特許第5783462号(P5783462)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱マテリアル株式会社の特許一覧

<>
  • 特許5783462-表面被覆切削工具 図000020
  • 特許5783462-表面被覆切削工具 図000021
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5783462
(24)【登録日】2015年7月31日
(45)【発行日】2015年9月24日
(54)【発明の名称】表面被覆切削工具
(51)【国際特許分類】
   B23B 27/14 20060101AFI20150907BHJP
   B23B 51/00 20060101ALI20150907BHJP
   B23C 5/16 20060101ALI20150907BHJP
   C23C 14/06 20060101ALI20150907BHJP
【FI】
   B23B27/14 A
   B23B51/00 J
   B23C5/16
   C23C14/06 P
   C23C14/06 A
【請求項の数】2
【全頁数】33
(21)【出願番号】特願2011-269767(P2011-269767)
(22)【出願日】2011年12月9日
(65)【公開番号】特開2013-119156(P2013-119156A)
(43)【公開日】2013年6月17日
【審査請求日】2014年9月25日
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100139240
【弁理士】
【氏名又は名称】影山 秀一
(74)【代理人】
【識別番号】100076679
【弁理士】
【氏名又は名称】富田 和夫
(74)【代理人】
【識別番号】100119921
【弁理士】
【氏名又は名称】三宅 正之
(72)【発明者】
【氏名】淺沼 英利
【審査官】 齊藤 彬
(56)【参考文献】
【文献】 特開2003−117704(JP,A)
【文献】 特開2011−173174(JP,A)
【文献】 特開2001−521447(JP,A)
【文献】 米国特許出願公開第2011/0111197(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B23B 27/14
B23B 51/00
B23C 5/16
C23C 14/06
(57)【特許請求の範囲】
【請求項1】
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.30≦x≦0.75である)を満足するAlとTiとの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Zr1−a)N(ここで、aはZrとVの合量に占めるVの含有割合を示し、原子比で、0.01≦a≦0.30である)を満足するZrとVとの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
【請求項2】
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.30≦x≦0.75である)を満足するAlとTiとの複合窒化物層からなる(Al,Ti)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Zr1−a)N(ここで、aはZrとVの合量に占めるVの含有割合を示し、原子比で、0.01≦a≦0.30である)を満足するZrとVとの複合窒化物層からなる(Zr,V)N薄層、
前記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有することを特徴とする表面被覆切削工具。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、チタン合金鋼、耐熱合金鋼、ステンレス鋼などの難削材を、高熱発生を伴うとともに切刃部への衝撃性および溶着性が著しい高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性と耐摩耗性を発揮する被覆工具に関するものである。
【背景技術】
【0002】
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、従来被覆工具としては、例えば、工具基体表面に、Zrの炭化物、窒化物又は炭窒化物からなる層とAlの炭化物、窒化物又は炭窒化物からなる層とを交互積層した硬質被覆層を設けた被覆工具も知られており、特に、構成成分であるZrの炭化物、窒化物又は炭窒化物は母材との付着強度を高めるとともに、硬質被覆層の硬度を高める。また、Alの炭化物、窒化物又は炭窒化物は硬質被覆層の耐欠損性を改善し、同時にZrの炭化物、窒化物又は炭窒化物の層中に固溶することによって結晶粒を微細化させる。したがって、積層されたこれらの層の相乗的な作用によって、硬質被覆層全体としての耐摩耗性、耐溶着性、耐欠損性が改善されることも知られている(例えば、特許文献1参照)。
【0004】
さらに、別の従来被覆工具として、工具基体表面に(Al,Ti,M)N層からなる硬質被覆層を蒸着したことによって、耐摩耗性、耐欠損性を改善させたものもしられているが、このような硬質被覆層は、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置(AIP装置)に工具基体を装入し、装置内を、例えば、500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極、例えば、Al−Ti−M合金と、アノード電極との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、工具基体表面に(Al,Ti,M)N層からなる硬質被覆層を蒸着することにより製造されることも知られている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平4−17663号公報
【特許文献2】特許第2793773号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところが、近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、前記従来被覆工具においては、これを、チタン合金鋼、耐熱合金鋼、ステンレス鋼などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、これらの被削材を、高い発熱をともなうとともに、切刃部への衝撃性および溶着性が著しい高速切削条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果、切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。
【0007】
