特許第5791089号(P5791089)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッドの特許一覧

<>
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000002
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000003
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000004
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000005
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000006
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000007
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000008
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000009
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000010
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000011
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000012
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000013
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000014
  • 特許5791089-固有周波数を増大させた複合静電レンズ 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5791089
(24)【登録日】2015年8月14日
(45)【発行日】2015年10月7日
(54)【発明の名称】固有周波数を増大させた複合静電レンズ
(51)【国際特許分類】
   H01J 37/12 20060101AFI20150917BHJP
   H01J 37/317 20060101ALI20150917BHJP
【FI】
   H01J37/12
   H01J37/317 Z
【請求項の数】18
【全頁数】15
(21)【出願番号】特願2015-525429(P2015-525429)
(86)(22)【出願日】2013年6月28日
(65)【公表番号】特表2015-523702(P2015-523702A)
(43)【公表日】2015年8月13日
(86)【国際出願番号】US2013048605
(87)【国際公開番号】WO2014022045
(87)【国際公開日】20140206
【審査請求日】2015年6月15日
(31)【優先権主張番号】13/564,450
(32)【優先日】2012年8月1日
(33)【優先権主張国】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】500324750
【氏名又は名称】バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド
(74)【代理人】
【識別番号】110000877
【氏名又は名称】龍華国際特許業務法人
(72)【発明者】
【氏名】ナウモフスキ、オリバー ヴィ.
(72)【発明者】
【氏名】パテル、シャーダル
(72)【発明者】
【氏名】テオドルツク、チャールズ エー.
【審査官】 遠藤 直恵
(56)【参考文献】
【文献】 特開昭62−132788(JP,A)
【文献】 特開平2−142046(JP,A)
【文献】 特表2012−514836(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/12
H01J 37/317
(57)【特許請求の範囲】
【請求項1】
イオン注入ロッドに関する、イオンビームを制御する複合静電レンズであって、
前記複合静電レンズは、それらの間に前記イオンビームを通過させるギャップを画定する第1の静電ロッドおよび第2の静電ロッドを備え、
前記第1の静電ロッドおよび前記第2の静電ロッドの少なくとも一つは、長さL及び断面積Aを有する本体を有し、
記本体は、
第1の材料で形成され、ともに留められた上方シェルおよび別途の下方シェルを含む外側部分と、
