【文献】
諏訪 正樹,ITS〜高度交通システム〜 交通流計測のためのステレオビジョン,画像ラボ,日本,日本工業出版株式会社,2004年12月,第15巻,第12号,p.47-51
(58)【調査した分野】(Int.Cl.,DB名)
前記位置検出部は、前記車両領域に基づいて実空間における車両走行軸に直交する所定の垂直平面を検出し、前記車両走行軸と前記垂直平面との交点座標を前記検出位置として検出する、
請求項5に記載の交通量計測装置。
前記位置検出部は、実空間における車両進行方向が奥から手前に向かう方向の場合には、前記車両前面を前記垂直平面として検出し、実空間における車両進行方向が手前から奥に向かう方向の場合には、前記車両背面を前記垂直平面として検出する、
請求項7に記載の交通量計測装置。
【発明を実施するための形態】
【0018】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0019】
また、本明細書および図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットまたは数字を付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
【0020】
[概要の説明]
続いて、本発明の実施形態の概要を説明する。
図1は、本発明の実施形態の概要を説明するための図である。
図1に示すように、撮像部が組み込まれた交通量計測装置10および道路平面が実空間に存在する。また、撮像部が組み込まれた交通量計測装置10は、撮像方向が道路平面に向けられた状態で設置されている。交通量計測装置10により撮像された撮像画像Img’には道路に設けられたレーンの境界線が映っている。また、
図1に示すように、交通量計測装置10のレンズの中心が原点Oに設定されている。
【0021】
図1には、交通量計測装置10に撮像部が組み込まれている例が示されているが、撮像部は交通量計測装置10に組み込まれておらず交通量計測装置10の外部に設置されていてもよい。かかる場合、例えば、交通量計測装置10は、撮像部から送信された撮像画像Img’を受信することにより撮像画像Img’を取得してもよい。また、例えば、交通量計測装置10は、記録媒体に記録された撮像画像Img’を読み込むことにより撮像画像Img’を取得してもよい。
【0022】
ここで、撮像部によって道路平面が撮像されて得られた撮像画像Img’から交通量を計測する技術が提案されている。かかる交通量計測技術においては、撮像画像Img’から背景差分法に基づいて車両シルエット領域を抽出し、車両シルエット領域を追跡しながら撮像範囲を通過した車両シルエット領域の数をカウントすることによって交通量を計測するのが一般的である。
【0023】
しかし、撮像画像Img’から背景差分法に基づいて安定的に車両シルエット領域の抽出ができない場合には、車両シルエット領域を正確に追跡することが困難な状況が起こり得る。かかる状況では、撮像範囲を通過した車両シルエット領域の数を精度よくカウントすることが困難となり、交通量を精度よく計測することが困難となり得る。
【0024】
例えば、撮像部が屋外に設置されるような場合には、天候の変化や日照の変化などが原因となって、安定的に車両シルエット領域の抽出ができなくなる可能性がある。また、手前側の車両に奥側の車両が隠蔽されてしまう現象が生じた場合には、手前側の車両と奥側の車両との間で車両シルエット領域が重複してしまう状況が起こり得るため、安定的に車両シルエット領域の抽出ができなくなる可能性がある。
【0025】
そこで、本明細書においては、撮像画像に基づいて交通量を計測する場合において交通量計測の精度を向上させる技術を提案する。
【0026】
以上、本発明の実施形態の概要を説明した。
【0027】
[実施形態の詳細]
続いて、本発明の実施形態の詳細について説明する。まず、本発明の実施形態に係る交通量計測装置10の機能構成について説明する。
図2は、本発明の実施形態に係る交通量計測装置10の機能構成例を示す図である。
図2に示すように、本発明の実施形態に係る交通量計測装置10は、制御部110、撮像部170、記憶部180および出力部190を備える。
【0028】
