特許第5785438号(P5785438)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 山下ゴム株式会社の特許一覧

<>
  • 特許5785438-液封防振装置 図000002
  • 特許5785438-液封防振装置 図000003
  • 特許5785438-液封防振装置 図000004
  • 特許5785438-液封防振装置 図000005
  • 特許5785438-液封防振装置 図000006
  • 特許5785438-液封防振装置 図000007
  • 特許5785438-液封防振装置 図000008
  • 特許5785438-液封防振装置 図000009
  • 特許5785438-液封防振装置 図000010
  • 特許5785438-液封防振装置 図000011
  • 特許5785438-液封防振装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5785438
(24)【登録日】2015年7月31日
(45)【発行日】2015年9月30日
(54)【発明の名称】液封防振装置
(51)【国際特許分類】
   F16F 13/10 20060101AFI20150910BHJP
   F16F 13/22 20060101ALI20150910BHJP
   B60K 5/12 20060101ALI20150910BHJP
【FI】
   F16F13/10 K
   F16F13/10 J
   F16F13/22
   B60K5/12 F
【請求項の数】5
【全頁数】15
(21)【出願番号】特願2011-111612(P2011-111612)
(22)【出願日】2011年5月18日
(65)【公開番号】特開2012-241780(P2012-241780A)
(43)【公開日】2012年12月10日
【審査請求日】2014年5月15日
(73)【特許権者】
【識別番号】000177900
【氏名又は名称】山下ゴム株式会社
(74)【代理人】
【識別番号】100089509
【弁理士】
【氏名又は名称】小松 清光
(72)【発明者】
【氏名】中尾 賢二
(72)【発明者】
【氏名】小池 哲也
【審査官】 村山 禎恒
(56)【参考文献】
【文献】 特開平06−137361(JP,A)
【文献】 特開2010−210045(JP,A)
【文献】 特表2008−544178(JP,A)
【文献】 特開2010−185550(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16F 13/10
B60K 5/12
F16F 13/22
(57)【特許請求の範囲】
【請求項1】
液室を仕切部材(15)により主液室(16)と副液室(17)に区画し、仕切部材(15)に主液室(16)と副液室(17)に連通する中間室(26)とを連通する第1オリフィス通路(22)と第2オリフィス通路(23)を直列させて設け、
直列した第1オリフィス通路(22)と第2オリフィス通路(23)を作動液が流動して第1の共振をする長いオリフィス通路と、第1オリフィス通路(22)へ主体的に作動液が流動して第2の共振をする短いオリフィス通路とへ流路切換手段(35)により切り換えることにより、異なる周波数で2つの減衰ピークを発生する液封防振装置において、
前記第2オリフィス通路(23)を迂回した、前記第1オリフィス通路(22)及び第2オリフィス通路(23)よりも通路断面積の大きなバイパス通路(25)を設け、
このバイパス通路(25)の一端を前記第1オリフィス通路(22)と前記第2オリフィス通路(23)の接続部へ接続し、他端を前記中間室(26)を介して前記副液室(17)へ連通させるとともに、
前記流路切換手段(35)は、入力振動周波数が、前記第1の共振の共振周波数のとき、前記バイパス通路(25)と前記副液室(17)とを連通遮断し、
前記第2の共振の共振周波数のとき、前記バイパス通路(25)と前記副液室(17)とを連通させるように切り換わり,
入力振動周波数に応じて、前記バイパス通路(25)における作動液の流動を停止することにより前記第1の共振をする長いオリフィス通路と、
前記バイパス通路(25)に作動液を流動させることにより、前記第2の共振をする短いオリフィス通路と、へ切り換えることを特徴とする液封防振装置。
【請求項2】
入力振動は、少なくともアイドリングモードと一般走行モードを備え、これらのモードのうち、前記2つの減衰ピークは、同一モードにおいて発生することを特徴とする請求項1に記載した液封防振装置。
【請求項3】
前記流路切換手段(35)は、所定の質量を有するマス(30)を前記中間室(26)内に備え、
このマス(30)は、前記第2オリフィス通路(23)又はバイパス通路(25)のいずれか一方側における作動液の流動によって振動しつつ他方側と前記副液室(17)の間を連通遮断し、
