられている。このようなLDモジュールにおいて、複数のLD素子の各々から出射されたレーザビームを光ファイバに導く導光装置として、特許文献1に記載のマイクロ光学装置が知られている。
【0003】
図14は、特許文献1に記載のマイクロ光学装置10の斜視図である。マイクロ光学装置10は、図14に示したように、基板11、LDバー12、円柱レンズ13、第1の鏡列14、及び第2の鏡列15を備えている。
【0004】
LDバー12は、x軸に沿って並んだ複数のLD素子を備えており、各LD素子からz軸正方向にレーザビームを出射する。各LD素子からz軸正方向に出射されたレーザビームの光軸は、zx面に平行な第1の平面内でx軸に沿って並ぶ。
【0005】
なお、各LD素子から出射されたレーザビームの伝搬方向は、z軸正方向を中心に±θx方向に分散している。このため、マイクロ光学装置10においては、LDバー12の出射端面に対向するように配置された円柱レンズ13によって、各LD素子から出射されたレーザビームをコリメートする(伝播方向をz軸正方向に収斂させる)構成が採用されている。
【0006】
第1の鏡列14は、LDバー12を構成する各LD素子に対向する鏡面14aが一体化されたものである。各LD素子からz軸正方向に出射されたレーザビームは、そのLD素子に対向する鏡面14aによって、y軸正方向に反射される。また、第2の鏡列15は、第1の鏡列14を構成する各鏡面14aに対向する鏡面15aが一体化されたものである。各鏡面14aにてy軸正方向に反射されたレーザビームは、その鏡面14aに対向する鏡面15aによって、x軸正方向に反射される。
【0007】
なお、x軸正方向側から数えてi+1番目のLD素子から出射されたレーザビームを反射する鏡面14a,15aは、x軸正方向側から数えてi番目のLD素子から出射されたレーザビームを反射する鏡面14a,15bよりもz軸負方向側に配置される。このため、各鏡面15aにてx軸正方向に反射されたレーザビームの光軸は、zx平面と平行な第2の平面であって、上述した第1の平面よりもy軸正方向側に位置する第2の平面内でz軸に沿って並ぶ。
【0008】
このように、マイクロ光学装置10は、LDバー12を構成する各LD素子から出射されたz軸正方向に伝搬するレーザビームからなる第1のビーム束を、第2の鏡列15を構成する各鏡面15aにて反射されたx軸方向に伝播するレーザビームからなる第2のビーム束に変換する機能を有している。マイクロ光学装置10から出力される第2のビーム束(以下、「出力ビーム束」と記載)は、例えば、不図示のレンズによって光ファイバの入射端面上に集束される。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2004−252428号(公開日:2004年9月9日)
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、従来のマイクロ光学装置10においては、各LD素子から出射されるレーザビームの伝搬方向にばらつき(非一様な傾き)がある場合、出力ビーム束を構成する各レーザビームの伝搬方向にばらつきが生じることを免れない。各LD素子から出射されるレーザビームを反射する鏡面14a,15aが鏡列14,15として一体化されているので、出力ビーム束を構成するレーザビームの伝搬方向を個別に調整することができないためである。出力ビーム束を構成する各レーザビームの伝搬方向のばらつきは、出力ビーム束を光ファイバの入射端面に集束することを困難にし、高出力化及び高効率化を妨げる要因となる。
【0011】
このような問題は、マルチチップLDモジュールにおいて特に顕著である。ここで、マルチチップLDモジュールとは、それぞれ1つのLD素子を備えた複数のLDチップを光源とするLDモジュールのことを指す。各LDチップを個別に実装する必要のあるマルチチップLDモジュールにおいて、各LDチップから出射されるレーザビームの伝搬方向にばらつきが生じ易いことは明らかであろう。
【0012】
なお、各LD素子から出射されるレーザビームの伝搬方向の傾きが一様な場合、鏡列14の傾きを調整することによって、出力ビーム束を構成する各レーザビームを所定の方向に伝搬させることができる。しかしながら、鏡列14の傾きを維持することは、以下の理由により困難である。
【0013】
すなわち、鏡列14を傾けた状態で基板11に接着するためには、鏡列14と基板11との間に介在する接着層の厚みを不均一にする必要がある。このため、接着層を硬化する際に不均一な硬化収縮が起こり、鏡列14の傾きが変化してしまう。また、接着層を硬化させた後も、温度上昇/温度低下に伴って不均一な熱膨張/熱収縮が起こり、鏡列14の傾きが変化してしまう。
【0014】
本発明は、このような問題に鑑みてなされたものであり、その目的は、複数の入力ビームからなる入力ビーム束を複数の出力ビームからなる出力ビーム束に変換する導光装置において、入力ビームの伝搬方向に非一様又は一様な傾きがあっても、出力ビームの伝搬方向を所定の方向に調整することが可能な導光装置を安価に実現することにある。また、そのような導光装置を用いて、高出力化及び高効率化が可能なLDモジュールを安価に実現することにある。