制御部110は、交通量計測装置10の動作全体を制御する機能を有する。撮像部170は、実空間を撮像することにより撮像画像を取得する機能を有し、例えば、単眼カメラにより構成される。記憶部180は、制御部110を動作させるためのプログラムやデータを記憶することができる。また、記憶部180は、制御部110の動作の過程で必要となる各種データを一時的に記憶することもできる。出力部190は、制御部110による制御に従って出力を行う機能を有する。出力部190の種類は特に限定されず、計測結果記録装置であってもよいし、計測結果を通信回線にて他装置へ送信する装置であってもよいし、表示装置であってもよいし、音声出力装置であってもよい。
【0029】
なお、
図2に示した例では、撮像部170、記憶部180および出力部190は、交通量計測装置10の内部に存在するが、撮像部170、記憶部180および出力部190の全部または一部は、交通量計測装置10の外部に備えられていてもよい。また、制御部110は、情報取得部111と、設定部112と、出力制御部113と、位置検出部114と、計測部115とを備える。制御部110が備えるこれらの各機能部の詳細については、後に説明する。
【0030】
以上、本発明の実施形態に係る交通量計測装置10の機能構成例について説明した。
【0031】
まず、本発明の実施形態に係る交通量計測装置10によりキャリブレーションが行われ得る。より詳細には、道路の平面式(以下、「道路平面式」とも言う)を算出する処理と車両の進行方向とを算出する処理とがキャリブレーションとして行われ得る。以下では、
図3および
図4を参照しながら、設定部112により行われ得るキャリブレーションについて説明する。
【0032】
図3は、設定部112により使用されるパラメータを示す図である。設定部112は、まず、撮像部170を構成する撮像素子のサイズと制御部110に提供される撮像画像Img’のサイズとに基づいて、撮像素子の単位pixel当たりの撮像画像Img’のサイズpix_dotをパラメータとして算出する。撮像画像Img’は、原点Oから焦点距離だけ離れた撮像素子の撮像面上に撮像された撮像画像Imgに基づいて生成される。また、制御部110に提供された撮像画像Img’は、情報取得部111によって取得されて設定部112によって利用され得る。
【0033】
図3に示すように、ここでは、撮像素子がCCD(Charge Coupled Device)である場合を例として説明するが、CCDは撮像素子の一例に過ぎない。したがって、撮像素子はCMOS(Complementary Metal Oxide Semiconductor)等であってもよい。
【0034】
ここで、CCDサイズをccd_sizeとし、撮像画像Img’(横:width×縦:height)のサイズをimg_sizeとすると、設定部112は、以下の(数式1)によりpix_dotを算出することができる。一般的に、CCDサイズは、CCDの対角線の長さで表されるため、この(数式1)に示されるように、CCDサイズが撮像画像Img’の縦横の2乗和の平方根で除されることにより算出される。しかし、このような手法によるパラメータpix_dotの算出は一例に過ぎないため、他の手法によりパラメータpix_dotが算出されてもよい。例えば、CCDの対角線の代わりにCCDの縦または横の長さが用いられてもよい。
【0036】
なお、CCDサイズは、例えば、撮像部170から容易に取得される。また、撮像画像Img’のサイズは、例えば、記憶部180から取得される。したがって、制御部110は、これらのサイズに基づいて、CCDの撮像面に撮像される撮像画像Imgの実空間における3次元座標と制御部110に提供される撮像画像Img’の2次元座標との対応関係を把握することができる。すなわち、制御部110は、この対応関係に基づいて、制御部110に提供される撮像画像Img’の2次元座標からCCDの撮像面に撮像される撮像画像Imgの実空間における3次元座標を把握することができる。
【0037】
このように算出されたパラメータを用いてキャリブレーションが行われ得る。以下、
図4を参照しながら、設定部112によりパラメータを用いて行われるキャリブレーションについて説明する。
【0038】
図4は、設定部112の機能を説明するための図である。