所定の周波数のとき慣性により一定位置に停止して、前記一方側と前記副液室(17)の間を連通遮断するとともに、前記他方側を前記副液室(17)と連通させることを特徴とする請求項1又は2に記載した液封防振装置。
【請求項4】
前記マス(30)は前記2つの減衰ピークを発生させる共振周波数のうち高い方の共振周波数で慣性により振動を停止することを特徴とする請求項3に記載した液封防振装置。
【請求項5】
前記第1オリフィス通路(22)は、その流路の一部を第1オリフィス通路(22)の共振周波数にて膜共振するオリフィス弾性部(24)にて形成されていることを特徴とする請求項1〜4のいずれかに記載した液封防振装置。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、自動車用エンジンマウント等に使用される液封防振装置に係り、特に、減衰特性曲線上において減衰のピーク値(以下、減衰ピークという)を複数有する複数ピーク特性の液封防振装置に関するものである。
【背景技術】
【0002】
このようなものとして、特許文献1に示すものがある。この液封マウントは、第1及び第2からなる2つのオリフィス通路を直列に設け、かつ第1オリフィス通路の壁部に弾性膜を設け、2つの減衰ピークを有するダブルピーク特性を示す。図7はこの簡略化した構造を示す。
【0003】
この液封マウント100は、第1取付金具101と第2取付金具102の間に主弾性部材103を設け、かつ第1取付金具101の開口部をダイヤフラム104で覆って中空室を形成し、この中空室内を第1隔壁105及び弾性部材からなる第2隔壁106で区画し、主弾性部材103側からダイヤフラム104側へ向かって順に、主液室107、中間室108、副液室109とし、第1隔壁105に設けた第1オリフィス通路110で主液室107と中間室108を連通し、第2隔壁106に設けた第2オリフィス通路111で中間室108と副液室109を連通している。
【0004】
図8はこの液封マウント100における減衰特性を示し、縦軸に減衰値、横軸に入力振動の周波数を示す。この構造においては、まず所定の入力振動周波数fa・fb(後述)のうち、より低い周波数faの振動が入力すると、第2隔壁106による弾性変形が生じず、作動液は、第1オリフィス通路110と第2オリフィス通路111を通して、主液室107と副液室109の間を流動するので、第1オリフィス通路110と第2オリフィス通路111からなる長いオリフィス通路による1回目の共振を発生する。
このとき、第2隔壁106は弾性変形しない。なお、第2隔壁106は前記特許文献1における第1オリフィス通路の壁部に設けた弾性膜に相当し、より高い周波数fbにおける作動液の強い液圧で弾性変形するように設定されている。
【0005】
次に、より高い所定の周波数fbの振動が入力すると、第1オリフィス通路110は作動液が流動するが、例えば、アイドル振動時におけるより大きな振動による液圧で第2隔壁106が弾性変形を生じる。その結果、第2オリフィス通路111へは作動液が流動しにくくなり、第2隔壁106の弾性変形を伴う第1オリフィス通路110における流動が主体的となり、第1オリフィス通路110のみの短いオリフィス通路による2回目の共振が発生する。
【0006】
このように、2回の共振が生じると、図8に示すように、周波数fa及びfbにて2つの減衰ピークPKa及びPKbが生じる。
また、第1オリフィス通路と第2オリフィス通路の流路を独立させ、一方のオリフィス通路に入力振動の振幅に応じてパッシブ(受動的)に開閉する開閉バルブを設けたものもある(特許文献2参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】実登第2605043号公報
【特許文献2】特開2010−223324号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
図9は、図7のシミュレーションモデルであり、図7の対応部を同一符号で示すとともに、各部にシミュレーション用のパラメータa〜jを設定したものである。図中のaはマウント全体に対する入力荷重(N/mm)、bは主弾性体103への入力荷重(N/mm)、cは主液室107の通路断面積(mm2;mm2は平方ミリメートルの表記、以下同)、dは第1オリフィス通路110の通路断面積(mm2)、eは第1オリフィス通路110の長さ(mm)、fは第1隔壁105の受圧面積(mm2)、gは第2隔壁106の受圧面積(mm2)、hは第2オリフィス通路111の通路断面積(mm2)、iは第2オリフィス通路111の長さ(mm)、jはダイヤフラム104の受圧面積(mm2)である。
【0009】
図10はこのシミュレーションモデルに各パラメータを変化させたシミュレーション結果としての動特性のグラフであり、縦軸に動バネ定数及び減衰値、横軸に入力振動の周波数をとってある。図10のAに示すように、所定振幅の入力振動に対する減衰力の動特性として、周波数fa及びfb(fa<fb)近傍にて2つの減衰ピークPKa,PKbが生じる。また、第2隔壁106の面積を0(すなわち第2隔壁106を設けず、第2隔壁106相当部を閉じた状態)にしてシミュレーションしたものが図10のBであり、これにより、周波数fc(fa<fc<fb)において大きな減衰ピークPKcが1つだけ生じる。