【課題を解決するための手段】
【0015】
本発明に係る導光装置は、複数の入力ビームからなる入力ビーム束を複数の出力ビームからなる出力ビーム束に変換する導光装置において、各入力ビームに対応する2連ミラーであって、他の入力ビームに対応する2連ミラーから分離された2連ミラーを備えており、各入力ビームに対応する2連ミラーは、特定の平面上に載置された第1ミラーと、該第1ミラー上に載置された第2ミラーとにより構成されており、上記第1ミラーは、入力ビームを反射する第1反射面を有しており、上記第2ミラーは、上記第1反射面にて反射された入力ビームを反射する第2反射面を有しており、上記第2ミラーは、プリズムであり、上記第2反射面において生じる反射は、当該プリズムの内部で生じる全反射である、ことを特徴とする。
【0016】
上記の構成においては、各入力ビームを反射する第1反射面が特定の平面上に載置された第1ミラーに設けられ、第1反射面にて反射された入力ビームを反射する第2反射面が第1ミラー上に載置された第2ミラーに設けられている。このため、第1ミラー及び第2ミラーをそれぞれ回動させることによって、出力ビームの伝搬方向を自由に調整することができる。例えば、入力ビームの伝搬方向に傾きがあっても、出力ビームの伝搬方向を所定の方向に調整することができる。また、第1ミラー及び第2ミラーをそれぞれ摺動させることによって、出力ビームの光軸位置も自由に調整することができる。
【0017】
しかも、上記の構成においては、各入力ビームに対応する2連ミラーが他の入力ビームに対応する2連ミラーから分離されている。したがって、各出力ビームの伝搬方向の調整を互いに独立に行うことができる。したがって、入力ビームの伝搬方向にばらつきがあっても、出力ビームの伝搬方向を所定の方向に調整することができる。また、各出力ビームの光軸位置の調整も互いに独立に行うことができる。
【0018】
更に、上記の構成において、上記第2ミラーは、プリズムである。したがって、上記第2ミラーの形状公差を小さく抑えると共に、上記第2ミラーの製造コストを安価に抑えることができる。また、上記の構成において、上記第2反射面において生じる反射は、当該プリズムの内部で生じる全反射である。したがって、上記第2ミラーの表面に高反射コーティングを施す必要がない。この観点からも、上記第2ミラーの製造コストを安価に抑えることができる。
【0019】
本発明に係る導光装置において、上記第1反射面の法線と上記特定の平面の法線との成す角は45°であり、上記第2反射面の法線と上記特定の平面の法線との成す角は135°である、ことが好ましい。
【0020】
上記の構成によれば、上記特定の平面と平行な方向に伝播する入力ビームの伝播方向を、上記第1反射面における反射により上記特定の平面と垂直な方向に変換し、更に、上記第2反射面における反射により上記特定の平面と平行な方向に変換することができる。
【0021】
本発明に係る導光装置においては、各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きが、上記出力ビーム束を構成する各出力ビームの伝搬方向が特定の方向に一致するように調整されている、ことが好ましい。
【0022】
上記の構成によれば、凸レンズなどによって精度良く集束することが可能な出力ビーム束を得ることができる。
【0023】
本発明に係る導光装置においては、各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの位置が、上記出力ビーム束を構成する各出力ビームの光軸が特定の平面内に等間隔で並ぶように調整されている、ことが好ましい。
【0024】
上記の構成によれば、より精度良く集束することが可能な出力ビーム束を得ることができる。
【0025】
本発明に係る導光装置においては、各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きは、上記出力ビーム束を構成する各出力ビームの光軸の延長が1点で交差するように調整されている、ことが好ましい。
【0026】
上記の構成によれば、凸レンズなどによって精度良く集束することが可能な出力ビーム束を得ることができる。
【0027】
本発明に係る導光装置においては、上記特定の平面と上記第1ミラーの下面とは、これらの面の間に形成された厚みが均一な接着剤層によって接着されており、上記第1ミラーの上面と上記第2ミラーの下面とは、これらの面の間に形成された厚みが均一な接着剤層によって接着されている、ことが好ましい。
【0028】
上記の構成によれば、これらの接着剤層が収縮又は膨張した場合でも、出力ビームの伝播方向が傾いたり出力ビームの光軸の配置が崩れたりするといった事態の発生を回避することができる。
【0029】
本発明に係る導光装置においては、上記特定の平面と上記第1ミラーの下面との間に形成された接着剤層の厚み、及び、上記第1ミラーの上面と上記第2ミラーの下面との間に形成された接着剤層の厚みは、上記2連ミラーの寸法公差よりも小さい、ことが好ましい。