図4に示したように、原点Oを基準としたxyz座標系(実空間)を想定する。このxyz座標系において、道路平面式をR1x+R2x+R3z+R4=0とする。また、車両の進行方向を示すベクトルである進行方向ベクトルvを(vx,vy,vz)とする。なお、以下の説明では、
図4に示したように、原点Oから焦点距離fだけ離れた点(焦点)をy軸上に設定し、この焦点を通りy軸に垂直な平面を撮像面とし、この撮像面上に撮像画像Imgが撮像されるものとして説明を続けるが、各座標軸の設定はこのような例に限定されない。
【0039】
道路平面上には、平行な2直線があらかじめ描かれている。したがって、撮像画像Imgには、この平行な2直線が映されている。また、道路平面上には、既知の大きさQ_dis離れた2点Q1,Q2があらかじめ描かれている。撮像画像Imgには、2点Q1,Q2が、Q1’(xs1,f,zs1),Q2’(xs2,f,zs2)として映される。なお、
図4に示した例では、Q1,Q2が道路平面上の平行な2直線の各々上の点として描かれているが、Q1,Q2は、道路平面上の点であれば、特に限定されない。
【0040】
また、撮像画像Imgに映る2直線のうち、第1の直線が通る2点をT1(x1,y1,z1)およびT4(x4,y4,z4)とし、第2の直線が通る2点をT2(x2,y2,z2)およびT3(x3,y3,z3)とする。すると、
図4に示すように、T1、T2、T3およびT4の各々と原点Oとを結ぶ直線と道路平面との交点の座標は、t1・T1、t2・T2、t3・T3およびt4・T4と表される。設定部112は、例えば、以下に示す(前提条件1)に基づいて、キャリブレーションを行うことができる。
【0041】
(前提条件1)
(条件1)道路平面上の平行な2直線の方向ベクトルは同じである。
(条件2)撮像部170のロールは0である。
(条件3)原点Oから道路平面までの距離を高さHとする。
(条件4)道路平面上にQ_dis離れたQ1およびQ2が存在する。
なお、上記ロールが0であるとは、道路平面に対して垂直な方向に設置されている物体が撮像画像Img上においても縦方向に映るように撮像部170が設置されている状態を意味する。
【0042】
設定部112は、以上に示したように取得される各種データと(条件1)とに基づいて、以下の(数式2)および(数式3)に示される関係式を導き出すことができる。
【0044】
また、設定部112は、以上に示したように取得される各種データと(条件2)とに基づいて、以下の(数式4)に示される関係式を導き出すことができる。なお、ロールが0の状態であれば、道路平面式と平行な軸方向(
図4に示した例では、x軸方向)への道路平面に対する垂線の成分が0になるため、計算式が簡略化される(例えば、x軸方向への垂線の成分が0であれば、R1=0として計算できる)。
【0046】
また、設定部112は、以上に示したように取得される各種データと(条件3)とに基づいて、以下の(数式5)に示される関係式を導き出すことができる。
【0048】
また、設定部112は、以上に示したように取得される各種データと(条件4)とに基づいて、以下の(数式6)および(数式7)に示される関係式を導き出すことができる。
【0050】
ここで、K1は、原点Oから道路平面上のQ1(xr1,yr1,zr1)までの距離が原点Oから撮像画像Img上のQ1’(xs1,f,zs1)までの距離の何倍になっているかを示す値である。同様に、K2は、原点Oから道路平面上のQ2(xr2,yr2,zr2)までの距離が原点Oから撮像画像Img上のQ2’(xs2,f,zs2)までの距離の何倍になっているかを示す値である。したがって、以下の(数式8)に示される関係式を導き出すことができる。
【0052】
設定部112は、(数式8)に示される関係式から、道路平面上の2点(Q1およびQ2)の距離の測定値Q_dis’を、以下の(数式9)により算出することができる。
【0054】
設定部112は、測定値Q_dis’と既知の大きさQ_disとの差分が最も小さくなる場合におけるR1、R2、R3およびR4を、(数式1)〜(数式9)に基づいて算出することができる。このようにR1、R2、R3およびR4が算出されることにより、道路平面式R1x+R2x+R3z+R4=0が決定される。
【0055】