したがって、第2隔壁106の存在が2つの減衰ピーク、すなわちダブルピークの発生に重要であることが判る。
【0010】
図11は、各パラメータを実現可能な範囲で変更して、2つの減衰ピークPKa及びPKbの広がりの変化をシミュレートした結果を示すグラフであり、縦軸に減衰値、横軸に入力振動の周波数をとるとともに、理解を容易にするためグラフの横幅を図10のグラフにおける横幅に対して拡大して示したものである。
この図における減衰特性は、2つの減衰ピークPKaとPKbの間隔が最も広くなった状態であり、減衰特性がブロード化していることを意味する。このブロード化は、減衰力を発揮する周波数域を拡大して防振性能アップするうえで重要である。
【0011】
しかし、一方では、仮想線で示す従来の減衰ピークが1つだけのもの(シングルピークという)と比べると、例えば、約3Hzに広がって十分なブロード化を実現しているものの、ピークの高さは低くなり、例えば、約1.1Ns/mmの減衰力ダウンがある。
この減衰力ダウンは是非とも回避したいところであり、研究の結果、1回目の共振時に第2隔壁106が動くこと、及び2回目の共振時に作動液の一部が第2オリフィス通路111へ流れることにより、共振効率のロスによって生じることが判明した。これは長いオリフィス通路と短いオリフィス通路の共振周波数が近いと、各オリフィス通路に対する作動液の流動を阻害することを意味する。
そこで、1回目の共振では、第2隔壁106をできるだけ動かないように固定し、2回目の共振では、第2オリフィス通路111へ作動液ができるだけ流れ込まないようにより確実に連通遮断することが必要になった。
【0012】
このためには、第1オリフィス通路と第2オリフィス通路の流路を切り換える流路切換手段を設けることが考えられる。しかし、外部のアクチュエータにより、所定の入力振動周波数に応じて切り換わるようなアクティブ(能動的)形式のものではコストが高くなるので、パッシブなものにすることが求められる。
なお、第2隔壁106もパッシブに流路を切り換えるものではあるが、入力振動が所定の切換周波数になっても第2オリフィス通路に対する作動液の流動をある程度許容して共振効率のロスを大きくしてしまうものであるから、所定の入力振動周波数で第2オリフィス通路に対する作動液の流動を停止して流路を明確に切り換える流路切換手段とは異なる。なおここで第2オリフィス通路に対する作動液の流動を停止するとは、完全なる停止のみならず、共振効率のロスを従来よりも小さくして、所定の改善目的となる減衰値を実現できる程度に作動液の流動を抑制した状態を含むものとする。
【0013】
また、特許文献2に示すようにパッシブな流路切換手段を用いた場合でも、第1オリフィス通路と第2オリフィス通路がそれぞれ独立して並存しているため、オリフィス通路の共通部が存在せず、各オリフィス通路をそれぞれ別々に設けなければならないので、これらのオリフィス通路により装置が複雑・大型化してしまう。したがって、第1オリフィス通路と第2オリフィス通路を直列に設けることが必要である。
そのうえ、特許文献2に示される流路切換手段は、入力振動の振幅に応じて作動するため、所定の周波数により開閉させることができないばかりか、微小振幅の入力時には、第1オリフィス通路と第2オリフィス通路の双方へ作動液が流れる可能性があるため、共振ロスの発生を防ぐことができない。
【0014】
したがって、所定の周波数により確実に切り換わる流路切換手段が求められている。
さらに、特許文献1及び2の液封マウントは、いずれもエンジンの運転状況における異なるモード、例えば、一般走行時やアイドル時のモードに変更したことにより切り換わるものであり、同一モード(例えば、一般走行モード)時において、比較的小さな周波数範囲にて高い減衰ピークを維持したままダブルピークを発生することはできない。
すなわち、特許文献1における副弾性膜では、このような狭い範囲での切り換えを可能とする膜剛性の設定が不可能である。また、特許文献2では、振幅の大小で切り換わるため、狭い周波数域での鋭敏な切り換えができないからである。
そこで本願は、これらの要請の実現を目的とする。
【課題を解決するための手段】
【0015】
上記課題を解決するため請求項1に係る発明は、液室を仕切部材(15)により主液室(16)と副液室(17)に区画し、仕切部材(15)に主液室(16)と副液室(17)に連通する中間室(26)とを連通する第1オリフィス通路(22)と第2オリフィス通路(23)を直列させて設け、
直列した第1オリフィス通路(22)と第2オリフィス通路(23)を作動液が流動して第1の共振をする長いオリフィス通路と、第1オリフィス通路(22)へ主体的に作動液が流動して第2の共振をする短いオリフィス通路とへ流路切換手段(35)により切り換えることにより、異なる周波数で2つの減衰ピークを発生する液封防振装置において、