上記の構成によれば、これらの接着剤層が膨張又は収縮した場合でも、接着剤層の厚みが均一であるか否かに依らず、上記特定の平面と上記第1ミラーの下面との平行性、及び、上記第1ミラーの上面と上記第2ミラーの下面との平行性が設計において許容された程度を下回ることはない。
【0030】
本発明に係る導光装置においては、上記第2ミラーの重心が上記第1ミラーの上面の上に配置されている、ことが好ましい。
【0031】
上記の構成によれば、第2ミラーに対してトルクが働かなくなるので、調心固定を安定化させ、第2ミラーの位置公差を小さくすることができる。
【0032】
上記導光装置を製造する製造方法も本発明の範疇に含まれる。
【0033】
各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの向きを、上記出力ビーム束を構成する各出力ビームの伝搬方向が特定の方向に一致するように調整する工程を含めることによって、或いは、各入力ビームに対応する2連ミラーについて、第1ミラー及び第2ミラーの位置を、上記出力ビーム束を構成する各出力ビームの光軸が特定の平面内に等間隔で並ぶように調整する工程を更に含めることによって、精度良く集束することが可能な出力ビーム束を生成する導光装置を製造することができる。
【0034】
上記導光装置を備えたLDモジュールも本発明の範疇に含まれる。
【0035】
上記導光装置を備えることによって、高出力化及び高効率化が可能なLDモジュールを実現することができる。
【発明の効果】
【0036】
本発明によれば、入力ビームの伝搬方向に非一様又は一様な傾きがあっても、出力ビームの伝搬方向を所定の方向に調整することが可能な導光装置を安価に実現することができる。また、このような導光装置を用いることによって、高出力化及び高効率化が可能なLDモジュールを安価に実現することができる。
【図面の簡単な説明】
【0037】
図1】本発明の一実施形態に係るLDモジュールの構成を示す上面図である。
図2図1に示すLDモジュールが備える単位光学系の構成を示す斜視図である。
図3図1に示すLDモジュールが備える2連ミラーの構成を示す斜視図である。
図4図5に示す調整方法を実施する際のLDモジュールの構成を示す上面図である。
図5図3に示す2連ミラーが備える第1ミラー及び第2ミラーの向き及び位置を調整する調整方法を示すフローチャートである。
図6】(a)は、図5に示すフローチャートに含まれる第1ミラー回動工程を実施する前の2連ミラーの状態を例示する上面図(上段)及び正面図(下段)である。(b)は、第1ミラー回動工程を実施した後の2連ミラーの状態を例示する上面図(上段)及び正面図(下段)である。
図7】(a)は、図5に示すフローチャートに含まれる第2ミラー回動工程を実施する前の2連ミラーの状態を例示する上面図(上段)及び側面図(下段)である。(b)は、第2ミラー回動工程を実施した後の2連ミラーの状態を例示する上面図(上段)及び側面図(下段)である。
図8】(a)は、図5に示すフローチャートに含まれる第1ミラー摺動工程を実施する前の2連ミラーの状態を例示する側面図である。(b)は、第1ミラー摺動工程を実施した後の2連ミラーの状態を例示する側面図である。
図9】(a)は、図5に示すフローチャートに含まれる第2ミラー摺動工程を実施する前の2連ミラーの状態を例示する正面図である。(b)は、第2ミラー摺動工程を実施した後の2連ミラーの状態を例示する正面図である。
図10図5に示す調整方法を実施する際に調整目標とされる出力ビームの配置を示す図である。
図11図1に示すLDモジュールの第1の変形例を示す上面図である。
図12図1に示すLDモジュールの第2の変形例を示す上面図である。
図13図1に示すLDモジュールの第3の変形例を示す上面図である。
図14】従来のマイクロ光学装置の構成を示す斜視図である。
【発明を実施するための形態】
【0038】
本発明の一実施形態に係るLDモジュールについて、図面に基づいて説明すれば以下の通りである。
【0039】
〔LDモジュールの構成〕
本実施形態に係るLDモジュール1の構成について、図1を参照して説明する。図1は、LDモジュール1の構成を示す上面図である。
【0040】
LDモジュール1は、N個(本実施形態においてはN=10)のLDチップLD1〜LD10から出射されたレーザビームを光ファイバOFに結合するためのものである。なお、本実施形態においては、LDモジュール1が備えるLDチップの個数Nを10とするが、本発明はこれに限定されない。すなわち、LDモジュール1が備えるLDチップの個数Nは、2以上の任意の整数であり得る。
【0041】
LDモジュール1は、図1に示すように、N個のLDチップLD1〜LD10の他に、N個のF軸コリメートレンズFAC1〜FAC10と、N個のS軸コリメートレンズSAC1〜SAC10と、N個の2連ミラーM1〜M10と、基板Bと、F軸集光レンズFLと、S軸集光レンズSLとを備えている。LDチップLD1〜L10、F軸コリメートレンズFAC1〜FAC10、S軸コリメートレンズSAC1〜SAC10、2連ミラーM1〜M10、F軸集光レンズFL、及びS軸集光レンズSLは、何れも、直接、又は、不図示のマウントを介して基板B上に載置される。