前記第1の材料とは異なる第2の材料から形成され、前記外側部分で取り囲まれるコア
を有し
記静電ロッドの固有周波数は、前記長さL及び断面積Aを有するグラファイトロッドの固有周波数よりも大きい
複合静電レンズ
【請求項2】
前記長さL及び断面積Aを有する前記グラファイトロッドの強度対重量比よりも大きい強度対重量比を有する
請求項1に記載の複合静電レンズ
【請求項3】
前記外側部分は、グラファイト材料を有する
請求項1に記載の複合静電レンズ。
【請求項4】
前記外側部分はグラファイトを含み、
アルミニウムを有する前記コアは、前記コアと前記外側部分との間に配設された中空部分をさらに含む
請求項1に記載の複合静電レンズ
【請求項5】
記外側部分から前記コアに延びて前記コアを前記外側部分に固定することが可能な複数の留め金具をさらに含む
請求項4に記載の複合静電レンズ
【請求項6】
前記上方シェルおよび前記下方シェルは、組み立てられると、前記静電ロッド内に1または複数の中空領域を画定する
請求項1に記載の複合静電レンズ
【請求項7】
前記静電ロッドは、75cmの長さおよび70Hzよりも大きい固有周波数を有する
請求項1に記載の複合静電レンズ。
【請求項8】
3から5cmの高さおよび2から4cmの幅を有する細長い断面を有する
請求項1に記載の複合静電レンズ。
【請求項9】
前記細長い断面は、互いに対向して配設され、それぞれが1〜2cmの半径を有する複数の湾曲部分を有する
請求項8に記載の複合静電レンズ。
【請求項10】
前記コアは「I」状の断面および複数のホールを有する
請求項1に記載の複合静電レンズ。
【請求項11】
第1のセットの静電ロッドを備える第1のセットの電極と、
第2のセットの静電ロッドを備える第2のセットの電極と、を備え、
前記第1のセット及び前記第2のセットの静電ロッドはそれらの間にイオンビームを通過させるギャップを画定し、
前記第1のセット及び前記第2のセットの静電ロッドのうちの1または複数の静電ロッドは
第1の材料を含むコアと
ともに留められて前記コアを取り囲み、前記第1の材料とは異なる第2の材料で形成された上方シェルおよび別途の下方シェルを有する、外側部分
有する複合静電ロッドを含み
前記複合静電ロッドは長さL及び断面積Aを有し
前記複合静電ロッドの固有周波数は、前記長さL及び断面積Aを有するグラファイトロッドの固有周波数よりも大きい
静電レンズ。
【請求項12】
前記複合静電ロッドはグラファイト製外側部分内に配設された中空部分を備える
請求項11に記載の静電レンズ。
【請求項13】
前記外側部分は、前記長さL及び断面積Aを有する前記グラファイトロッドの強度対重量比より高い強度対重量比を有する金属を含む
請求項11に記載の静電レンズ。
【請求項14】
前記複合静電ロッドは、第1の長さで特徴づけられる長軸を有し、前記複合静電ロッドの各々は、前記第1の長さを有するグラファイトロッドより高い固有振動周波数を有する
請求項11に記載の静電レンズ。
【請求項15】
前記複合静電ロッドは、75cmの長さおよび75Hzよりも大きい固有周波数を有する
請求項11に記載の静電レンズ。
【請求項16】
前記ギャップはリボンイオンビームを通過させるべく構成された形状を画定する
請求項11に記載の静電レンズ。
【請求項17】
前記複合静電ロッドの前記外側部分は、シリコンを有する
請求項11に記載の静電レンズ。
【請求項18】
前記複合静電ロッドはアルミニウムコア及びグラファイト製外側部分を含む
請求項11に記載の静電レンズ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はイオンビーム注入システムに関し、特にはビームライン注入システム内の静電レンズ、及び静電レンズ内で用いる複合静電ロッドに関する。
【背景技術】
【0002】
数あるオペレーションの中でもとりわけ、ビームのエネルギー、集束、及び方向を制御すべく、イオン注入などの複数の用途には複数の静電レンズが用いられる。図1に、イオン源102、引出電極104、90°マグネットアナライザ106、第1の減速(D1)ステージ108、マグネットアナライザ110、及び静電レンズ112を備える従来のイオン注入装置(イオンインプランタ)100を示す。D1減速ステージ(「減速レンズ」としても知られる)は、イオンビーム114が通過できるようにするために画定された開口部を有する複数の電極からなる。複数の電極に複数の異なる組み合わせの電位を印加することで、D1減速レンズは複数のイオンエネルギーをマニピュレートでき、イオンビームをターゲットウェハ116に所望のエネルギーで当てることができる。静電レンズ112は、複数の異なる組み合わせの電位を印加できる、複数のロッド形状の複数の電極を有し、イオンビーム114がそれらを通過する際、イオンビームをマニピュレートしうる。上記の減速ステージ108及び静電レンズ112は、一般に静電減速レンズである。