前記第2オリフィス通路(23)を迂回した、前記第1オリフィス通路(22)及び第2オリフィス通路(23)よりも通路断面積の大きなバイパス通路(25)を設け、
このバイパス通路(25)の一端を前記第1オリフィス通路(22)と前記第2オリフィス通路(23)の接続部へ接続し、他端を前記中間室(26)を介して前記副液室(17)へ連通させるとともに、
前記流路切換手段(35)は、入力振動周波数が、前記第1の共振の共振周波数のとき、前記バイパス通路(25)と前記副液室(17)とを連通遮断し、
前記第2の共振の共振周波数のとき、前記バイパス通路(25)と前記副液室(17)とを連通させるように切り換わり,
入力振動周波数に応じて、前記バイパス通路(25)における作動液の流動を停止することにより前記第1の共振をする長いオリフィス通路と、
前記バイパス通路(25)に作動液を流動させることにより、前記第2の共振をする短いオリフィス通路と、へ切り換えることを特徴とする。
【0016】
請求項2の発明は上記請求項1において、入力振動は、少なくともアイドリングモードと一般走行モードを備え、これらのモードのうち、前記2つの減衰ピークは、同一モードにおいて発生することを特徴とする。
【0017】
請求項3の発明は上記請求項1又は2において、前記流路切換手段(35)は、所定の質量を有するマス(30)前記中間室(26)内に備え、
このマス(30)は、前記第2オリフィス通路(23)又はバイパス通路(25)のいずれか一方側における作動液の流動によって振動しつつ他方側と前記副液室(17)の間を連通遮断し、
所定の周波数のとき慣性により一定位置に停止して、前記一方側と前記副液室(17)の間を連通遮断するとともに、前記他方側を前記副液室(17)と連通させることを特徴とする。
【0018】
請求項4の発明は上記請求項3において、前記マス(30)は前記2つの減衰ピークを発生させる共振周波数のうち高い方の共振周波数で慣性により振動を停止することを特徴とする。
【0019】
請求項5の発明は上記請求項1〜4のいずれかにおいて、前記第1オリフィス通路は、その流路の一部を第1オリフィス通路の共振周波数にて膜共振するオリフィス弾性部にて形成されていることを特徴とする。
【発明の効果】
【0020】
請求項1の発明によれば、所定の周波数により、長いオリフィス通路又は短いオリフィス通路とに流路を選択的に切り換える流路切換手段を設けたので、所定周波数になると流路切換手段がバイパス通路における作動液の流動を停止し、作動液は第1オリフィス通路及び第2オリフィス通路からなる長いオリフィス通路を流動して共振し、より低い周波数で第1の減衰ピークを生じる。
また、バイパス通路に作動液を流動させると、第2オリフィス通路における作動液の流動が停止し、作動液は第1オリフィス通路にて主体的に流動するので、短い第1オリフィス通路にて共振し、より高い周波数で第2の減衰ピークを発生する。
このため、長短のオリフィス通路を切り換えることで周波数が高低に異なる2つの共振を発生させることにより2つの減衰ピークを発生して減衰域をブロード化できる。
しかも、流路切換手段により長いオリフィス通路と短いオリフィス通路とへ選択的に切り換えるので、いずれか一方の流路だけに作動液を流動させ、他方側に対する作動液の流動を抑制することができ、減衰ロスを少なくできるため、減衰ピークの減衰値をより高くすることができる。
そのうえ、流路切換手段を所定周波数で動作するパッシブなものとし、かつ第1オリフィス通路と第2オリフィス通路を直列させることにより、共通部を有するオリフィス通路構造としたので、コストダウンをはかることができる。
【0021】
請求項2の発明によれば、2つの減衰ピークを入力振動の同一モードにおいて発生させるので、異なるモードでそれぞれ1つずつ減衰ピークを発生させ、相互の減衰ピーク間における干渉が生じないものと異なり、2つの減衰ピークが相互に干渉しあえるため、減衰をブロード化できる。
【0022】
請求項3の発明によれば、流路切換手段として所定の質量を有し、所定の周波数のとき慣性により一定位置に停止するマスを用いたので、このマスを中間室内にて第2オリフィス通路又はバイパス通路のいずれか一方側における作動液の流動によって振動しつつ他方側と副液室の間を連通遮断させることにより、作動液の流路を一方側に切り換えることができる。
また、所定の周波数になるとマスが慣性により一定位置に停止するため、一方側と副液室の間を連通遮断するとともに、他方側を副液室と連通させることにより、作動液の流路を他方側に切り換えることができる。
このため、マスの慣性を利用して周波数応答性のある流路切換手段を容易に構成することができる。
また、マスの慣性による停止は入力振動の周波数に対して鋭敏に反応できるので、2つの減衰ピークを生じる周波数の範囲を明確に設定することが容易になる。
【0023】
請求項4の発明によれば、マスの慣性により振動を停止する周波数を、2つの減衰ピークを発生させる共振のうち高い方の共振周波数に設定したので、高い方の共振周波数以上の振動でマスを慣性により振動停止させておくことができるから、マスの制御が容易になる。