【0042】
LDモジュール1においては、基板B、F軸コリメートレンズFAC1〜FAC10、S軸コリメートレンズSAC1〜SAC10、及び2連ミラーM1〜M10が、従来のマイクロ光学装置10(図14参照)に相当する導光装置を構成する。この導光装置は、従来のマイクロ光学装置10と同様、LDチップLD1〜LD10から出射されたz軸正方向に伝搬するレーザビーム(以下、「入力ビーム」とも記載する)からなる入力ビーム束を、x軸負方向に伝搬するレーザビーム(以下、「出力ビーム」とも記載する)からなる出力ビーム束に変換する機能を有する。
【0043】
この出力ビーム束の光路上には、F軸集光レンズFLとS軸集光レンズSLとが配置される。F軸集光レンズFLは、出力ビーム束を構成する各出力ビームを、ビーム間隔が光ファイバOFの入射端面において最小になる(好ましくは0になる)ように屈折させる。また、S軸集光レンズSLは、出力ビーム束を構成する各出力ビームを、y軸方向のビーム径が光ファイバOFの入射端面において最小になる(好ましくは0になる)ように集束させる。
【0044】
LDモジュール1は、図1に示すように、LDチップLDiと、F軸コリメートレンズFACiと、S軸コリメートレンズSACiと、2連ミラーMiとからなる光学系を単位として構成されている。図1においては、LDチップLD1と、F軸コリメートレンズFAC1と、S軸コリメートレンズSAC1と、2連ミラーM1とからなる単位光学系S1を例示している。
【0045】
〔単位光学系の構成〕
LDモジュール1が備える単位光学系Siの構成ついて、図2を参照して説明する。図2は、単位光学系Siの構成を示す斜視図である。単位光学系Siは、図2に示すように、LDチップLDiと、F軸コリメートレンズFACiと、S軸コリメートレンズSACiと、2連ミラーMiとにより構成される。
【0046】
LDチップLDiは、活性層がzx平面と平行になるように、かつ、出射端面がz軸正方向を向くように、基板B上に載置される。このため、LDチップLDiから出射されるレーザビームは、伝搬方向がz軸正方向、F軸がy軸と平行、S軸がx軸と平行になる。
【0047】
なお、図1に示したように、N個のLDチップLD1〜LD10は、x軸に沿って並べられる。このため、各LDチップLDiからz軸正方向に出射されたレーザビームの光軸は、zx面に平行な第1の平面内でx軸に沿って平行に並ぶことになる。
【0048】
LDチップLDiから出射されるレーザビームの光路上には、F軸コリメートレンズFACiとS軸コリメートレンズSACiとが配置される。F軸コリメートレンズFACiは、LDチップLDiから出射されたレーザビームのF軸方向の広がりをコリメートするためのものであり、S軸コリメートレンズSACiは、LDチップLDiから出射されたレーザビームのS軸方向の広がりをコリメートするためのものである。F軸コリメートレンズFACi及びS軸コリメートレンズSACiを透過したレーザビームは、伝搬方向がz軸正方向に収斂されたコリメートビームとなる。なお、LDチップLDiから出射されるレーザビームのS軸方向の広がりが十分に小さい場合、S軸コリメートレンズSACiは省略しても構わない。
【0049】
LDチップLDiから出射されるレーザビームの光路上には、更に、2連ミラーMiが配置される。2連ミラーMiは、基板B上に載置された第iミラーMi1と、第1ミラーMi1上に載置された第2ミラーMi2とにより構成される。第1ミラーMi1は、LDチップLDiから出射されたレーザビームを反射し、その伝搬方向をz軸正方向からy軸正方向に変換するためのものであり、「跳ね上げミラー」と呼ばれることもある。また、第2ミラーMi2は、第1ミラーMi1にて反射されたレーザビームを反射し、その伝搬方向をy軸正方向からx軸負方向に変換するためのものであり、「折り返しミラー」と呼ばれることもある。
【0050】
なお、図1に示したように、x軸負方向側から数えてi+1番目のLDチップLDi+1から出射されたレーザビームを反射する2連ミラーMi+1は、x軸正方向側から数えてi番目のLDチップLDiから出射されたレーザビームを反射する2連ミラーMiよりもz軸負方向側に配置される。このため、各2連ミラーMiにてx軸負方向に反射されたレーザビームの光軸は、zx面と平行な第2の平面であって、上述した第1の平面よりもy軸正方向側に位置する第2の平面内でz軸に沿って並ぶことになる。
【0051】
〔2連ミラーの構成〕
LDモジュール1が備える2連ミラーMiの構成について、図3を参照して説明する。図3は、2連ミラーMiの構成を示す斜視図である。2連ミラーMiは、図3に示すように、第1ミラーMi1と、第2ミラーMi2とにより構成される。
【0052】
第1ミラーMi1は、図3に示すように、第1の側面A1と、第1の側面A1と45°を成して交わる第2の側面S1と、第2の側面S1と135°を成して交わる第3の側面B1と、第3の側面B1と90°を成して交わる第4の側面C1とを有する四角柱状のプリズムにより構成される。第2の側面S1には、このプリズムの外部から入射した光を反射する反射膜として機能する誘電体多層膜が形成されている。以下、第2の側面S1を「反射面S1」とも記載する。