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高熱発生を伴う高速切削条件で切削した場合においてもすぐれた耐衝撃性、潤滑性および耐摩耗性を発揮する被覆工具を提供することである。
【課題を解決するための手段】
【0008】
そこで、本発明者らは、前述のような観点から、特にチタン合金鋼、耐熱合金鋼、ステンレス鋼などの難削材の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐衝撃性、潤滑性および耐摩耗性を併せ持つ被覆工具を開発すべく、鋭意研究を行った結果、工具基体の表面に、従来被覆工具の硬質被覆層である(Al,Ti)N層を下部層として0.5〜5μmの平均層厚で形成し、これの上に、ZrとVとの合量に占めるVの含有割合が1〜30原子%となるようにV成分を含有させたZrとVの複合窒化物層(以下、(Zr,V)N層と示す)を上部層として0.5〜5μmの平均層厚で形成すると、下部層である(Al,Ti)N層が、すぐれた耐摩耗性を示し、また、上部層の(Zr,V)N層中に含有されるZr成分が高硬度を示し、V成分が潤滑性を示すことにより、(Zr,V)N層は、すぐれた耐衝撃性、潤滑性を示し、その結果、高い発熱を伴い、かつ被削材の溶着チッピングが著しい高速切削に用いても切刃の摩耗進行が抑制され、長期に亘ってすぐれた耐摩耗性を発揮するようになる。したがって、難削材の高速切削加工において、切刃部が高温になったとしても耐熱性にすぐれ、その結果、切刃部におけるチッピング(微少欠け)の発生が抑制され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得て、かかる知見に基づき、本発明を完成するに至ったものである。
【0009】
さらに、工具基体の表面に、一層平均層厚0.01〜0.1μmの(Al,Ti)N薄層を蒸着形成し、この上に、ZrとVとの合量に占めるVの含有割合が1〜30原子%となるようにV成分を含有させたZrとVの複合窒化物層(以下、(Zr,V)N層と示す)からなる一層平均層厚0.01〜0.1μmの(Zr,V)N薄層を蒸着形成し、さらに、前記(Al,Ti)N薄層と、前記(Zr,V)N薄層を交互に形成し、1〜5μmの合計平均層厚で交互積層構造からなる硬質被覆層を構成すると、(Al,Ti)N薄層はすぐれた高温硬さ、高温強度、耐熱性、耐摩耗性を示し、また、これと交互に積層形成される(Zr,V)N薄層はすぐれた耐衝撃性および潤滑性を示し、特に、(Zr,V)N薄層中に含有されるV成分によって、(Zr,V)N薄層の潤滑性が向上することから、高熱発生を伴う切削加工においても、(Zr,V)N薄層のすぐれた耐溶着性は維持されることを見出した。
【0010】
したがって、チタン合金鋼、耐熱合金鋼、ステンレス鋼等の難削材の高速切削加工において、切刃部が高温になったとしても、(Al,Ti)N薄層に不足する耐溶着性を、これと交互に積層される(Zr,V)N薄層が補完し、硬質被覆層全体としての被削材との耐摩耗性も改善され、その結果、切刃部におけるチッピング(微少欠け)の発生が防止され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得て、かかる知見に基づき、本発明に至ったものである。
本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.30≦x≦0.75である)を満足するAlとTiとの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Zr1−a)N(ここで、aはZrとVの合量に占めるVの含有割合を示し、原子比で、0.01≦a≦0.30である)を満足するZrとVとの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.30≦x≦0.75である)を満足するAlとTiとの複合窒化物層からなる(Al,Ti)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Zr1−a)N(ここで、aはZrとVの合量に占めるVの含有割合を示し、原子比で、0.01≦a≦0.30である)を満足するZrとVとの複合窒化物層からなる(Zr,V)N薄層、
前記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有することを特徴とする表面被覆切削工具。」
を特徴とするものである。
【0011】
つぎに、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。
【0012】
(a)前記(1)に記載の発明における下部層ならびに前記(2)に記載の発明における交互積層の一方の層を構成する(Al,Ti)N層の組成および平均層厚または一層平均膜厚:
下部層または交互積層の一方の層を構成する(Al,Ti)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Ti成分には高温強度を向上させる作用があるが、Tiの含有割合を示すx値がAlとの合量に占める割合(原子比、以下同じ)で0.30未満になると、所定の高温強度を確保することができず、これが耐摩耗性低下の原因となり、一方、Tiの含有割合を示すx値が同0.75を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さを確保することができず、チッピングの発生を防止することが困難になることからx値を0.30〜0.75と定めた。
【0013】
また、下部層を構成する(Al,Ti)N層の平均層厚が0.5μm未満では、自身の持つすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、前記の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
また、交互積層の一方の層を構成する(Al,Ti)N層の一層平均層厚が0.01μm未満では、自身の持つすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その一層平均層厚が0.1μmを越えると、前記高速切削では、耐溶着性の不足が顕在化し、切刃部にチッピングが発生し易くなることから、その一層平均層厚を0.01〜0.1μmと定めた。
【0014】
(c)前記(1)に記載の発明における上部層ならびに前記(2)に記載の発明における交互積層の一方の層を構成する(Zr,V)N層の組成および平均層厚または一層平均膜厚:
(Al,Ti)N層の上部層あるいは交互積層の一方の層を構成するZrとVの複合窒化物からなる(Zr,V)N層は、所定の高温硬さ、高温強度、耐熱性を有するとともに、その構成成分であるV成分によって、すぐれた潤滑性を備えるようになり、また、Zr成分によって、高硬度性を補完する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、Vの含有割合を示すa値がZrとの合量に占める割合(原子比、以下同じ)で0.01未満になると、潤滑性を確保することができないために耐溶着性を期待することはできず、一方、Vの含有割合を示すa値が同0.30を越えると、相対的にZrの含有割合が減少し、難削材の高速切削加工で必要とされる耐衝撃性を確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、a値を0.01〜0.30(原子比、以下同じ)と定めた。
【0015】
また、上部層を構成する(Zr,V)N層の平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、前記の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
また、交互積層の一方の層を構成する(Zr,V)N層の一層平均層厚が0.01μm未満では、自身の持つすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その一層平均層厚が0.1μmを越えると、前記高速切削では、耐摩耗性の不足が顕在化し、切刃部にチッピングが発生し易くなることから、その一層平均層厚を0.01〜0.1μmと定めた。
【0016】
そして、前記(Al,Ti)N層、(Zr,V)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のZr−V合金からなるカソード電極(蒸発源)を配置し、また、所定組成のAl−Ti合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3Paの反応雰囲気とし、一方、前記基体には、例えば、−150Vのバイアス電圧を印加した条件で蒸着することにより、前記(Al,Ti)層からなる下部層と(Zr,V)N層からなる上部層の2層、あるいは、前記(Al,Ti)層と(Zr,V)N層との交互積層を蒸着することにより、本発明の硬質被覆層を蒸着形成することができる。
【発明の効果】
【0017】
本発明の被覆工具の一態様によれば、(Al,Ti)N層からなる下部層と(Zr,V)N層からなる上部層の2層構造の硬質被覆層は、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性、潤滑性、耐衝撃性を有することから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた耐溶着性を備えたものとなり、その結果、特に、チタン鋼合金、耐熱合金鋼、ステンレス鋼等の難削材の大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた純潔性、耐衝撃性を示し、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものである。
また、本発明の被覆工具の別の態様によれば、硬質被覆層を交互積層構造から構成し、片方の層を(Al,Ti)N薄層から構成すると、すぐれた高温硬さ、高温強度を有し、あるいは、さらにすぐれた耐摩耗性を有し、また、他方の層を構成する(Zr,V)N薄層が、すぐれた耐衝撃性と潤滑性を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、高温強度等に加え、すぐれた耐摩耗性を備えたものとなり、その結果、特に、チタン合金鋼、耐熱合金鋼、ステンレス鋼等の難削材の、大きな発熱を伴い、かつ、切刃への溶着性が著しい高速切削加工であっても、すぐれた耐チッピング性を示し、切刃の摩耗進行が抑制され、長期に亘ってすぐれた耐摩耗性を発揮するものである。
【図面の簡単な説明】
【0018】
図1】本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
図2】比較被覆工具を構成する硬質被覆層を形成するのに用いた従来のアークイオンプレーティング装置の概略説明図である。
【発明を実施するための形態】
【0019】
つぎに、本発明の被覆工具を実施例により具体的に説明する。
【実施例1】
【0020】
原料粉末として、いずれも1〜3 μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。
【0021】
また、原料粉末として、いずれも0.5〜2 μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2 kPaの窒素雰囲気中、温度:1500 ℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。
【0022】
(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方には、カソード電極(蒸発源)として所定組成の上部層形成用のZr−V合金を配置し、その他方には、カソード電極(蒸発源)として所定組成の下部層形成用のAl−Ti合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Zr−V合金、Al−Ti合金のいずれかとアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3に示される目標組成、目標層厚の下部層としての(Al,Ti)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)であるZr−V合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3に示される目標組成、目標層厚の(Zr,V)N層からなる上部層を蒸着形成し、
前記(a)〜(d)により硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。
【0023】
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のAl−Ti合金とZr−V合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極Al−Ti合金とアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Al−Ti合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−90Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Al,Ti)N層で構成された従来硬質被覆層と、同じく表4に示される目標組成および目標層厚の下部層(Al,Ti)N層と目標組成および目標層厚の上部層(Zr,V)N層で構成された従来硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆インサート(以下、比較被覆インサートと云う)1〜8をそれぞれ製造した。
【0024】
つぎに、前記各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート1〜16および比較被覆インサート1〜8について、