【0024】
請求項5の発明によれば、第1オリフィス通路22の流路の一部を第1オリフィス通路の共振周波数にて膜共振するオリフィス弾性部にて形成したので、オリフィス弾性部の膜共振により第1オリフィス通路における共振を強くし、2つの減衰ピークに対応する2つの共振を明瞭に発生させることができる。
【図面の簡単な説明】
【0025】
図1】本実施形態に係る自動車用エンジンマウントを示す図
図2図1におけるオリフィス通路構成を模式的に示す図
図3図2における流路切換を説明する図
図4】本実施形態に係るシミュレーションモデル
図5】上記シミュレーションモデルにパラメータ設定した動特性のグラフ
図6】シングルピークの従来例と比較した動特性のグラフ
図7】従来の液封マウントにおける流路切換構造を簡略化して示す図
図8】上記液封マウントにおける減衰特性を示す図
図9図7のシミュレーションモデル
図10】上記シミュレーションモデルに各パラメータを変化させた動特性を示す図
図11】減衰ピークのブロード化をシミュレートした図
【発明を実施するための形態】
【0026】
以下、図面に基づいて一実施形態を説明する。
図1は本実施形態に係る自動車用エンジンマウント10を示し、図1のAはその概略断面図である。11は第1取付金具であり、図示しないエンジンへ取付けられている。12は第2取付金具であり、円筒状をなし、車体(図示省略)へ取付けられている。
【0027】
第2取付金具12の一方側の開口部と第1取付金具11の間には、主弾性体13が一体化されている。主弾性体13は略円錐台状をなし、弾性変形して入力振動を主体的に吸収する防振部材であり、ゴム等の適宜材料より構成され所定のバネ定数を有している。主弾性体13の内部はドーム状の空間を形成する。
第2取付金具12の他方側の開口部はダイヤフラム14で覆われ、第1取付金具11,第2取付金具12,主弾性体13,ダイヤフラム14で囲まれた空間が液室をなす。この液室は、仕切部材15で主弾性体13側の主液室16とダイヤフラム14側の副液室17に区画される。
【0028】
仕切部材15は2つのリング状をなす金属又は樹脂製の上部材20と下部材21を重ねたものである。但し、仕切部材15の構成はこのような上下2部材からなるものに限定されず、3部材の積み重ね構造等種々可能である。
上部材20には、第1オリフィス通路22及び第2オリフィス通路23が弧状をなして、例えば、半径方向へ同心状に並んで設けられ、図示しないがそれぞれは一部で連通しており、第1オリフィス通路22と第2オリフィス通路23が直列して長いオリフィス通路を形成するようになっている。但し、第1オリフィス通路22及び第2オリフィス通路23の形状や配置等は種々に変更可能である。
【0029】
第1オリフィス通路22は例えば、一般走行モードにおいて、比較的高い約18Hz程度の共振周波数を有するようにチューニングされ、第2オリフィス通路23は第1オリフィス通路22と直列にしたとき、エンジンの同一モードである一般走行モードにおいて、比較的低い周波数、例えば約8Hz程度の共振周波数を有するようにチューニングされている。これらの共振周波数は、同一走行モード、例えば、一般走行モードにおける低い周波数(第1共振点f1)と高い周波数(第2共振点f2)に相当する。なお、この例においては、一般走行モードの周波数域が約5〜20Hz、アイドルモードの周波数域が約25〜30Hzであるものとする。
【0030】
第1オリフィス通路22は一端が主液室16へ連通し、他端が下部材21に設けられているオリフィス弾性部24に臨んでいる。オリフィス弾性部24は第1オリフィス通路22に沿って環状に設けられて下部材21に設けられたバイパス通路25の一端部を覆っており、第2共振点f2である例えば約18Hz程度の高い周波数で膜共振するように設定されている。
バイパス通路25は第2オリフィス通路23を迂回して設けられ、バイパス通路25の他端部は、仕切部材15の中心部に設けられたマス30の通路31に連通している。通路31は連絡路32を介して副液室17へ連通している。
【0031】
マス30は、仕切部材15の中心部に形成された中間室26内を上下方向へ摺動自在になっており、支持バネ(図2の符号34)により、振動入力のない中立時にて、バイパス通路25と連絡路32が連通する位置になるように位置決めされている。マス30及び支持バネ34は流路切換手段35を構成している。但し、支持バネ34は必ずしも必要ではなく省略することもできる。流路切換手段35は所定の周波数で長短のオリフィス通路を選択的に切り換えて流路を切り換える周波数応答性を有する。
【0032】
中間室26は第2オリフィス通路23及びバイパス通路25の各副液室17側端部が接続する空間であり、この中にマス30が第2オリフィス通路23の作動液流動によって上下動自在に収容されている。第2オリフィス通路23に作動液が流れると、連通する中間室26内の作動液が流動してマス30が中間室26内を上下動して、第2オリフィス通路23における作動液の流動を可能にするとともに、バイパス通路25と連絡路32間を連通遮断又は連通させる。
