【発明の効果】
【0012】
本発明の撮影レンズによれば、物体距離無限遠から等倍付近の最短撮影距離状態へのフォーカシング全域に渡って軸上色収差、倍率色収差、像面湾曲、歪曲収差を小さくし、高い結像性能を有する効果が得ることができる。
本発明の撮影レンズによればまた、フォーカシングにおいて、軽量なレンズ群を移動させることによって少エネルギー消費で迅速にオートフォーカスが行える効果を得ることができる。
【0013】
(本発明の作用)
本発明は、物体側から正の屈折力の前レンズ群、負の屈折力の中間レンズ群第1セクション、正の屈折力の中間レンズ群第2セクション、正の屈折力の中間レンズ群第3セクション、そして負の屈折力の後レンズ群からなり、フォーカシングにおいて、前記前レンズ群、前記後レンズ群は固定であり、物体距離無限遠状態から最短撮影距離状態にかけて、前記中間レンズ群第1セクションは、物体側から像面側に移動し、前記中間レンズ群第2セクションは光軸上を移動し、中間レンズ群第3セクションは、物体距離無限遠状態から最短撮影距離状態にかけて、像面側から物体側に移動する。
【0014】
フォーカシング時、前述したように、前記前レンズグループ及び前記後レンズグループを固定し、物体距離無限遠状態から最短撮影距離状態にかけて、前記中間レンズグループ第1セクションを物体側から像面側に移動させ、前記中間レンズグループ第2セクションを光軸上を移動させ、前記中間レンズグループ第3セクションを物体距離無限遠状態から最短撮影距離状態にかけて、像面側から物体側に移動させると、次の利点がある。
【0015】
フォーカシング時に前記前レンズ群を固定すると、前記前レンズ群が移動するレンズタイプに比べて、フォーカシングによる撮影レンズと被写体との距離変化がなくなり、撮影時に被写体に接触する恐れを減らせることができる。また、フォーカシング時に、大型で高重量の被写体側レンズ群を繰り出すことにより生じる、アクチュエータへの負荷増大や鏡筒外形の大型化を回避できる。さらに、フォーカシング全域に渡って、高い結像性能を得ることができる。
【0016】
開口絞りは、前記中間レンズ群中に固定的に配置され、移動レンズ群の軽量化が図れ、メカ構造の簡素化が図られる。
また、物体距離無限遠状態から最短撮影距離状態にかけては、開口絞りの径を小さくするのが好ましい。Fno光線すなわち軸上の最大高さ光線を開口絞りにより決定することにより、前記前レンズ群の外径の大型化を抑えることができる。
前記後レンズ群を固定することは、鏡筒内部へのごみの進入やメカ機構の簡素化の点で好ましい。
【0017】
前記前レンズ群のレンズ構成は、少なくとも3枚の凸レンズと少なくとも1枚の凹レンズからなる。この構成は、最短撮影距離状態付近におけるコマ収差を良好に補正する上で望ましい構成である。
【0018】
(条件式(1)の説明)
凹レンズの形状を、物体側の曲率半径をRn1、像側の曲率半径をRn2とした時、以下の条件式(1)を満足することが好ましい。
(Rn1-Rn2)/(Rn1+Rn2)<0 ・・・・・・・・・・・(1)
本発明の如く前レンズ群を固定とし、それよりも内部のレンズ群を移動させたフローティング方式のマクロレンズにおいては、前レンズ群は特にマクロ域での結像性能に重要な役割を担っている。条件式(1)は、凹レンズが像面側に凸形状であり、物体側の曲率半径が像面側の曲率半径に比べて小さい、負のメニスカスレンズの形状を限定するものである。このようにすることによって、特に最短撮影距離状態付近で、球面収差をオーバー側へ、コマ収差をアンダー側への補正を行う。
【0019】
条件式(1)の上限を超えると、最短撮影距離状態付近での球面収差が、アンダー側になり過ぎることと、コマ収差がオーバー側に発生し、結像性能が満足できなくなるので好ましくない。
また、前記レンズ群を構成する凸レンズは、3枚以上とすることが好ましい。残存球面収差を小さくすることができる。さらに、前記前レンズ群において、偏芯による像面湾曲の変動を、レンズを複数枚で構成させることで、その影響を分散させることができ、好ましい。