以上に説明したような道路平面式の算出手法は、一例に過ぎない。したがって、設定部112は、他の手法により道路平面式を算出することも可能である。例えば、道路平面上の平行な2直線間の距離が既知であれば、この道路平面上の平行な2直線間の距離を用いることにより、(条件2)を使用しないで道路平面式を算出することができる。
【0056】
また、設定部112は、進行方向ベクトルv(vx,vy,vz)を算出することもできる。より詳細には、設定部112は、道路平面上の平行な2直線のうちの少なくともいずれか一方の直線の方向を算出することにより、進行方向ベクトルvを算出することができる。例えば、設定部112は、座標t2・T2と座標t3・T3との差分を進行方向ベクトルvとして算出してもよいし、座標t1・T1と座標t4・T4との差分を進行方向ベクトルvとして算出してもよい。
【0057】
以上に説明したような手法により、設定部112は、キャリブレーションを行うことができる。このようなキャリブレーションにより算出された道路平面式R1x+R2x+R3z+R4=0および進行方向ベクトルv(vx,vy,vz)を交通量および車両速度の計測のために利用することができる。
図4に示すように、設定部112は、進行方向ベクトルv(vx,vy,vz)と平行な車両走行軸Aを設定してもよい。上記のようにxyz座標が実空間の実サイズに合わせて設定されれば、車両走行軸Aも実空間において実サイズに合わせて設定され得る。
【0058】
また、
図4に示すように、設定部112は、計測範囲E1を設定してもよい。そうすれば、計測範囲E1から抽出される車両領域に基づいて交通量が計測され得る。例えば、設定部112は、入力操作に基づいて計測範囲E1を設定してもよいし、進行方向ベクトルv(vx,vy,vz)に基づいて自動的に計測範囲E1を設定してもよい。ただし、撮像範囲自体を計測範囲とする場合などには、計測範囲の設定は特になされなくてもよい。以下では、説明を簡便にするため、撮像範囲自体を計測範囲とする場合を主に説明する。出力制御部113は、設定部112によって設定された各種情報を出力部190に出力させてもよい。
【0059】
以上、設定部112により行われるキャリブレーションについて説明した。
【0060】
続いて、道路平面が撮像された撮像画像Imgに基づいた交通量計測の詳細について説明する。上記したように、撮像部170から制御部110に対して撮像画像Imgが提供される。さらに、撮像部170は計時機能を有しており、撮像画像Imgの撮像時刻が撮像部170によって検出されると、検出された撮像時刻が制御部110に提供される。情報取得部111は、このようにして撮像部170から提供された撮像画像Imgと撮像時刻とを取得する。
【0061】
続いて、位置検出部114は、撮像画像Imgから抽出される車両領域に基づいて所定の検出位置を検出する。所定の検出位置は車両走行軸Aにおける座標であってもよい。すなわち、位置検出部114は、車両走行軸Aにおける座標を検出位置として検出してよい。位置検出部114による検出について
図5を参照しながらさらに詳細に説明する。
図5は、位置検出部114の機能の例を説明するための図である。なお、
図5に示した例は、位置検出部114による検出の一例に過ぎないため、位置検出部114による検出は、
図5に示した例に限定されない。
【0062】
図5を参照すると、道路平面上を車両Vが走行している。まず、位置検出部114は、撮像画像Imgから車両領域を抽出する。車両領域はどのように抽出されてもよい。例えば、車両領域は、車両Vが
図5上で映る前後のフレームにおける撮像画像Img同士の差分によって抽出されるシルエットから特定される領域であってもよい。あるいは、背景画像と撮像画像Imgとの差分により抽出されるシルエットであってもよい。
【0063】
加えて、撮像映像上の車両V上には車両輪郭およびフロントガラス等によりエッジ特徴が多数検出される。そこで上記処理によって抽出されたシルエットに基づいた車両領域から、位置検出部114ではさらにエッジ特徴を検出し、エッジ特徴に基づいて車両領域を検出すると、撮像環境の変化に対してより高精度な車両領域抽出が行われ得る。
【0064】