【0003】
図2aに、本開示のある実施形態よる、複数のロッド状電極を用いる従来の静電レンズ200の側面図を示す。複数のロッド状電極を用いる静電レンズ200のレンズ構成は、1セットの入口電極202、1または複数セットの抑制/集束電極204、及び1セットの出口電極206などの、数セットの電極も含んでよい。複数の電極の各セットは、複数のイオンが、イオンビーム210の中心線軌跡(「c.r.t」または「crt」)で、かつ偏向角95で、それらを通過できるようにスペース/ギャップを有してよい。複数のロッド状電極は、グラファイト、ガラス状カーボン、及び/または他の非汚染材料などの非汚染材料からなるとしてよい。複数の電極はまた、熱膨張係数の低い材料からなるとしてもよいことが理解されるべきである。
【0004】
図2aに示すように、出口電極206におけるイオンビーム210に対する開口が、入口電極202におけるイオンビーム210に対する開口よりも大きくなり得るように、複数のロッド状電極を用いるレンズ200の複数の電極は「フレア」にされてよい。したがって、複数の抑制/集束電極204の各セットにおける複数の開口は、徐々に増大させる、すなわち「フレア」開口であってよい。その上、イオンビーム210のcrtについて、対称性が維持され得る。複数のロッド状電極ロッドは、イオン注入プロセス中の偏向、減速、及び/または集束の独立した制御を効果的に提供しうる。図2aにさらに示してあるように、ポンプ212は直接または間接的に筐体214に接続されてもよい。一実施形態において、ポンプ212は、高真空環境または他の制御された環境を提供する真空ポンプであってよい。複数の他の実施形態においては、筐体214は1または複数のブッシュ216を含んでよい。これらのブッシュ216は、筐体214を複数の他の部材から電気的に隔離すべく用いられてよい。
【0005】
オペレーション中、入口電極202、複数の抑制/集束電極204、及び出口電極206は独立してバイアスされ、イオンビーム20のエネルギー及び/または形状が以下の方法でマニピュレートされるようにする。イオンビーム210は入口電極202を通って静電レンズ200に入射でき、例えば、10−20keVの初期エネルギーを有しうる。イオンビーム210の複数のイオンは、入口電極202と複数の抑制/集束電極204との間で加速されうる。複数の抑制電極204に到達する際、イオンビーム210は、例えば、約30keVまたはそれより高いエネルギーを有しうる。イオンビーム210が複数の抑制/集束電極204と出口電極206との間を伝搬すると、イオンビーム210の複数のイオンは、一般にはターゲットウェハのイオン注入に用いられるものにより近いエネルギーにまで、減速されうる。一例では、イオンビーム210は、静電レンズ200を抜けるときは、約3―5keVまたはそれより低いのエネルギーでありうる。
【0006】
複数の特定の用途において、特に注入ターゲットとして、300mmのウェハまたはそれより大きいウェハ等の大きなワークピースの注入を要する用途においては、複数の高いアスペクト比を有するリボン状ビームの形状の複数のイオンビームを生成して、図2bに示すように、ビームの断面が一寸法(W)において他の寸法(H)よりもずっと大きくなるようにすると有利である。これらのリボンビームは、シリコンウェハまたはフラットパネルディスプレイ等の単一のワークピースが、イオンビームを通り、一次元に動かされるイオンインプランタ装置及びイオン注入システムにおいて一般に用いられる。これらの例において、リボンイオンビームの幅Wの断面は、そのイオンビームの断面の長い方の寸法であるが、長さHよりもずっと大きい。
【0007】
安定したイオンビームを生成するためには、静電レンズなどの複数のビームライン部材の安定した動作が重要である。従来の静電レンズ部材は、静電レンズを通過するビームに対して低い汚染性を与えるグラファイト等の材料から構成される。しかしながら、時に、複数のグラファイトロッドは、材料の長さに特有の固有周波数で振動しうる。固有周波数とは、ロッドまたははり(beam)等の要素が、一旦動かされると振動する周波数を言う。
【0008】