【0053】
第1ミラーMi1は、第1の側面A1が基板Bの上面に当接するように、基板B上に載置される(図2参照)。これにより、第1ミラーMi1の反射面S1の法線ベクトル(反射面S1から第1ミラーMi1の外部に向かう外向き法線ベクトル)と、基板Bの上面(zx面)の法線ベクトル(上面から基板Bの外部に向かう外向き法線ベクトル)との成す角が45°になる。また、第1ミラーMi1の向きは、反射面S1の法線がyz面と平行になるように決められる。これにより、第1ミラーMi1の反射面S1は、z軸負方向から入射したレーザビームをy軸正方向に反射する。反射面S1によりy軸正方向に反射されたレーザビームは、第1ミラーMi1上に載置された第2ミラーMi2に入射する。
【0054】
第2ミラーMi2は、図3に示すように、第1の側面A2と、第1の側面A2と90°を成して交わる第2の側面B2と、第2の側面B2と45°を成して交わる(すなわち、第1の側面A2と45°を成して交わる)第3の側面S2と、第3の側面S2と135°を成して交わる第4の側面C2とを有する四角柱状のプリズムにより構成される。第1の側面A2及び第2の側面B3には、AR(Anti Reflective)コーティング(「無反射コーティング」とも呼称する)が施されている。これにより、第1の側面A2を介してこのプリズムの内部に入射した光は、第3の側面S2において全反射され、第2の側面B2を介してこのプリズムの外部に出射する。以下、第3の側面S2を「反射面S2」とも記載する。
【0055】
第2ミラーMi2は、第1の側面A2の一部分が第1ミラーMi1の第3の側面B1に当接し、かつ、第1の側面A2の残りの部分が、第1のミラーMi1の反射面S1に対向するように配置される。これにより、第2ミラーMi2の反射面S2の法線ベクトル(反射面S2から第2ミラーMi2の内部に向かう内向き法線ベクトル)と、基板Bの上面(zx面)の法線ベクトル(上面から基板Bの外部に向かう外向き法線ベクトル)との成す角が135°になる。このため、第1のミラーMi1の反射面S1によりy軸正方向に反射されたレーザビームは、第2ミラーMi2の第1の側面A2を介して第2ミラーMi2の内部に入射する。また、第2ミラーMi2の向きは、反射面S2の法線がxy面と平行になるように決められる。これにより、第2ミラーMi2の反射面S2は、第2ミラーMi2の内部をy軸正方向に伝播したレーザビームをx軸負方向に反射する。反射面S2によりx軸負方向に反射されたレーザビームは、第2の側面B2を介して第2ミラーMi2の外部に出射される。
【0056】
LDモジュール1においては、各2連ミラーMiを構成する第1ミラーMi1及び第2ミラーMi2の向きを調整することによって、出力ビームの伝搬方向をx軸負方向に一致させることができる。y軸を回転軸として第1ミラーMi1を微小回転させると、z軸を回転軸として出力ビームの伝搬方向が微小回転し、y軸を回転軸として第2ミラーMi2を微小回転させると、y軸を回転軸として出力ビームの伝搬方向が微小回転するためである。
【0057】
また、LDモジュール1においては、各2連ミラーMiを構成する第1ミラーMi1及び第2ミラーMi2の位置を調整することによって、出力ビームの光軸をxz面と平行な平面内に等間隔で並べることができる。第1ミラーMi1をz軸正方向/負方向に並進させると、出力ビームの光軸がz軸正方向/負方向に並進し、第2ミラーMi2をx軸正方向/負方向に並進させると、出力ビームの光軸がy軸正方向/負方向に並進するためである。
【0058】
なお、本実施形態においては、各2連ミラーMiにおける第1ミラーMi1の反射面S1の法線ベクトルと基板Bの上面の法線ベクトルとの成す角を45°とする構成を示したが、本発明はこれに限定されない。すなわち、第1ミラーMi1の反射面S1の法線ベクトルと基板Bの上面の法線ベクトルとの成す角は、44°であってもよいし、46°であってもよい。同様に、本実施形態においては、各2連ミラーMiにおける第2ミラーMi2の反射面S2の法線ベクトルと基板Bの上面の法線ベクトルとの成す角を135°とする構成を示したが、本発明はこれに限定されない。すなわち、第2ミラーMi2の反射面S2の法線ベクトルと基板Bの上面の法線ベクトルとの成す角は、134°であってもよいし、136°であってもよい。このような場合であっても、各2連ミラーMiを構成する第1ミラーMi1及び第2ミラーMi2の向きを調整することによって、出力ビーム束を構成する各出力ビームの伝搬方向を所望の方向に調整することができる。
【0059】
また、本実施形態においては、LDチップLDiを、出射されるレーザビームの光軸がz軸と平行になるように配置する構成を示したが、本発明はこれに限定されない。すなわち、LDチップLDiを、出射されるレーザビームの光軸が正または負の仰角をもつように傾けて配置してもよい。このような場合であっても、各2連ミラーMiを構成する第1ミラーMi1及び第2ミラーMi2の向きを調整することによって、出力ビーム束を構成する各出力ビームの伝搬方向を所望の方向に調整することができる。
