(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
図面等に関しては、本発明に係るいくつかの実施例または実行例が、これ以降に図面に合わせて説明される。明細書を通じて同様なエレメントを参照するために同じ参照番号が使用されており、説明用の構成は必ずしも一定の比率で拡大、縮小したものではない。これ以降に被溶接作業部品の相対する側に配置された二つの溶接棒を使用するデュアルフィレット溶接のルートパス(root pass)に関して説明され、述べられているが、一つまたはそれ以上のパスを持ったデュアルフィレット溶接を行う際に相対する溶接棒の二つまたはそれ以上のペアが使用される他の実施も可能である。二つのフィレット溶接を同時に行っている最中にコントロールされた波形、及び/又はワークポイントの位相角を提供するように同期化された方法で操作されている相対する溶接装置によって使用される溶接棒、及び/又はワークポイントに加えられた波形を伴うものである。デュアルフィレット溶接を形成するためにいくつかのパスが使用できる、さらなる実施例も考えられる。時間的に同期化された溶接信号波形、及び/又はワークポイント波形を使用して、T継ぎ手の両方の側に溶接を形成するための信号が、コントロール可能なお互いの位相関係をもって提供される。本発明の他の実施例または実行は、一つの共通のパドル(puddle)で複数の溶接棒を使って溶接を形成すること、または共通のグラウンド軸において複数のポイントを同時に溶接することを含んでいる。本発明に係る複数の溶接棒を使用した一つの実施例は、第1および第2の溶接棒を提供し、第1の溶接棒は溶接材料の第1のパスの層を形成し、第2の溶接棒が第1の溶接棒のすぐ後ろから、第1のパスの上に第2のパスの溶接材料を重ねるという突合せ溶接を行う。普通この工程を実行する際に、溶接棒は、お互いが干渉することを避けるために広く離れて配置されなければならない。本発明に係る溶接システムは、溶接信号波形、及び/又はワークポイント波形を同期化することによりこれを避け、同一の溶接パドルにおいて動作する際に溶接棒がお互いに干渉することを防いでいる。これにより溶接棒を、お互いにより近接して配置することができる。共通グラウンド軸溶接の一つの実施例はタンク溶接であり、作業部品はタンクの本体であって、同時に端部が溶接によって取り付けられる。共通のグラウンド軸は一般的には、タンク本体の中心軸に対応している。以前は、それぞれ端は別々に溶接する必要があった。それぞれの端を取り付けるための複数の溶接棒を使用した同時溶接は、グラウンド軸を共有するがために、お互いに干渉してしまうからである。本発明のコンセプトに従えば、タンクの端を取り付けるのに使用できる二つまたはそれ以上の溶接棒を備えた溶接システムが提供される。共通のグラウンド軸を共有する溶接棒間の干渉を防ぐために、溶接システムは溶接信号波形、及び/又はワークポイント波形を同期化し、タンクの両方の側に溶接を形成するのに使用される信号が、お互いの位相関係がコントロール可能なように提供される。本質的に、溶接システムコントローラーは、一つの溶接棒がオン状態にある間は、他の溶接棒をオフ状態にさせ、溶接棒からのアークがお互いに干渉しないようにしている。この点において、これ以降に図示され述べられる特定の実施例は、本発明を限定するためのものではなく、むしろ、本発明の種々の態様に係る一つまたはそれ以上の可能な望ましい実施に係る例を示したものである。
【0012】
図1Aと
図1Bは、同期化コントローラー40を伴う第1および第2の溶接装置20aおよび20bを含む典型的なデュアルフィレット溶接装置もしくはシステムを示している。それぞれ第1の作業部品WP1を第2の作業部品WPに対して溶接するために、溶接棒E1とE2および溶接アークA1とA2を使用したデュアルフィレット溶接W1とW2の創出における、一方もしくは両方の溶接電流、及び/又は一つまたはそれ以上のの機械ワークポイントの位相関係をコントロールしている。
図1Bに示されるように、フラックス有心溶接棒E1とE2を使用したDCパルスデュアルフィレット工程、中実な溶接棒E1とE2を使用したACサブマージアーク溶接(SAW)工程、もしくは外部シールドガスGS1、GS2を伴う、または伴わない中実または有心溶接棒を使用した他の好適なデュアルフィレット溶接工程を実行するための溶接システムコントローラー10においては、同期化コントローラーが備えられる。選択された溶接工程が実行され、第1および第2のフィレット溶接W1とW2がT継ぎ手の相対する側それぞれに創出される。T継ぎ手は、スティフナーとしての、第1の作業部品の端部と、第2の作業部品WP2の平らな表面とで形成され、作業部品WPおよび出来上がったT継ぎ手は平らであり得るが、カーブした曲面でもあり得る。