図2aを参照すると、複数の電極204が複数のグラファイトロッドである場合において、この振動は、複数セットの電極202―206間を通過するイオンビーム210の伝搬(Z)方向に対して垂直な方向(Y)における、複数の電極204の間隔Sの変動dSを引き起こす。間隔の変動dSは、次には、静電レンズを通過するイオンビーム210が経験する電界強度の複数の変動を引き起こす。特に、静電レンズにおける電界変動は、複数の静電レンズ電極の振動周波数に従って起こり得る。図2bを参照すると、電界におけるそのような複数の変動は、Y方向におけるイオンビーム210の空間的な変動を引き起こすような形でイオンビーム210を乱し、より均一性に欠くイオンビームをもたらす。
【0009】
イオン注入中、ウェハをイオンビームに対し移動させることができ、そのような複数の変動が引き起こすイオンビームの不均一性は平均化され、均一に注入されたウェハになる。しかしながら、時に、静電レンズ内の複数の振動が引き起こすイオンビームの不均一性が、ウェハ上のマイクロストライピングとして現れる。マイクロストライピングとはウェハ上のイオンドーズ量の不均一な生成を意味し、各ストライプは、隣接する領域とは異なるイオンドーズ量の領域を表している。図2b及び図2cを参照すると、ウェハをイオンビーム210に対しY方向に沿ってパス220に沿って移動させる場合、マイクロストライピングはストライプ222を形成し、イオンドーズ量は複数の異なるストライプ間で変化する。図2cに示すように、複数のストライプの長軸は、イオンビーム210の長軸に対して平行、すなわちX方向に対して平行でありうる。複数の電極の振動周波数が比較的低く、ウェハを移動させる速度が比較的高い場合、この効果を特に見ることができるといえる。原理的には、マイクロストライピング効果は、イオンビームの変動を、注入される基板の各領域内で互いに打ち消し合うことができるように、ウェハをイオンビームに対し十分に低い速度で移動させることで低減または除去しうる。しかしながら、マイクロストライピングを除去するのに必要なウェハ移動速度の減少は、複数の基板のスループット率の減少をまねきうる。さらに、複数の基板の寸法が増大すると、複数のより広いリボンビーム、及びそのような複数のイオンビームを処理すべく、複数のより広い静電レンズを設けることが有用と言えて、長さにして1メートルを超えて延在しうる複数のロッドを設けることになる。この寸法になると、ロッドの振動が引き起こすマイクロストライピング問題は、複数のロッドの振動周波数がより低くなることにより、及び/または変動dSがより大きくなることにより、悪化しうる。以上を考慮すれば、静電レンズ構造の改良が必要であることは明らかであろう。
【発明の概要】
【課題を解決するための手段】
【0010】
一実施形態において、複合静電ロッドは、長さL及び断面積Aの本体を含んでよい。本体は、第1の材料を含む外側部分と、第1の材料とは異なる第2の材料を含み、外側部分に取り囲まれたコアと、を含んでよい。複合静電ロッドの固有周波数は、長さL、断面積Aのグラファイトロッドの固有周波数よりも大きい。
【0011】
別の実施形態においては、静電レンズは第1のセットの静電ロッドと、第2のセットの静電ロッドと、を含んでよい。第1及び第2のセットの静電ロッドは、イオンビームがそれらの間を通過するギャップを画定しうる。第1及び第2のセットの静電ロッドのうちの1または複数の静電ロッドは、複合静電ロッドであってよい。この複合静電ロッドは、第1の材料を含むコアと、第1の材料とは異なる第2の材料を含み、コアを取り囲む外側部分と、を有する。複合静電ロッドの固有周波数は、長さL及び断面積Aのグラファイトロッドの固有周波数よりも大きくなりうる。
【図面の簡単な説明】
【0012】
本開示をより良く理解すべく、複数の添付の図面を参照する。それらの図面は参照によって本明細書に組み込まれる。
【0013】
図1】既知のイオン注入システムを示す。
【0014】
図2a】既知の静電レンズの側面図を示す。
【0015】
図2b図2aの静電レンズの端面図を示す。
【0016】
図2c図2aの静電レンズによって処理された基板を示す。
【0017】
図3】複数の本実施形態と整合性のある静電レンズを示す。
【0018】
図4a】複数の本実施形態と整合性のある別の静電レンズを示す。
【0019】
図4b】複数の本実施形態と整合性のあるさらに別の静電レンズを示す。
【0020】
図5】複合静電ロッドの一実施形態を示す。
【0021】
図6】複合静電ロッドの別の実施形態を示す。
【0022】
図7a】一実施形態による、複合静電ロッドの分解斜視図を示す。
【0023】
図7b図7aの組み立てられた複合静電ロッドの断面斜視図を示す。
【0024】
図7c図7aの組み立てられた複合静電ロッドの断面端の端面図を示す。
【0025】
図7d図7aの組み立てられた複合静電ロッドの断面端の斜視図を示す。
【0026】
図8】複数の複合静電ロッドの配置例を示す。
【発明を実施するための形態】
【0027】