【0060】
また、本実施形態においては、出力ビーム束を構成する各出力ビームの伝搬方向をx軸負方向と一致させることを第1の調整目標としているが、本発明はこれに限定されるものではない。すなわち、出力ビームを構成する各出力ビームの伝搬方向を特定の方向と一致させることができれば十分であり、該特定の方向は、x軸負方向に限定されない。例えば、中心軸が正または負の仰角をもつように光ファイバOFが傾いて配置されている場合には、各出力ビームの伝搬方向を光ファイバの中心軸と平行にすることを調整目標とすればよい。
【0061】
また、本実施形態においては、出力ビーム束を構成する各出力ビームの光軸をzx面と平行な平面内に等間隔で並べることを第2の調整目標としているが、本発明はこれに限定されるものではない。すなわち、出力ビームを構成する各出力ビームの光軸を特定の平面内に等間隔で並べることができれば十分であり、該特定の平面は、zx面と平行な平面に限定されない。
【0062】
〔第2ミラーに関する補足〕
以上のように、本実施形態においては、第2ミラーMi2として、四角柱状のプリズムを用いている。このような形状のプリズムは、石英ガラス等の透明体を用いて一体形成することができる。このため、形状公差の小さい第2ミラーMi2を、安価に製造することが可能になる。また、第2ミラーMi2は、プリズムの内部で全反射を生じさせるミラーであるため、プリズムの表面に高反射コーティングを施すこと必要がない。この観点からも、第2ミラーMi2の製造コストは、安価に抑えられる。
【0063】
なお、入射面及び出射面に施す無反射コーティングのコストを考慮に入れたとしても、プリズムの内部で全反射を生じさせるミラーの方が、プリズムの外部で反射を生じさせるミラーよりも安価に製造することが可能である。なぜなら、プリズムの外部で反射を生じさせるための高反射コーティングは、無反射コーティングよりも層数の多い誘電体多層膜であり、無反射コーティングよりも施工コストが高いからである。
【0064】
また、本実施形態においては、第2ミラーMi2を第1ミラーMi1上に載置する際に、第2ミラーMi2の重心を第1ミラーMi1の第3の側面B1上に配置する構成を採用している。これにより、第2ミラーMi2に対してx軸またはz軸を回転軸とするトルクが働かなくなるので、調心固定を安定化させ、第2ミラーMi2の位置公差を小さくすることが可能になる。
【0065】
〔ミラーの向き及び位置の調整方法〕
第1ミラーMi1及び第2ミラーMi2の向き及び位置の調整方法について、図4図10を参照して説明する。図4は、本調整方法を実施する際のLDモジュール1の構成を示す上面図である。図5は、本調整方法の流れを示すフローチャートである。図6図9は、本調整方法に含まれる各工程を説明する図である。図10は、本調整方法において調整目標とされる出力ビームの配置を示す図である。
【0066】
本調整方法は、図4に示すように、光モニタ装置OMを用いて実施される。光モニタ装置OMは、入射するレーザビームの向き及び位置を検出するためのものであり、本調整方法を実施する際に出力ビーム束の光路上に配置される。また、本調整方法は、下面に接着材を塗布した第1ミラーMi1を基板B上に載置し、下面に接着材を塗布した第2ミラーMi2を第1ミラーMi1上に載置した状態で実施される。これらの接着材は、本調整方法を実施した後に紫外線等によって硬化される。
【0067】
本調整方法は、図5に示すように、第1ミラー回動工程T1と、第2ミラー回動工程T2と、第1ミラー摺動工程T3と、第2ミラー摺動工程T4とを、各2連ミラーMiについて繰り返すことにより実現される。
【0068】
第1ミラー回動工程T1は、y軸を回転軸として第1ミラーMi1を微小回転させることによって、z軸を回転軸として出力ビームの伝搬方向を微小回転させる工程である。より具体的に言うと、光モニタ装置OMにより検出された出力ビームの傾き(z軸を回転軸とする回転による傾き)が最小(好ましくは0)になるよう、回転ステージを用いて第1ミラーMi1を微小回転(y軸を回転軸とする回転)させる工程である。
【0069】
図6(a)は、第1ミラー回動工程T1を実施する前の2連ミラーMiの状態を例示する上面図(上段)及び正面図(下段)である。図6(b)は、第1ミラー回動工程T1を実施した後の2連ミラーMiの状態を例示する上面図(上段)及び正面図(下段)である。図6(a)の下段に示すように、出力ビームの伝播方向がz軸を回転軸としてx軸方向からΔθzだけ微小回転してしまっている場合、図6(a)の上段に示すように、y軸を回転軸として第1ミラーMi1を微小回転させる。これにより、出力ビームの伝播方向が図6(b)の下段に示すように、x軸負方向に一致する。
【0070】
第2ミラー回動工程T2は、y軸を回転軸として第2ミラーMi2を微小回転させることによって、y軸を回転軸として出力ビームの伝搬方向を微小回転させる工程である。より具体的に言うと、光モニタ装置OMにより検出された出力ビームの傾き(y軸を回転軸とする回転による傾き)が最小(好ましくは0)になるよう、回転ステージを用いて第2ミラーMi2を微小回転(y軸を回転軸とする回転)させる工程である。