具体的には、位置検出部114は、上記処理によって抽出されたシルエットに基づいてエッジ特徴を検出し、検出されたエッジ特徴の集まりを車両領域として抽出してもよい。ただし、エッジ検出処理だけでは、1台の車両Vが映った領域が複数のエッジ領域に分断されて抽出されてしまう可能性がある。そこで、位置検出部114は、閾値未満の距離にあるエッジ特徴同士を一つのエッジ領域にまとめてよい。具体的には、位置検出部114は、各エッジ特徴に対してラベリング処理を行い、ラベル付けされたエッジ特徴同士が閾値未満の距離にあれば、そのエッジ特徴同士を一つのエッジ領域にまとめてよい。
【0065】
続いて、位置検出部114は、上記したように車両領域に基づいて検出位置を検出する。例えば、位置検出部114は、車両領域に基づいて車両走行軸Aに直交する所定の垂直平面を検出し、車両走行軸Aと所定の垂直平面との交点座標を検出位置として検出すればよい。所定の垂直平面は限定されないが、車両前面であってもよいし、車両背面であってもよい。すなわち、位置検出部114は、所定の垂直平面として車両前面または車両背面を検出してもよい。
【0066】
あるいは、位置検出部114は、所定の垂直平面として車両前面を検出するか車両背面を検出するかを状況に応じて変更してもよい。例えば、位置検出部114は、進行方向ベクトルvが奥から手前に向かう方向の場合には、車両前面を垂直平面として検出し、進行方向ベクトルvが手前から奥に向かう方向の場合には、車両背面を垂直平面として検出してもよい。このようにすれば、奥側の面よりも手前側の面がより鮮明に撮像画像Imgに映る可能性が高いため、検出精度がより高まることが期待される。
【0067】
ここでは、進行方向ベクトルvが右奥から左手前に向かう方向の場合に所定の垂直平面として車両前面F1を検出する手法の一例を説明する。まず、
図5に示すように、位置検出部114は、撮像画像Imgから抽出される車両領域に基づいて、車両前面最低点m1’を検出する。車両前面最低点m1’は、車両Vの車体のうち地上からの高さが最も低い点である。車両前面最低点m1’はどのように検出されてもよいが、例えば、進行方向ベクトルvが右奥から左手前に向かう方向の場合には、車両走行軸Aに垂直な平面に対して画像上で最下点となるエッジ線(車両領域の左下の線分)上の点(例えば、中点)が車両前面最低点m1’として検出される。
【0068】
続いて、位置検出部114は、実空間上の車両前面最低点m1から道路平面に最低地上高hの長さの垂線を下してその交点m0を通過する車両走行軸Aに垂直な平面を車両前面F1として検出する。ここで、最低地上高hは、あらかじめ決められた値であってもよいし、これまでに検出された最低地上高に基づいて定められる値であってもよい。あらかじめ決められた値を最低地上高hとして使用する場合には、例えば、あらかじめ決められた値として複数の車両における最低地上高の平均値が使用されてもよい。
図5には、車両Vが道路平面に接する接地点D0と車体低平面との距離が最低地上高hとして示されている。
【0069】
なお、ここでは、進行方向ベクトルvが右奥から左手前に向かう方向の場合に所定の垂直平面として車両前面F1を検出する手法を説明したが、進行方向ベクトルvが左手前から右奥に向かう方向の場合にも同様にして、最低地上点m1’として車両背面の下部のエッジ線(車両領域の左下の線分)上の点(例えば、中点)が最低地上点m1’として検出され、同様の手法により車両背面が検出され得る。
【0070】
また、進行方向ベクトルvが左奥から右手前に向かう方向の場合には、最低地上点m1’として車両前面の下部のエッジ線(車両領域の右下の線分)上の点(例えば、中点)が最低地上点m1’として検出され、同様の手法により車両前面が検出され得る。進行方向ベクトルvが右手前から左奥に向かう方向の場合にも同様にして、最低地上点m1’として車両背面の下部のエッジ線(車両領域の右下の線分)上の点(例えば、中点)が最低地上点m1’として検出され、同様の手法により車両背面が検出され得る。
【0071】
以上の例において説明したような手法により、車両領域に基づいて検出位置が検出され得る。位置検出部114によって検出位置が検出されれば、検出位置と撮像時刻との組み合わせが得られる。
図6は、検出位置と撮像時刻との組み合わせの例を示す図である。続いて、計測部115は、このようにして得られた検出位置と撮像時刻との組み合わせから交通量を計測する。
【0072】