本明細書にて開示される複数の実施形態は、複数の改良された静電レンズを提供する。幾つかの実施形態において、複数の静電レンズはビームラインインプランタ内に配置される。ビームラインインプランタ内で静電レンズは、イオン源がイオンビームを生成するとき、イオンビームが通過しうる開口部またはギャップを画定する。幾つかの実施形態において、静電レンズはリボンイオンビームに電界を印加すべく構成される。
【0028】
様々な実施形態において、静電レンズの改良されたロッド部材が提供される。改良されたロッド部材、すなわち静電ロッドは、グラファイト等の導電性材料を備える細長い構造体である。様々な実施形態によると、静電レンズの静電ロッドは、グラファイトまたは別の適切な材料が、金属材料からなる内側部分を取り囲む外側部分を形成する、複合構造体を備える。幾つかの実施形態において、静電レンズロッドは中空部分を含み、この中空部分もまた外側部分によって取り囲まれる。複合静電レンズロッドは、従来のグラファイトロッドと比較して、より大きな比剛性を有しうる。
【0029】
様々な実施形態において、複合静電レンズロッドが提供される。この複合静電レンズロッドは、複数の同じ寸法及び同じ形状を有する従来のグラファイトロッドと比較してより高い固有周波数を有する。複数の特定の実施形態においては、固有周波数は75Hzより大きい。より高い固有周波数は、結果的に、複数の複合静電レンズロッドの組立体から構成される静電レンズを通過するイオンビームに印加する複数の電界の、より急激な変動をもたらす。
【0030】
図3に、複数の本実施形態と整合性のある静電レンズ300の斜視図を示す。静電レンズ300は複数の静電ロッド302を含む。これらの静電ロッドは、上方ロッド組立体304及び下方ロッド組立体306に配置される。レンズの複数のロッド組立体に対して本明細書中で用いる「上方」及び「下方」という用語は任意であり、複数セット(複数の組立体)のロッドを区別すべく用いる。この複数セットのロッドは、これらの間をイオンビーム308(中心線軌跡で図示されている)が通過するように配設される。一般的に、各静電ロッド302は、複数の他のロッドとは独立して、電源に連結されてよい。しかしながら、幾つかの場合においては、概して互いに対向し、互いに異なるロッド組立体に配設された一対の静電ロッドは共通の電圧に連結されてもよい。そのような一対の静電ロッド302の各々に供給される電圧は、イオンビームに印加される所望の場に従い、複数の他の対の静電ロッドに印加される電圧と異なってよい。
【0031】
複数の本実施形態と整合性をもって、以下にさらに議論するように、複数の静電ロッド302のうちの1または複数は、従来の静電ロッドより高い固有周波数を示す複合静電ロッドであってよい。この方法では、Y方向、すなわち、イオンビームの伝搬方向に対して略垂直な方向における静電ロッドの振動の周波数は、複数のイオンビームの不均一性を低減させる程十分に高いといえる。これらのイオンビームの不均一性は、低減されなければ、そのワークピースが、イオンビーム308に曝されている間、与えられた方向に沿ってスキャンされる場合は特に、ワークピース(基板)上に不均一な注入を生じさせる(例えば、ウェハをY方向に沿って移動させ、結果、異なるイオンドーズ量を有する複数のストライプを生じさせた図2cを参照)。
【0032】
図3に特に図示した実施形態においては、一対の静電ロッド302aは複数の複合静電ロッドであるとして図示されている。一方で、複数の他の静電ロッド302は複合静電ロッドであってよいが、必ずしもそうである必要はない。一実施形態において、1または複数の対の静電ロッド302は、それらの静電ロッドに印加される電圧に基づいて、複数の複合静電ロッドとして配置されてよい。例えば、減速レンズにおいては、連続する複数セットの静電ロッドの対に印加される電圧は、位置1から位置5に向かって減少させてもよい。従って、位置2に配設される、第1の複数の抑制電極としてよい複数の静電ロッド302aに、比較的高い電圧が印加されてよい。複数の静電ロッド302aに印加される比較的高い電圧のために、いずれの空間変位も、Y方向においては特に、例えば、より低い電圧が印加されてよい位置4における同様な空間変位よりも、静電レンズ300を通過するイオンビーム308に与える影響はより大きいと言える。したがって、複数の静電ロッド302aを、高い固有周波数を有する複数の複合静電ロッドであるよう選択する。このように、たとえ複数の静電ロッド302aの振動がイオンビーム308のかなりの変動を生じさせても、そのような振動の周波数は十分に高く、ワークピース表面における複数のイオンビームの変動は平均化されて、ワークピースに均一なイオンドーズ量を与える。位置3―5における静電ロッド等の、より低い電圧が供給される複数の他の対の静電ロッド302からの複数のはりの変動は、イオンビームに生じさせる乱れがより小さくなりうる。したがって、位置3―5に配設される複数の静電ロッドは、より低い固有周波数を有する複数の従来の静電ロッドであってよい。