【0071】
図7(a)は、第2ミラー回動工程T2を実施する前の2連ミラーMiの状態を例示する上面図(上段)及び側面図(下段)である。図7(b)は、第2ミラー回動工程T2を実施した後の2連ミラーMiの状態を例示する上面図(上段)及び側面図(下段)である。図7(a)の上段に示すように、出力ビームの伝播方向がy軸を回転軸としてx軸方向からΔθyだけ微小回転してしまっている場合、図7(a)の上段に示すように、y軸を回転軸として第2ミラーMi2を微小回転させる。これにより、出力ビームの伝播方向が図7(b)の上段に示すように、x軸負方向に一致する。
【0072】
第1ミラー回動工程T1及び第2ミラー回動工程T2を実施することによって、出力ビーム束を構成する各出力ビームの伝搬方向をx軸負方向と一致させるという第1の調整目標が達成される。
【0073】
第1ミラー摺動工程T3は、z軸と平行に第1ミラーMi1を並進させることによって、z軸と平行に出力ビームの光軸を並進させる工程である。より具体的に言うと、光モニタ装置OMにより検出された出力ビームのz座標が所定の調整目標値となるよう、位置制御ステージを用いてz軸と平行に第1ミラーMi1を並進させる工程である。
【0074】
図8(a)は、第1ミラー摺動工程T3を実施する前の2連ミラーMiの状態を例示する側面図である。図8(b)は、第1ミラー摺動工程T3を実施した後の2連ミラーMiの状態を例示する側面図である。図8(a)に示すように、出力ビームの光軸がz軸正方向にΔzだけずれている場合、第1ミラーMi1をz軸負方向に並進させる。これにより、出力ビームの光軸のz軸方向のずれが、図8(b)に示すように解消される。
【0075】
第2ミラー摺動工程T4は、x軸と平行に第2ミラーMi2を並進させることによって、y軸と平行に出力ビームの光軸を並進させる工程である。より具体的に言うと、光モニタ装置OMにより検出された出力ビームのy座標が所定の調整目標値となるよう、位置制御ステージを用いてx軸と平行に第2ミラーMi2を並進させる工程である。
【0076】
図9(a)は、第2ミラー摺動工程T4を実施する前の2連ミラーMiの状態を例示する正面図である。図9(b)は、第2ミラー摺動工程T4を実施した後の2連ミラーMiの状態を例示する正面図である。図9(a)に示すように、出力ビームの光軸がy軸正方向にΔyだけずれている場合、第2ミラーMi2をx軸正方向に並進させる。これにより、出力ビームの光軸のy軸方向のずれが、図9(b)に示すように解消される。
【0077】
第1ミラー摺動工程T3及び第2ミラー摺動工程T4を実施することによって、出力ビーム束を構成する各出力ビームの光軸をzx面と平行な平面内に等間隔で並べるという第2の調整目標が達成される。
【0078】
出力ビーム束を構成する各出力ビームの光軸をzx面と平行な平面内に等間隔で並べることを第2の調整目標とする場合、第1ミラー摺動工程T3及び第2ミラー摺動工程T4において参照される調整目標値は、図10に示すように定めればよい。すなわち、光モニタ装置OMの受光面において、各出力ビームのビームスポットLiがz軸上に等間隔に並ぶように定めればよい。
【0079】
なお、第1ミラー摺動工程T3及び第2ミラー摺動工程T4は、図5に示した通り、第1ミラー回動工程T1及び第2ミラー回動工程T2を実施することによって、出力ビーム束を構成する各出力ビームの伝搬方向を平行化した後で実施することが好ましい。ただし、第1ミラー回動工程T1及び第2ミラー回動工程T2の実施順序、並びに、第1ミラー摺動工程T3及び第2ミラー摺動工程T4の実施順序は、図5に示したものに限定されない。すなわち、第2ミラー回動工程T2を実施した後に第1ミラー回動工程T1を実施する構成を採用してもよいし、第2ミラー摺動工程T4を実施した後に第1ミラー摺動工程T3を実施する構成を採用してもよい。
【0080】
また、第1ミラーMi1の基板Bへの固定、及び、第2ミラーMi2の第1ミラーMi1への固定に接着剤を用いる場合、これを以下のように行うことが好ましい。すなわち、第1ミラーMi1の下面と基板Bの上面との間、及び、第2ミラーMi2の下面と第1ミラーMi1の上面との間に接着剤を塗布した後、第1ミラー回動工程T1、第2ミラー回動工程T2、第1ミラー摺動工程T3、及び第2ミラー摺動工程T4を実施する。ただし、これらの工程を実施している間、及び、これらの工程を実施し終えてから接着剤の硬化が完了するまでの間、第1ミラーMi1の下面と基板Bの上面とが平行になり、かつ、第2ミラーMi2の下面と第1ミラーMi1の上面とが平行になる状態を保つ。これにより、第1ミラーMi1の下面と基板Bの上面との間に形成される接着剤層、及び、第2ミラーMi2の下面と第1ミラーMi1の上面との間に形成される接着剤層の厚みを均一化することができる。
【0081】