通行車両は通常、等速直線運動をしているとみなせることから、車両検出位置と撮像時間は一定の法則を満たすことになる。計測部115は、検出位置と撮像時刻が一定の法則となる組み合わせに対して投票を行い、投票度数がある一定値以上の値(ピーク点)になれば1台の車両領域に基づいて検出された組み合わせの集合が満たすとみなせばよい。したがって、投票ピークの数だけ車両が通過したとみなすことが可能であるため、計測部115は、投票ピークの数を交通量として計測すればよい。なお、ピークは、投票度数が閾値を超える場合であり、かつ、投票度数が極大となる場合であってよい。したがって、投票ピークの数だけ車両が通過したとみなすことが可能であるため、計測部115は、投票ピークの数を交通量として計測すればよい。なお、ピーク点は、投票度数が閾値を超える場合であるか、または、投票度数が極大となる場合であってよい。
【0073】
かかる手法によれば、投票ピークの数を交通量として計測すればよいため、車両シルエット領域を追跡処理し、撮像範囲内で追跡処理に成功した車両シルエット領域の数をカウントする必要がない。そのため、車両シルエット領域を正確に追跡することが困難な状況が生じている場合であっても、交通量を精度よく計測することが可能となる。したがって、かかる手法によれば、撮像画像に基づいて交通量を計測する場合において交通量計測の精度を向上させることが可能となる。
【0074】
具体的な例を用いてさらに説明を続ける。例えば、
図5に示した例のように略直線上を車両が走行する場合には、車両はほぼ等速直線運動をすることが推測される。したがって、
図6に示したように、撮像時刻と検出位置との各々の組み合わせを2次元座標上にプロットすると、1台の車両領域に基づいた検出位置は、撮像時刻の変化とともにほぼ直線に沿って変化することが推測される。
【0075】
そこで、検出位置と撮像時刻との組み合わせが直線的に変化すべきであると推測し、計測部115は、各々の組み合わせを通過する直線の集合に対して投票を行い、投票度数がピークとなる直線を1台の車両領域に基づいて検出された組み合わせの集合が満たすとみなせばよい。したがって、計測部115は、投票度数がピークとなる直線の数を交通量として計測すればよい。また、計測部115は、直線の傾きを車両速度として特定することも可能である。
【0076】
ここで、投票度数がピークとなる直線をどのように検出するかに関しては特に限定されない。例えば、計測部115は、投票度数がピークとなる直線を検出するため、検出位置と撮像時刻との組み合わせに対してハフ変換を施してもよい。かかる場合、撮像時刻をXとし、検出位置をYとすると、以下の(式1)に示すような関係によって、X−Y平面がρ−θ平面に変換され得る。
【0077】
ρ = X・cosθ + Y・sinθ ・・・(式1)
【0078】
ここで、ρは、X−Y平面上において原点Oから直線までの距離に相当し、θは、X軸と直線とのなす角度に相当する。X−Y平面における一つの直線は、ρ−θ平面においては、曲線の交点として表される。
図7は、
図6に示した検出位置と撮像時刻との組み合わせに対してハフ変換を施して得られた結果を示す図である。
図7に示した例では、投票ピーク点P1、P2が示されており、計測部115は、投票ピーク点の数に相当する「2」を交通量として計測すればよい。
【0079】
また、計測部115は、投票ピーク点の位置に基づいて車両速度を特定してよい。より詳細には、上記したように、θがX−Y平面におけるX軸と直線とのなす角度に相当し、車両速度がX−Y平面における直線の傾きに相当することを考慮すれば、計測部115は、投票ピーク点のθを用いて、tanθにより車両速度を特定することが可能である。
図7に示した例では、計測部115は、投票ピーク点P1、P2の各々のθを用いて、tanθにより2台の車両の各々の速度を特定することが可能である。
【0080】
以上、道路平面が撮像された撮像画像Imgに基づいた交通量計測の詳細について説明した。
【0081】
続いて、本発明の実施形態に係る交通量計測装置10の動作例について説明する。
図8は、本発明の実施形態に係る交通量計測装置10の動作例を示すフローチャートである。なお、
図8に示したフローチャートは、交通量計測装置10の動作の一例を示したに過ぎない。したがって、交通量計測装置10の動作は、
図8のフローチャートによって示される動作例に限定されない。
【0082】