【0020】
(条件式(2)の説明)
最短撮影距離状態での倍率色収差補正を、良好にするために、前レンズ群を構成する凸レンズの平均屈折率と、平均アッベ数を、下記の条件式を満足させることが好ましい。
nd1<1.6 vd1>67.5 ・・・・・・・・・・・・(2)
条件式(2)を外れると、本発明の望む結像性能を得ることができなくなる。例えば、特許文献2の第3実施例、同第4実施例、さらに特許文献1の第3実施例の最短撮影距離状態時、7割像高、瞳中心における、c線〜g線の最大幅は、それぞれ、0.030mm、0.049mm、0.024mmと大きい。本発明の求める同収差目標は、0.02mm以下であり、従来技術からは満足な結果が得られない。
【0021】
(本発明の実施態様)
(実施態様1)
本発明の撮影レンズにおいて、さらに、以下の条件式を満足することを特徴とする。
55<vd3<75 ・・・・・・・・・・・・・(3)
1.55<nd3<1.65 ・・・・・・・・・・・・・(4)
nd3:前記中間レンズ群第2セクションを構成する凸レンズのd線に対する屈折率
vd3:前記中間レンズ群第2セクションを構成する凸レンズのアッベ数
【0022】
条件式(3)は、物体距離無限遠時の軸上色収差を良好に補正するための条件である。
条件式(3)の上限を超えて、アッベ数が大きくなると、g線の軸上色収差がオーバー側にシフトし、最短撮影距離状態付近でg線フレアが増大し、例えば木の葉の縁が紫色に写るなどのパープルフリンジの問題を引き起こしてしまう。
条件式(3)の下限を超えてアッベ数が小さくなると、軸上色収差が増大し、物体距離無限遠状態のMTFの劣化を招く。
【0023】
条件式(4)は、屈折率を限定し、前記中間レンズ群第2セクションを構成する凸レンズのレンズ面の周辺部分のダレ等の微小誤差による球面収差(以下、アキュラシー感度と呼ぶ)への影響を低くするためのものである。前記中間レンズ群第2セクションは、光線束が特に太くなる部分であるため、このような加工誤差を予め見込んだ設計は、製品化の過程では有利になる。
条件式(4)の上限値を超えて、屈折率が大きくなると、アキュラシー感度が上昇し、加工誤差による球面収差変動が大きくなり、物体距離無限遠状態での中心解像力の著しい低下を招いてしまう。
逆に、条件式(4)の下限値を超えて、屈折率が小さくなり過ぎると、面の曲率半径が小さくなり、レンズ自体の重量が増大してしまう。
【0024】
本発明は、フローティング時に3つのレンズ群を移動させつつ、各レンズ群の軽量化を図ることが目的である。そのため、光線束が最も大きくなる第3レンズ群は少ないレンズ構成とすることが好ましい。要求される結像性能に合わせ、レンズ枚数が決められるが、例えばレンズ1枚とするのがより好ましい。
さらに、前記中間レンズ群第3セクションも、最小枚数で構成することが好ましい。本発明では、前記中間レンズ群第3セクションを凹凸の接合レンズとしている。この構成は、凸凹の接合レンズとすることに比べて、像面湾曲の変動を最小化する上で効果的である。
【0025】
本発明のフローティング方式を持つ光学系の特徴として、物体距離無限遠から最短撮影距離にかけて像面湾曲は、アンダー側からオーバー側に行き、等倍付近でまたアンダーに戻る挙動を示す。凹凸の接合レンズとすると、このオーバーからアンダーへの像面湾曲の変動を小さくするのに効果的である。
【0026】
(実施態様2)
本発明の撮影レンズにおいて、さらに、以下の条件式を満足することを特徴とする。
-0.58<f2/f<-0.36 ・・・・・・・・・・・・・(5)
f : 全系の焦点距離
f2 : 前記中間レンズ群第1セクションの焦点距離
【0027】
条件式(5)の下限値を超えると、前記中間レンズ群第1セクションのフォーカシング時の移動量が増大し、前記中間レンズ群第2セクション及び前記中間レンズ群第3セクションのフォーカシング時の移動量が減少する。