【0033】
各静電ロッド302は、支持構造体310間に延びる長さLを有する細長い構造体を備えてよい。Lは約20cmから200cmである。はっきりとは示していないが、静電ロッド302は支持構造体310を突き抜けて延びてよく、支持構造体310の外側に面する表面312を越えて延在してよい。各ロッドの断面は、一般に楕円であってよいし、またはより複雑な断面をしていてもよい。幾つかの実施形態において、複数の外形寸法及び断面の形状は、本明細書中でそうではないと明らかにする場合を除き、従来の静電レンズロッドのものと同様であってよい。例えば、静電ロッド302のY及びZ方向の寸法は、従来の静電ロッドのそれぞれの寸法の2倍以内でありうる。X方向に沿った複数の静電ロッド302の長さLは、複数の静電ロッド302を従来の静電レンズ組立体内の1または複数の位置において互いに置き換えることができるように、複数の従来の静電ロッドの匹敵する長さの約10%以内としてよい。
【0034】
図4aは、静電レンズ400の別の実施形態の側面図を示す。この実施形態において、複数の静電ロッド402は、電圧が複数の静電ロッド402に印加される場合にイオンビーム404の方向が図に示すように偏向されうるように配置される。複数の入口電極402a及び複数の出口電極402bを除いて、複数の静電ロッド402の上方セット406は概して平面内に配置されてよく、一方で静電ロッド402の下方セット408は円弧に沿って配置されてよい。図4の実施形態において、一対の静電ロッド402cは、より高い固有周波数を与えるべく複数の複合静電ロッドとして構成される。しかしながら、様々な実施形態と整合性をもって、複数の静電ロッド402のうちのいずれかまたは全てが複数の複合静電ロッドとして構成されてよい。
【0035】
図4bは、静電レンズ450の別の実施形態の側面図を示す。この実施形態において、複数の入口電極402a及び複数の出口電極402bを除いて、複数の電極の上方セット454及び下方セット456の各々の一グループの静電レンズは、複数の複合静電ロッド452として配置されてよい。複数の複合静電ロッド452は、例えば複数の抑制電極として機能しうる。
【0036】
様々な実施形態において、一静電ロッドを上方ロッド組立体に配置し、その対のもう片方の静電ロッドを下方ロッド組立体に配置する一対の対向する静電ロッド間の間隔は、約5〜30センチメータである。したがって、長さLが30cmまたはそれより長いことが特徴の複数の静電ロッドについては、その複数の静電ロッドの長さは、対向する静電ロッド間の間隔よりもずっと長いといえる。Y方向に沿った、そのような比較的長い静電ロッドにおける振動は、対向する静電ロッドの間隔の明らかな変化を引き起こすのに十分であり得て、それによって、オペレーション中に複数の静電ロッドが画定する静電場にかなり影響を与えうる。このため、複数の本実施形態は、複数の改良された複合静電ロッドを提供する。この複合静電ロッドは、振動を除去するものではないが、複数の電界変動の周波数を増大させるように複数の静電ロッドの固有周波数を増大させて、それによって、イオンビームへの摂動による周波数を増大させる。
【0037】
複合構造体は、静電ロッドに強度をもたらす内側部分と、その内側部分を全体的に取り囲み、収容する外側部分と、を含む。内側部分、すなわちコアは、静電ロッドの固有周波数を、同じ寸法の複数の従来のグラファイト製静電ロッドに特徴的な固有周波数よりも大きく増大させるのに十分な剛性を静電ロッドにもたらす金属などの材料から構成されてよい。
【0038】
図5は、複数の本実施形態による、複合静電ロッド500の斜視図を示す。静電ロッド500は、コア502及び外側部分すなわちシェル504を含む。様々な実施形態において、静電ロッド500の外面506上にイオンビームに対し低い汚染源を与える材料を設けるべく、外側部分504が選択されてよい。幾つかの実施形態において、外側部分504は、複数の従来の静電ロッドにおいて用いられるグラファイト材料などのグラファイトから作られる。複数の他の実施形態においては、外側部分504はシリコン材料である。
【0039】
様々な実施形態において、コア502は、アルミニウム、鋼、炭素複合体、他の複合体、または、同じ複数の寸法を持つグラファイトロッドよりも、大きな剛性を静電ロッド500にもたらす電極に適した他の構造材料などの材料を含む。このように、静電ロッド500の固有周波数は、以下でさらに議論するように、増大される。
【0040】