図8に示すように、まず、交通量計測装置10において情報取得部111は、撮像部170によって道路平面が撮像された撮像画像と撮像画像を撮像した時刻に相当する撮像時刻とを取得する(ステップS11)。続いて、位置検出部114は、撮像画像から車両領域を抽出し(ステップS12)、車両領域に基づいて所定の検出位置を検出する(ステップS13)。
【0083】
続いて、計測部115は、検出位置と撮像時刻との組み合わせに対してハフ変換を施し、ρ−θ平面上における投票ピーク点の数を交通量として計測する(ステップS15)。また、計測部115は、ρ−θ平面上における投票ピーク点の位置に基づいて車両速度を特定する(ステップS16)。より詳細には、計測部115は、投票ピーク点のθを用いてtanθにより車両速度を特定することが可能である。
【0084】
[効果の説明]
以上に説明したように、本発明の実施形態によれば、道路平面が撮像された撮像画像と撮像時刻とを取得する情報取得部111と、撮像画像から抽出される車両領域に基づいて所定の検出位置を検出する位置検出部114と、検出位置と撮像時刻との組み合わせに対して得られる投票ピークの数を交通量として計測する計測部115と、を備える、交通量計測装置10が提供される。
【0085】
かかる構成によれば、投票ピークの数を交通量として計測すればよいため、車両シルエット領域を追跡しながら撮像範囲を通過した車両シルエット領域を追跡処理する必要がない。そのため、車両シルエット領域を正確に追跡することが困難な状況が生じている場合であっても、交通量を精度よく計測することが可能となる。したがって、かかる手法によれば、撮像画像に基づいて交通量を計測する場合において交通量計測の精度を向上させることが可能となる。
【0086】
[変形例の説明]
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
【0087】
例えば、上記の例では、車両がほぼ等速直線運動をする場合について説明した。しかし、車両の走行状況はかかる例に限定されず、カーブした道路平面上を車両が走行する場合であってもよい。かかる場合であっても車両はほぼ等速運動をすることが推測されるため、カーブした道路平面に沿って車両走行軸Aが設定されれば、1台の車両領域に基づいた検出位置は、上記の例と同様に、撮像時刻の変化とともにほぼ直線に沿って変化することが推測されるからである。なお、かかる場合には、計測範囲E1もカーブした道路平面に沿って設定されればよい。
【0088】
さらに、車両がほぼ等速運動をする場合ではなく、車両の速さが変化する場合であってもよい。例えば、撮像時刻と検出位置との各々の組み合わせを2次元座標上にプロットすると、1台の車両領域に基づいた検出位置が、撮像時刻の変化とともにほぼ曲線に沿って変化することが推測される場合もあり得る。
【0089】
かかる場合には、検出位置と撮像時刻との組み合わせが曲線上を変化すべきであると推測し、計測部115は、各々の組み合わせを通過する曲線の集合に対して投票を行い、投票度数がピークとなる曲線を1台の車両領域に基づいて検出された組み合わせの集合が満たすとみなせばよい。したがって、計測部115は、投票度数がピークとなる曲線の数を交通量として計測すればよい。また、計測部115は、投票度数がピークとなる曲線それぞれの微分によって各車両速度を特定することも可能である。さらに、計測部115は、投票度数がピークとなる曲線それぞれの二階微分によって各車両の加速度を算出することも可能である。
【0090】
制御部110を構成する各ブロックは、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)などから構成され、記憶部180により記憶されているプログラムがCPUによりRAMに展開されて実行されることにより、その機能が実現され得る。あるいは、制御部110を構成する各ブロックは、専用のハードウェアにより構成されていてもよいし、複数のハードウェアの組み合わせにより構成されてもよい。
【0091】
尚、本明細書において、フローチャートに記述されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的に又は個別的に実行される処理をも含む。また時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能であることは言うまでもない。