条件式(5)の上限値を超えて焦点距離が短くなると、前記中間レンズ群第1セクションのフォーカシング時の移動量が減少するが、前記中間レンズ群第2セクション及び前記中間レンズ群第3セクションのフォーカシング時の移動量が増大する。
当該レンズ群の移動量は小さくなるが、他のレンズ群の移動量が多くなる。
【0028】
負の前記中間レンズ群第1セクションと、正の前記中間レンズ群第2セクション及び前記中間レンズ群第3セクションは、前記中間レンズ群第1セクションと前記中間レンズ群第2セクションの間に配置された開口絞りに、互いに近づく動きをする。レンズ鏡筒を製品化するにあたって、例えば、カム筒により3つのレンズ群を動作させようとした場合、カメラの姿勢によるカム筒の作動負荷のバランス、つまりアクチュエータに過度な負荷がかからぬような設計としなくてはならない。例えば、上向き姿勢の場合、前記中間レンズ群第1セクションは重力に倣い下がろうとし、それを受け前記中間レンズ群第2セクション及び前記中間レンズ群第3セクションは重力に逆らって上がろうとする力が働く。それらの力の和に均衡が保てなくなると、カム筒を動かすアクチュエータに負荷を与えることになる。
【0029】
条件式(5)の範囲を超えると、レンズ群の移動量や重量が、適度なバランスを失い、作動性での問題を発生させる。
【0030】
(実施態様3)
本発明の撮影レンズにおいて、さらに、以下の条件式を満足することを特徴とする。
0.28<f4/f3<1.95 ・・・・・・・・・・・・・(6)
f3: 前記中間レンズ群第2セクションの焦点距離
f4: 前記中間レンズ群第3セクションの焦点距離
【0031】
これは前記中間レンズ群第2セクションの焦点距離と前記中間レンズ群第3セクションの焦点距離の比を規定するものである。
【0032】
条件式(6)の下限値を超えると、前記中間レンズ群第2セクションの移動による収差補正効果が減少し、最短撮影距離状態付近で生じる像面変動が大きくなるという問題が発生する。
条件式(6)の上限値を超えると、前記中間レンズ群第3セクションの移動による収差補正効果が減少し、最短撮影距離状態付近で生じる像面変動が大きくなるという問題が発生する。という問題が発生する。
【0033】
(実施態様4)
(本発明の実施態様4)
本発明の撮影レンズにおいて、前記後レンズ群は、最も像側に最像側凹レンズを有し、該最像側凹レンズに物体側で隣接した凸レンズを有し、以下の条件を満足することを特徴とする。
-0.23<D/FR<-0.01 ・・・・・・・・・・・・・(7)
FR: 前記最像側凹レンズの焦点距離
D : 前記最像側凹レンズと、前記最像側凹レンズに物体側で隣接した前記凸レンズとの 空気間隔
【0034】
一般に、本発明の実施例にあるようなFナンバー2.8程度の明るいレンズには、像側最終レンズに凸レンズ、該凸レンズに隣接して凹レンズが配置される。これは、前記前レンズ群で残存したアンダー側の球面収差を、前記凹レンズの物体側の面でオーバー側に出し、球面収差を打ち消すためである。
本発明の撮影レンズでは、前レンズ群での残存球面収差を小さくできるので、従来技術のように、後方に球面収差の打ち消し要素が不要である。だから、最終レンズに凹レンズを配置することができる。
【0035】
仮に、条件式(7)の下限値を超えると、球面収差やコマ収差の空気間隔に対しての誤差感度が大きくなってしまい、製造上の困難をともなうことになる。
条件式(7)の上限値を超えると、バックフォーカスが短くなり、軸外光線の撮像面への入射角度が急になり過ぎ、画面周辺部での光量差、いわゆるシェーディングが発生しやすくなる。
その他に、像側最終レンズのレンズ外径が小さくできるので、メカ機構の構成がやり易くなるという利点や、製品状態で、空気間隔を利用した、バックフォーカス調整、球面収差調整など、製造面での調整の自由度が広げられるという利点、光学設計上で、空気間隔という自由度が一つ増えるという利点、球面収差、コマ収差の補正の自由度が高まるという利点が挙げられる。