【0033】
すなわち、マス30が上下動して通路31とバイパス通路25が不一致になると、バイパス通路25と連絡路32間が連通遮断され、副液室17と連通しなくなるので、バイパス通路25内における作動液の流動を止める。
通路31とバイパス通路25が一致すると、バイパス通路25が連絡路32を介して副液室17と連通し、バイパス通路25内における作動液の流動を可能にする。
なお、中間室26とマス30との間には若干の間隙33があり、主液室16にエンジンの重量がかかり、かつ振動入力前の静的状態(1G状態)において、主液室16側から押し出された作動液を副液室17側へ逃がすようになっている。
【0034】
また、マス30は特定の周波数の入力時に慣性によってバイパス通路25と連絡路32が連通する中立位置にて上下移動を停止するようになっている。この特定の周波数は第1オリフィス通路22の共振周波数(第2共振点f2)であり、このようなマス30の慣性による停止は、マス30の質量と支持バネ34の弾性定数を調整することにより実現できる。
本実施形態では、第1オリフィス通路22のみによる短いオリフィス通路の共振周波数である第2共振点f2で作動液が流動すると、マス30が慣性により見かけ上の上下動をほぼ停止した状態になるように設定されている。
【0035】
図1のBは、上記長短2つのオリフィス通路の構成を簡略化して示す図であり、流路切換手段35は、第1オリフィス通路22と第2オリフィス通路23とが直列された長いオリフィス通路と、第1オリフィス通路22のみの短いオリフィス通路のいずれかを副液室17に対して接続切り換えする。このとき、短いオリフィス通路に切り換わると、第1オリフィス通路22はオリフィス弾性部24及びバイパス通路25を介して副液室17へ連通し、オリフィス弾性部24の弾性変形を伴う第1オリフィス通路22内における作動液の流動を可能にするが、第2オリフィス通路23内における作動液の流動は止められる。
【0036】
一方、長いオリフィス通路に切り換わると、第1オリフィス通路22と第2オリフィス通路23は直列してそれぞれの中を作動液が流動するが、バイパス通路25内には作動液が流れないので、オリフィス弾性部24は弾性変形しない。
なお、オリフィス弾性部24はこのような長短2つのオリフィス通路における共振周波数が接近した場合に、各減衰ピークを明瞭に形成するように作用するが、必ずしも設ける必要はなく、これを省略することもできる。
【0037】
以下、オリフィス通路の切り換えについてさらに詳細に説明する。図2図1におけるオリフィス通路構成を模式的に示す図であり、第2オリフィス通路23は一端を第1オリフィス通路22の一端へ分岐部27で連通接続し、副液室17へ近い他端は中間室26へ連通している。第1オリフィス通路22は分岐部27でオリフィス弾性部24を介してバイパス通路25の主液室16側となる一端部へ接続している。
【0038】
バイパス通路25は第1オリフィス通路22及び第2オリフィス通路23よりも十分に通路断面積が大きく、本実施形態が対象とする低周波領域(例えば、20Hz以下)では共振や目詰まりすることなく作動液をスムーズに流動させることができる。バイパス通路25の副液室17側となる他端は中間室26へ直交して接続している。この図では、中間室26を挟んでバイパス通路25の延長上に連絡路32を設け、バイパス通路25と連絡路32の間を横切るようにマス30が上下動するように記載してあり、連絡路32について図1のAにおけるものと記載形式が異なるが実質的に同じである。
【0039】
図3図2における流路切換を説明する図である。このような液封マウント10において、主液室16へ第1共振点f1をなす所定の低い周波数(例えば8Hz)の振動が入力すると、主液室16から第1オリフィス通路22へ作動液が送られる。しかし、オリフィス弾性部24は入力振動がオリフィス弾性部24自体の膜共振周波数より低いためほとんど膜共振せず、その結果、作動液は分岐部27から第2オリフィス通路23へ流れる。
第2オリフィス通路23は中間室26と連通しているので、中間室26へ入った作動液はマス30を押し下げ、通路31がバイパス通路25及び連絡路32と不一致になる(図3のB)。このとき、バイパス通路25は副液室17との間で連通遮断状態となり、バイパス通路25内の作動液が流動しないため、オリフィス弾性部24の弾性変形を抑制できる。
【0040】
マス30は中間室26の液圧変動により上下動自在であるから、振動の反転により、第2オリフィス通路23を主液室16側へ作動液が流れると、中間室26内の作動液も第2オリフィス通路23へ向かって流れるので、マス30は支持バネ34に押されて中立位置へ戻り、さらに図3のAに示すように、上方へ移動する。中立位置では瞬間的に通路31がバイパス通路25と一致するが、この位置ではバイパス通路25に流動がほとんど生じておらず、しかも瞬間的に一致するだけなので、バイパス通路25と副液室17の間で作動液がほとんど流動しない。マス30が上方へ移動して通路31がバイパス通路25と不一致になると、バイパス通路25は再び連通遮断状態になる。