被削材:JIS・SUS304(HB200)の丸棒、
切削速度: 145m/min.、
切り込み: 2.5mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件A)でのステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、120m/min.、0.2 mm/rev.)、
被削材:Ti−6Al−4V合金(HB250)の丸棒、
切削速度: 60m/min.、
切り込み: 2 mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件B)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、40m/min.、0.2mm/rev.)、
被削材:JIS・S45C(HB200)の丸棒、
切削速度: 190m/min.、
切り込み: 2mm、
送り: 0.4mm/rev.、
切削時間: 5分、
の条件(切削条件C)での炭素鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、160m/min.、0.25 mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5、表6に示した。
【0025】
【表1】
【0026】
【表2】
【0027】
【表3】
【0028】
【表4】
【0029】
【表5】
【0030】
【表6】
【実施例2】
【0031】
実施例1と同様、いずれも1〜3 μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400 ℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。
【0032】
ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Zr,V)N層、(Al,Ti)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜15をそれぞれ製造した。
【0033】
また、比較の目的で、前記工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Al,Ti)N層からなる従来硬質被覆層と、同じく表8に示される目標組成および目標層厚の下部層(Al,Ti)N層と目標組成および目標層厚の上部層(Zr,V)N層で構成された従来硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。
【0034】
つぎに、本発明被覆エンドミル1〜15および比較被覆エンドミル1〜8について、
被削材−平面寸法:100 mm×250 mm、厚さ:50 mmのJIS・SUS304(HB200)の板材、
切削速度: 110m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 300mm/分、
の条件(切削条件D)でのステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、90m/min.、280mm/分)、
被削材−平面寸法:100mm×250 mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、
切削速度: 60m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 110mm/分、
の条件(切削条件E)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、40m/min.、90mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45C(HB200)の板材、
切削速度: 220m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 720mm/分、
の条件(切削条件F)での炭素鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、200m/min.、600mm/分)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を同じく表7、表8にそれぞれ示した。
【0035】
【表7】
【0036】
【表8】
【実施例3】
【0037】
実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。
【0038】
ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Zr,V)N層、(Al,Ti)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜15をそれぞれ製造した。
【0039】
また、比較の目的で、前記工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表10に示される目標組成および目標層厚を有する(Al,Ti)N層からなる従来硬質被覆層と、同じく表10に示される目標組成および目標層厚の下部層(Al,Ti)N層と目標組成および目標層厚の上部層(Zr,V)N層で構成された従来硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。
【0040】
つぎに、本発明被覆ドリル1〜15および比較被覆ドリル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304(HB200)の板材、
切削速度: 100m/min.、
送り: 0.3mm/rev.、
穴深さ: 5mm、
の条件(切削条件G)でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、70m/min.、0.2mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、
切削速度: 55m/min.、
送り: 0.2mm/rev.、
穴深さ: 5mm、
の条件(切削条件H)でのTi合金の湿式高速穴あけ切削加工試験((通常の切削速度および送りは、それぞれ、40m/min.、0.15mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45C(HB200)の板材、
切削速度: 155m/min.、
送り: 0.25mm/rev.、
穴深さ: 5mm、
の条件(切削条件I)での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、110m/min.、0.2mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を同じく表9、表10にそれぞれ示した。