図6は静電ロッドの別の実施形態を示す。静電ロッド600はグラファイトシェル604及びメタルコア602を含む。静電ロッド600は、グラファイトシェル604とメタルコア602との間に概して配設される中空部分606をさらに含む。静電ロッド600は、グラファイトシェル604とメタルコア602との間に延びる複数の連結部分608を含んでもよい。複数の連結部分608は、メタルコア602に接触し、これを支持し、静電ロッド600の単一の剛構造体を作る。様々な実施形態においては、複数の連結部分608は、より大きな体積の中空部分606を与えるべく広く間隔をあけてよい。このように、静電ロッド600の全体の重量は、静電ロッド600の与えられた全体寸法、及びメタルコア602の与えられた全体寸法について最小化されうる。静電ロッド600の重量を最小化することで、以下に詳細に述べるように、静電ロッド600の固有周波数は最小化されうる。
【0041】
幾つかの実施形態において、複合静電ロッドは可逆的に組立及び分解されうる複数パートを備えてよく、複数の他の実施形態においては、それらの複数パートは、最初の組立の後は組み立てられたままで配置されてもよい。図7aは、複数の追加的な実施形態と整合性のある、静電ロッド700の斜視分解図を示す。図7bは、A´−A´に沿った、組み立てられた静電ロッド700の斜視断面図を図示し、図7cは、B´−B´に沿った、組み立てられた静電ロッド700の断面図を図示する。
【0042】
静電ロッド700は、上方シェル702、下方シェル704、及びコア706を含む。「上方」及び「下方」という用語は単に、シェル704と706とを区別するために用いられる。上方シェル702及び下方シェル704はグラファイトから製作されてよい。図7aの実施形態では、ねじやワッシャであってよい留め金具708及び710を用いて、上方シェル702、下方シェル704、及びコア706は接合され、単一ロッドを形成してよい。幾つかの実施形態において、コア706は複数のホール712を含んでよい。コアは、図7c及び図7dに図示するように、長さLによって画定される自身の長手方向に対し垂直な、大文字「I」状の断面を有してよい。上方及び下方シェル702、704は、組み立てられるとコア706を取り囲む。組み立てられた構造体は、コア706と、取り囲む上方及び下方シェル702、704との間に複数の中空領域710を画定する。静電ロッド700が3つの部分的な構造体からなることにより、コア706の全体の寸法及び形状が維持される限り、複数の異なるコア材料をコア706として使用できる。ゆえに、コア706の複数の特性を変更すべく、アルミニウムのロッドを鋼製のロッド、または複合ロッド材料と交換してもよい。
【0043】
様々な実施形態によって、複数の従来のグラファイトロッドと比較して静電ロッドの比強度の比率を高くすることにより、静電ロッドの固有周波数は増大する。複数の図面に図示するように、静電レンズの複数の静電ロッドは両端で固定され、図7aにおいても示すように、両端で固定され重量mを支持する、長さL及び断面積Aのはりの挙動によってそれらの挙動が近似されうるようにする。そのようなはりの振動の固有周波数Fは、F=(k/m)1/2で表されうる。ここでkは、はりの剛性である。次に、パラメータkはAE/Lと等しい。ここで、Eははりを含む材料の弾性係数である。従って、グラファイトより強度のあるコア材料で複合ロッドを製作すると、混じりけのないグラファイト製はりの弾性係数と比較して、複合はりの平均弾性係数EAVを増大させる傾向にあるといえる。一方、複合はりにおいてはりの質量が増大すると、固有周波数は減少する。
【0044】
したがって、幾つかの実施形態においては、コア材料が、グラファイトより高い、E/mで与えられるような強度対重量比を有するようにコア材料を選択してよい。複数の他の実施形態においては、複合静電ロッドのコア材料は、グラファイトより高い弾性係数を有してよいが、グラファイトより高いE/m比を有する必要はない。その代りに、複合静電ロッドに、匹敵する体積のグラファイトロッドに比べ、全体としてより高い有効E/m比を与えるのに十分な複数の中空部分を設けてよい。
【0045】
様々な実施形態によると、複合静電ロッドの長さLは約60〜90cmであり、ロッドの断面は、図4及び図7において概して図示するように、ビーム移動方向に対して垂直な方向に引き伸ばされてもよい。幾つかの実施形態において、図7cに概して示すように、複合静電ロッドの高さtは約3cm〜約5cmであってよく、断面は約1cm〜約2cmの半径の複数の湾曲部分を含んでよく、結果として幅Dは約2cm〜4cmとなる。これが複合静電ロッドに70Hzまたはそれより大きな全体的な固有周波数をもたらしうる。