【0041】
したがって、主液室16の作動液は、振動入力に伴って、マス30を図3のA・Bに示すように上下移動させながら、第1オリフィス通路22と第2オリフィス通路23の中を流動する。このとき、第1オリフィス通路22と第2オリフィス通路23は直列になっているため、L1+L2からなる長いオリフィス通路をなし、例えば約8Hz程度の低い周波数(第1共振点f1)で共振し、振動を減衰させる。
【0042】
また、バイパス通路25には作動液の流動がほぼ生じないこと、並びに入力振動がオリフィス弾性部24の膜共振周波数より低いため、オリフィス弾性部24は膜共振しない。
したがって、流路切換手段35が作動液の流路をバイパス通路25側の短いオリフィス通路から第1オリフィス通路22と第2オリフィス通路23からなる長いオリフィス通路へ切り換えてこの長いオリフィス通路を主体とする共振を生じさせるとともに、マス30がバイパス通路25を連絡路32(さらには副液室17)に対して連通遮断して作動液の流動を止めることにより、オリフィス弾性部24を弾性変形させないか弾性変形を極力抑えることができるため、共振ロスを生じさせないかもしくは共振ロスを極力抑制できる。
【0043】
主液室16に第2共振点f2をなすより高い周波数(例えば18Hz)の振動が入力すると、主液室16から第1オリフィス通路22へ入った作動液によりオリフィス弾性部24が膜共振する。一方、第2オリフィス通路23を介して中間室26内にもこの周波数f2で作動液が流動し、マス30を振動数f2で上下動させる。ところがマス30は振動数f2で慣性により見かけ上の上下動を止め中立位置に停止する。このため、中間室26及び第2オリフィス通路23における作動液は、周波数f2で流動するものの、その流動ストロークはごく僅かであって、見かけ上は、中間室26及び第2オリフィス通路23における作動液はほぼ流動しないような状態になる。
すなわち、第2オリフィス通路23における作動液の流動は、完全なる停止ではないものの、共振効率のロスを従来よりも小さくして、所定の改善目的となる減衰値を実現できる程度に抑制された状態(本願発明における停止状態)にあることになる。
【0044】
また、マス30が中立位置に停止するため、通路31がバイパス通路25と連絡路32へ連通し、バイパス通路25の作動液は副液室17の間を流動可能になる。
このため、バイパス通路25内の作動液は、オリフィス弾性部24の膜共振により通路31及び連絡路32を介して副液室17との間を流動する。
したがって、流路切換手段35が作動液の流路を、第1オリフィス通路22と第2オリフィス通路23からなる長いオリフィス通路からバイパス通路25側の短いオリフィス通路へ切り換えて第1オリフィス通路22のみからなる短いオリフィス通路を主体とする共振が第2共振点f2(例えば約18Hz)で発生する。このとき、マス30が慣性により中立位置へほぼ停止するため、中間室26を副液室17との間で連通遮断し、第2オリフィス通路23には見かけ上ほぼ作動液の流動が生じなくなるので、第2オリフィス通路23に対する作動液の流動を極力抑えて第1オリフィス通路22を主体とする共振をさせることができるため、共振ロスを生じさせないかもしくは共振ロスを極力抑制できる。
【0045】
図4は、図9同様の本実施形態に係るシミュレーションモデルであり、共通部を共通符号で示す。
このシミュレーションモデルに対して図示のようなパラメータを設定することにより、動特性を得ることができる。a〜i・k〜nを設定したものである。このうちa〜iは図4におけるものと同様であり、図中のaはマウント全体に対する入力荷重(N/mm)、bは主弾性体13への入力荷重(N/mm)、cは主液室16の通路断面積(mm2)、dは第1オリフィス通路22の通路断面積(mm2)、eは第1オリフィス通路22の長さ(mm)、fは仕切部材15の受圧面積(mm2)、gはオリフィス弾性部24の受圧面積(mm2)、hは第2オリフィス通路23の通路断面積(mm2)、iは第2オリフィス通路23の長さ(mm)である。k・lはダイヤフラム14の受圧面積(mm2)、mはマス30の質量(g)、nはマス30の受圧面積(mm2)である。k・lを合算したものが図9における1つのjに相当する。
【0046】
図5は、このパラメータ設定における入力振動の所定振幅時における動特性のグラフであり、Aは動バネ曲線(縦軸に動バネ定数、横軸に入力振動の周波数を示す;以下同様)、Bは減衰曲線(縦軸に減衰値、横軸に入力振動の周波数を示す;以下同様)。
これらのグラフには、マス30を設けない比較例(すなわち図9の構成)の動特性を仮想線にて併せて示してある。
この比較例との相違より明らかなように、本実施形態によれば、減衰ピークPK1及びPK2からなる明確なダブルピークが生じている。しかも、Bに示すように、減衰ピークは比較例のPK4及びPK5よりも高くなっており、例えば、0.9Ns/mmも上昇している。
【0047】