【0041】
【表9】
【0042】
【表10】
【0043】
この結果得られた本発明被覆工具としての本発明被覆インサート1〜16、本発明被覆エンドミル1〜15、および本発明被覆ドリル1〜15の硬質被覆層を構成する下部層である(Al,Ti)N層と上部層である(Zr,V)N層の組成、並びに、比較被覆工具としての比較被覆インサート1〜8、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の(Al,Ti)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
【0044】
また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
【0045】
表3〜10に示される結果から、本発明被覆工具は、2層構造の硬質被覆層を形成する場合、下部層である(Al,Ti)N層が工具基体表面に強固に密着接合した状態で、すぐれた高温硬さ、耐熱性、高温強度を有することによって、チタン合金鋼、耐熱合金鋼、ステンレス鋼等の難削材の高速切削加工でも、切粉との間のすぐれた耐溶着性が確保されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層として、(Zr,V)N層を備えず、硬質被覆層が(Al,Ti)N層のみで構成されている比較被覆工具においては、いずれも前記難削材の高速切削加工では、被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。
【実施例4】
【0046】
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、V粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。
【0047】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。
【0048】
(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方にはカソード電極(蒸発源)として所定組成のAl−Ti合金を配置し、また、その他方にはカソード電極(蒸発源)として所定組成のZr−V合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Al−Ti合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Al−Ti合金によってボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Al−Ti合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表11に示される目標組成、一層目標層厚の(Al,Ti)N薄層を蒸着形成した後、前記Al−Ti合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)であるZr−V合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表11に示される目標組成、一層目標層厚の(Zr,V)N薄層を蒸着形成し、
前記(c)、(d)の操作を、所定の合計平均層厚になるまで繰り返し行って硬質被覆層を蒸着形成し、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートと云う)17〜32をそれぞれ製造した。
【0049】
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のAl−Ti合金、Zr−V合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極のAl−Ti合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Al−Ti合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表12に示される目標組成および一層目標層厚の(Al,Ti)N層、目標組成および一層目標層厚の(Zr,V)N層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆インサート(以下、比較被覆インサートと云う)9〜16をそれぞれ製造した。
【0050】
つぎに、前記各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート17〜32および比較被覆インサート9〜16について、
被削材:JIS・SUS304(HB240)の丸棒、
切削速度: 140m/min.、
切り込み: 3mm、
送り: 0.25mm/rev.、
切削時間: 5分、
の条件(切削条件a)でのステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.2mm/rev.)、
被削材:Ti−6Al−4V合金(HB280)の丸棒、
切削速度: 55m/min.、
切り込み: 2.5mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件b)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.15mm/rev.)、
被削材:JIS・S45C(HB240)の丸棒、
切削速度: 180m/min.、
切り込み: 2.5mm、
送り: 0.3 mm/rev.、
切削時間: 5分、
の条件(切削条件c)での炭素鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、145m/min.、0.25mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表13、表14に示した。
【0051】
【表11】
【0052】
【表12】
【0053】
【表13】
【0054】
【表14】
【実施例5】
【0055】
実施例4と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、V粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。
【0056】
ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表15に示される目標組成および一層目標層厚の(Al,Ti)N薄層、および同じく表15に示される目標組成および一層目標層厚の(Zr,V)N薄層の交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)16〜30をそれぞれ製造した。
【0057】