基板Bの上面と第1ミラーMi1の下面との間に形成される接着剤層の厚みが均一であれば、この接着剤層が膨張又は収縮した場合でも、各所における膨張量又は収縮量が同一になる。このため、この接着材層が膨張又は収縮した場合でも、第1ミラーMi1は、基板Bの上面に直交する方向(接着剤層の厚み方向)に平行移動するだけであり、基板Bの上面と第1ミラーMi1の下面との平行性が損なわれることはない。同様に、第1ミラーMi1の上面と第2ミラーMi2の下面との間に形成された接着剤層の厚みが均一であれば、この接着剤層が膨張又は収縮した場合でも、第2ミラーMi2は、第1ミラーMi1の上面に直交する方向に平行移動するだけであり、第1ミラーMi1の上面と第2ミラーMi2の下面と平行性が損なわれることはない。したがって、これらの接着剤層の厚みが均一であれば、これらの接着剤層が収縮又は膨張した場合でも、出力ビームの伝播方向が傾いたり出力ビームの光軸の配置が崩れたりするといった事態の発生を回避することができる。なお、これらの接着剤層に生じ得る収縮又は膨張としては、接着剤を硬化する際に生じ得る硬化収縮や、接着剤を硬化した後に生じ得る熱膨張、熱収縮、膨潤などが想定される。
【0082】
また、基板Bの上面と第1ミラーMi1の下面との間に形成される接着剤層の厚み、及び、第1ミラーMi1の上面と第2ミラーMi2の下面との間に形成された接着剤層の厚みは、要求される接着力を担保し得る範囲で、できるだけ薄くすることが好ましい。これらの接着剤層の厚みが薄くなるほど、これらの接着剤層が膨張又は収縮した場合に生じる厚みの変化量が小さくなり、その結果、基板Bの上面と第1ミラーMi1の下面との平行性、及び、第1ミラーMi1の上面と第2ミラーMi2の下面と平行性が保たれ易くなるからである。特に、これらの接着剤層の厚みは、それぞれ、2連ミラーMiの寸法公差(より具体的には、第1ミラーMi1及び第2ミラーの厚みの公差)、及び、基板Bの公差(より具体的には、基板Bの厚みの公差)よりも小さいことが好ましい。この場合、これらの接着剤層が膨張又は収縮した場合に生じる厚みの変化量も、2連ミラーMiの寸法公差、及び、基板Bの寸法公差を下回る(通常、接着剤層の厚みの変化量は、接着剤層の厚み自体よりも小さい)。したがって、これらの接着剤層が膨張又は収縮した場合でも、接着剤層の厚みが均一であるか否かに依らず、基板Bの上面と第1ミラーMi1の下面との平行性、及び、第1ミラーMi1の上面と第2ミラーMi2の下面との平行性が設計において許容された程度を下回ることはない。
【0083】
〔変形例〕
なお、本実施形態においては、LDチップLD1〜LD10をx軸に沿って配置する構成を示したが、本発明はこれに限定されない。
【0084】
例えば、図11に示すように、LDチップLDiから2連ミラーMiまでの光路長が一定になるよう、LDチップLD1〜LD10を斜めに配置してもよい。この場合、図11に示すように、基板Bのサイズを小型化することが可能になる。
【0085】
また、図12に示すように、LDチップLDiからF軸集光レンズFLまでの光路長が一定になるよう、LDチップLD1〜LD10を斜めに配置してもよい。この場合、F軸集光レンズLに入射するレーザビームのビーム径が一様になるため、出力ビーム束をより精度良く集束させることができる。
【0086】
また、図13に示すように、出力ビーム束を構成する各出力ビームの光軸の延長を1点で交差させるように、各2連ミラーMiを構成する第1ミラーMi1及び第2ミラーMi2の向きを調整する構成を採用してもよい。このような構成を採用することによって、出力ビーム束を構成する各出力ビームの伝搬方向をx軸負方向と一致させる場合(図1参照)と比べて、F軸集光レンズFLの曲率を大きくすることができ、その結果、収差をより小さく抑えることができる。
【0087】
〔付記事項〕
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【産業上の利用可能性】
【0088】
本発明は、LDモジュールに好適に利用することができる。特に、LDチップを光源とするLDモジュールに好適に利用することができる。
【符号の説明】
【0089】
1 LDモジュール
LD1〜LD10 LDチップ
FAC1〜FAC10 F軸コリメートレンズ
SAC1〜SAC10 S軸コリメートレンズ
M1〜M10 2連ミラー
Mi1 第1ミラー
S1 反射面(第1反射面)
Mi2 第2ミラー
S2 反射面(第2反射面)
B 基板
FL F軸集光レンズ
SL S軸集光レンズ
【要約】      (修正有)
【課題】入力ビームの伝搬方向に非一様又は一様な傾きがあっても、出力ビームの伝搬方向を所定の方向に調整することが可能な導光装置を提供する。
【解決手段】2連ミラーMiは、基板Bの上面に載置された第1ミラーMi1と、第1ミラーMi1の上面に載置された第2ミラーMi2とにより構成される。第1ミラーMi1は、入力ビームを反射する反射面を有し、第2ミラーMi2は、第1ミラーMi1の反射面にて反射された入力ビームを反射する反射面を有する。第2ミラーMi2は、プリズムであり、反射面における反射は、このプリズムの内部で生じる全反射である。
【選択図】図2
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14