図6はシングルピークの従来例における動特性(仮想線)を併記したものであり、Aに動バネ定数曲線、Bに減衰曲線を示す。
このBに明らかなように、従来のシングルピーク特性における減衰ピークPK3とほぼ同等の減衰ピークをなすとともに、従来よりも例えば約3Hzほどブロード化している。
すなわち、減衰をブロード化できるとともに、従来と同等の減衰ピークを得ることができ、優れた減衰特性を実現できる。
【0048】
これは、流路切換手段35を設けることにより、作動液の流路を、第1オリフィス通路22と第2オリフィス通路23とが直列した長いオリフィス通路と第1オリフィス通路22のみからなる短いオリフィス通路のいずれかに切り換え、長いオリフィス通路に切り換えたときはバイパス通路25内における作動液の流動を停止させてオリフィス弾性部24の弾性変形を阻止または弾性変形しにくくし、短いオリフィス通路に切り換えたときは第2オリフィス通路23における作動液の流動を停止させて、作動液が第2オリフィス通路23内へ流れ込むのを阻止または流れ込みにくくすることにより、共振ロスを極力減少させることが可能になったことを意味する。
【0049】
しかも、2つの減衰ピークPK1・PK2をエンジンの同一モードにおいて並立して発生するので減衰をブロード化できる。これは異なるモードでそれぞれ1つずつ減衰ピークを発生させ、その結果、同一モードでは1つの減衰ピークしか生じず、2つの並立する減衰ピークによって減衰をブロード化できない従来のものと異なる顕著な効果となる。
また、流路切換手段35を所定周波数で動作するパッシブなものとし、かつ第1オリフィス通路22と第2オリフィス通路23を直列させることにより、長短に異なる2つのオリフィス通路において第1オリフィス通路22を共通部とする構造としたので、コストダウンを図ることができる。
【0050】
さらに、流路切換手段35として所定の質量を有し、所定の周波数のとき慣性により一定位置に停止するマス30を用いたので、このマス30を第2オリフィス通路23又はバイパス通路25のいずれか一方側(例えば、第2オリフィス通路23側)における作動液の流動によって振動しつつ他方側(例えば、バイパス通路25側)と副液室17の間を連通遮断させることにより、作動液の流路を一方側(例えば、第2オリフィス通路23側)に切り換えることができる。
【0051】
また、所定の周波数になるとマス30が慣性により一定位置に停止するため、一方側(例えば、第2オリフィス通路23側)と副液室17の間を連通遮断するとともに、他方側(例えば、バイパス通路25側)を副液室17と連通させることにより、作動液の流路を他方側(例えば、バイパス通路25側)に切り換えることができる。
このため、マス30の慣性を利用して周波数応答性のある流路切換手段を容易に構成することができる。
【0052】
さらに、マス30の慣性による停止は入力振動の周波数に対して鋭敏に反応できるので、2つの減衰ピークを生じる周波数の範囲を明確に設定することが容易になる。
しかも、マス30の慣性により振動を停止する周波数を、2つの共振のうち高い方の共振周波数f2に設定したので、高い方の共振周波数f2以上の振動でマス30を慣性により振動停止させておくことができるから、マスの制御が容易になる。
【0053】
また、第1オリフィス通路22の流路の一部を第1オリフィス通路22の共振周波数f2にて膜共振するオリフィス弾性部24にて形成したので、オリフィス弾性部24の膜共振により第1オリフィス通路22における共振を強くし、2つの減衰ピークPK1・PK2に対応する2つの共振を明瞭に発生させることができる。
【0054】
なお、本願発明は上記の実施形態に限定されるものではなく、発明の原理内において種々に変形や応用が可能である。例えば、マス30は第2オリフィス通路23又はバイパス通路25のいずれか側の作動液により流動すればよい。したがって、バイパス通路25の作動液でマス30を振動させ、所定周波数で慣性により停止したとき、第2オリフィス通路23側の作動液を流動させるようにしてもよい。
また、流路切換手段35を設ける位置は、図示のように副液室7の近傍部ではなく、分岐部27側へ設けてもよい。
さらに、連絡路32は省略してもよく、第2オリフィス通路23とバイパス通路25の合流部を設け、この合流部にマス30を設けてもよい。
また、マス30の慣性停止周波数は、第1共振点f1又は第2共振点f2のいずれに設定してもよい。また、2つの減衰ピークを発生させるモードは、一般走行モードばかりでなく、アイドリングモードや発進モード等各種モードに設定可能である。
さらに、ダブルピーク形式ばかりでなく、より多数の減衰ピークを有する形式の液封防振装置にも適用できる。
【符号の説明】
【0055】
10:自動車用エンジンマウント、13:主弾性体、15:仕切部材、16:主液室、17:副液室、20:上部材、21:下部材、22:第1オリフィス通路、23:第2オリフィス通路、24:オリフィス弾性部、25:バイパス通路、30:マス
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11