また、比較の目的で、前記工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表16に示される目標組成および一層目標層厚の(Al,Ti)N層と、目標組成および一層目標層厚の(Zr,V)N層で構成された硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)9〜16をそれぞれ製造した。
【0058】
つぎに、前記本発明被覆エンドミル16〜30および比較被覆エンドミル9〜16について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304(HB240)の板材、
切削速度: 100m/min.、
溝深さ(切り込み): 15mm、
テーブル送り: 320mm/分、
の条件(切削条件d)でのステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、80m/min.、280mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V(HB290)の板材、
切削速度: 65m/min.、
溝深さ(切り込み): 15mm、
テーブル送り: 100mm/分、
の条件(切削条件e)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30m/min.、80mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45C(HB240)の板材、
切削速度: 230m/min.、
溝深さ(切り込み): 15mm、
テーブル送り: 600mm/分、
の条件(切削条件f)での炭素鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、190m/min.、500mm/分)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を同じく表15、表16にそれぞれ示した。
【0059】
【表15】
【0060】
【表16】
【実施例6】
【0061】
前記実施例5で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。
【0062】
ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例4と同一の条件で、表17に示される目標組成および一層目標層厚の(Al,Ti)N薄層、および同じく表17に示される目標組成および一層目標層厚の(Zr,V)N薄層の交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)16〜30をそれぞれ製造した。
【0063】
また、比較の目的で、前記工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例4と同一の条件で、表18に示される目標組成および一層目標層厚を有する(Al,Ti)N層と、目標組成および一層目標層厚の(Zr,V)N層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)9〜16をそれぞれ製造した。
【0064】
つぎに、前記本発明被覆ドリル16〜30および比較被覆ドリル9〜16について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304(HB240)の板材、
切削速度: 90m/min.、
送り: 0.25mm/rev.、
穴深さ: 5mm、
の条件(切削条件g)でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、60m/min.、0.2mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB290)の板材、
切削速度: 55m/min.、
送り: 0.25mm/rev.、
穴深さ: 5mm、
の条件(切削条件h)でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.1mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45C(HB240)の板材、
切削速度: 150m/min.、
送り: 0.3mm/rev.、
穴深さ: 5mm、
の条件(切削条件i)での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.2mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を同じく表17、表18にそれぞれ示した。
【0065】
【表17】
【0066】
【表18】
【0067】
この結果得られた本発明被覆工具としての本発明被覆インサート17〜32、本発明被覆エンドミル16〜30、および本発明被覆ドリル16〜30の硬質被覆層を構成する(Al,Ti)N薄層および(Zr,V)N薄層の組成、並びに、比較被覆工具としての比較被覆インサート9〜16、比較被覆エンドミル9〜16、および比較被覆ドリル9〜16の(Al,Ti)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
【0068】
また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
【0069】
表11〜18に示される結果から、本発明被覆工具は、いずれも特にチタン合金鋼、耐熱合金鋼、ステンレス鋼等の難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工でも、硬質被覆層の交互積層構造を構成する(Al,Ti)N薄層が、すぐれた高温硬さ、高温強度、あるいは、これに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有し、同じく交互積層構造を構成する(Zr,V)N薄層がすぐれた耐衝撃性と潤滑性にすぐれ、高温条件下でも被削材および切粉との間のすぐれた耐溶着性を保持し、その結果、(Al,Ti)N薄層に不足する耐溶着性が、これに交互に積層される(Zr,V)N薄層により補完されることによって、硬質被覆層全体として、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Ti)N層のみで構成され、(Zr,V)N薄層を備えない比較被覆工具においては、いずれも前記被削材の高速切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。
【産業上の利用可能性】
【0070】
前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、ステンレス鋼、耐熱鋼等の難削材の高速切削加工でもすぐれた耐摩耗性と耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
図1
図2