【0046】
一実施形態において、グラファイト製外側部分及びアルミニウムコアを有する複合静電ロッドは、ロッド長が75cmであれば、少なくとも75―80Hzの固有周波数を示す。複数の他の実施形態において、コアは、アルミニウム合金、鋼、または、さらにより高い強度対重量比をもたらし、それによってより高い固有周波数をもたらす複合体を含んでよい。一実施形態において、複合静電ロッドは、シリコンを含有する薄い外側部分が収容する金属製コアを備えてよい。例えば、外側シリコン部分は、任意の簡便な技術により金属製コアに塗布されるシリコンのコーティングであってよい。
【0047】
複数の本実施形態と整合性をもって、イオン注入システムは、イオン注入プロセスの均一性を改良すべく複合静電レンズを採用してよい。特に、複合静電レンズは、複数のグラファイト製静電ロッドを用いる従来の静電レンズにおいて示すものより少なくとも20パーセント速い、複数の電界変動を引き起こす増大した固有周波数を示しうる。結果として、静電レンズを通過するイオンビームのイオン密度の変動はより速く、ワークピース表面におけるイオンビームの複数のより急激な変動を引き起こす結果となる。ワークピース表面におけるイオンビームの複数のより急激な変動は、ワークピース表面におけるビーム電流(イオン)密度の複数のより急激な変動となって現れうる。リボンイオンビーム等のイオンビームがウェハ全体をスキャンする場合、イオン密度のより急激な変化は、イオンビーム下でスキャンされるウェハの各領域において受けるイオンフラックスを平均化し、イオンビームによるウェハのマイクロストライピングが減少または除去されるようにする。複数の本実施形態が提供する基板のマイクロストライピングの減少の結果、スキャン速度、従って基板のスループットは増加されうる。
【0048】
図8は、複数の本実施形態と整合性のある静電レンズ800の一部分の斜視図を示す。静電レンズ800は前述の複数の静電ロッド600を含む。これらの静電ロッドは上方及び下方の静電ロッド組立体802、804において配置されてよい。オペレーション中は、各静電ロッド600に電位が印加されて、イオンビーム806をマニピュレートする電界を画定する。各静電ロッド600は、1または複数の振動モードに特有の固有周波数で振動しうる。一振動モードはZ方向に沿った周波数FZによって特徴づけられ、別の振動モードはY方向に沿った周波数FYによって特徴づけられうる。Y方向において生じる複数の振動は、前述したように、イオンビームの均一性にとって特に問題となりうる。一方、Z方向において生じる複数の振動は、イオンビーム806を制御する複数の電界を乱しもしうる。複数の本実施形態と整合性をもって、静電ロッド600は、グラファイトロッドにおけるものより高い、Y方向における複数の振動に対する固有周波数FYを与えるべく構成される。アルミニウムコアを採用する複数の特定の実施形態においては、固有周波数FY及びFZは70Hzよりお大きく、幾つかの実施形態においては、100Hzよりも大きく、複数のグラファイト製静電ロッドがもたらすものより、約20−50パーセント増大した固有周波数をもたらしうる。
【0049】
複数の静電レンズロッドの固有周波数の増大の結果、イオンビーム806の変動の周波数は比例して増大する。 これにより、複数の複合静電ロッドがもたらす固有周波数の増大と同じパーセンテージでスキャンレートを増加させる間、ワークピースにおけるイオンドーズ量の均一性を維持できる。複数の従来のグラファイト製静電ロッドのみを含む静電レンズを通過するイオンビームがワークピースにマイクロストライピングを生じさせる複数のスキャンレートに対して、本願発明の複数の複合静電ロッドが提供する増大した固有周波数は、マイクロストライピングを低減または除去しうる。
【0050】
本開示は本明細書にて説明された複数の特定お実施形態により範囲を限定されるものではない。実際、前述した説明及び複数の添付の図面から、本開示の他の様々な実施形態及び変形形態が、本明細書にて説明されたものに加えて、当業者には明らかであろう。
【0051】
したがって、そのような複数の他の実施形態及び変形形態は、本開示の範囲に含まれることが意図される。さらに、本開示は、特定の目的のための特定の環境における特定の実施という状況で本明細書にて説明されてきたが、その有用性はそのような状況に限定されるものではなく、本開示はいかなる数の目的のためのいかなる数の環境においても有益に実施されうることを当業者は理解するであろう。よって、下記の請求項の範囲は、本明細書にて説明された本開示の全容及び趣旨を考慮して解釈されるべきである。
図1
図2a
図2b
図2c
図3
図4a
図4b
図5
図6
図7a
図7b
図7c
図7d
図8