【0013】
典型的なシステム2における2台の溶接装置20は、一般的にお互いに類似しているものであるが、他の実施例においては異なった装置も使用されることがある。第1の溶接装置20aは電源24aを含んでおり、出力端子25aは、コントロールされた溶接信号(溶接電圧、電流)波形を提供するために、対応する溶接棒E1に接続され、第1のデュアルフィレット溶接W1を創出する。後に
図9において、より詳しく説明され、記載されるように、外部電源24aは、電源24aの中でパルス幅変調をコントロールする波形ジェネレーターによって生成された一つまたはそれ以上のパルス幅変調スイッチング信号に応じた溶接信号を提供する出力段階を含んでいる。システム2に係る典型的な外部電源24は一般的には、上記に参考として包含されたブランケンシップ(Blankenship)米国特許第5278390号およびハス(Hsu)米国特許第6002104号において示されているものであり、POWER WAVEという登録商標の下でリンカーン電気(Lincoln Electric Company)によって販売されているものである。溶接装置20aは、さらにモーター付きのワイヤーフィーダー26aを含んでおり、一つまたはそれ以上のドライブロールを駆動するモーターM1を介して、コントロールされたワイヤーフィード速度において、溶接棒E1を第1の側の溶接に向かってフィードし、または方向付けるように動作可能である。溶接棒用線材E1は、スプールまたは他のサプライ29aから溶接W1に対して届けられる。第2の溶接装置20bも同様に構成されている。第2の電源装置は、出力段階を有し、第2の溶接棒E2に接続されている第2の電源装置20bを含んでいる。出力段階に係る電流動作を決定するためにパルス幅変調回路をコントロールしている波形ジェネレーターによって生成された第2の波形をもった第2の溶接電流信号を提供する。第2の溶接装置は、また、溶接棒E2を、第2のワイヤーフィード速度でサプライリール29bから第2の側の溶接に向かって方向付けるようにロール27bを駆動するモーターM2を持ったワイヤーフィーダー26aを含んでいる。
【0014】
電源出力端子25aと25bは、あらゆる好適な電気的な接点または相互接続構造を使用して、直接的または間接的に、溶接棒E1とE2にそれぞれ接続されている。これらの接続は、説明を容易にするために
図1に模式的に描かれている。溶接棒用線材Eは、サプライスプール29から第1および第2の溶接トーチノズルN1とN2を通って供給される。ガスサプライGS1とGS2それぞれから、ノズルNの中の好適なポートまたは通路を通じて外部シールドガスが提供され得る。しかし、シールドガスが使用されない別の実施例も可能である。
図2Aと
図2Bについては、あらゆるタイプの溶接棒Eが使用され得る。例えば、中実な溶接棒(
図2A)はソリッドな溶接棒の材料であり、外側のコーティングがあっても無くてもよい。他の好適な溶接棒Eが
図2Bに示されている。この場合には、有心タイプの溶接棒Eは内部コア56を取り囲む外側の覆い54を有しており、コア56は粒子状の、及び/又はパウダー上のフラックス材料を含んでいる。デュアルフィレット溶接の最中の溶融した溶接プールを保護するために、シールドガスと保護スラグ(slag)を提供するためであり、フィレット溶接材料に係る材料組成を設定するように材料を合金化するためでもある。
図1Aおよび
図1Bに示されるように、デュアルフィレット溶接工程は、スティフナー作業部品WP1を第2の作業部品WP2の平らな上面に対して溶接するために使用され、第1および第2の溶接装置20aと20bによって、スティフナー作業部品WP1の相対する側において、二つの溶接アークA1とA2が提供される。
【0015】
図8および
図8Aに最もよく表されているように、デュアルフィレット溶接工程は、作業部品WP1とWP2を連結するために両方の側から同時に実行される。移動メカニズム52が溶接フィクスチャー30を水平方向に移動するか(
図8)、または代替的にキャリッジ30a上にある作業部品WP1,WP2を固定された溶接トーチに対して相対的に移動するのである(
図8A)。溶接工程は、同一または類似の溶接サイズ(例えば、レッグ(leg)サイズ)の第1および第2の溶接W1とW2を創出するように作成され得る、しかしながら、本発明に係る方法およびシステムは、異なった第1および第2の溶接サイズ、形状、プロファイル、等をもったデュアルフィレット溶接の創出にも使用され得る。
【0016】
図1Aおよび
図1Bに示す実施例において、溶接装置20は、データとコントロール信号、メッセージ、等を交換するために、同期化コントローラー40とシステムコントローラー10の作業部品割り当てシステム12の動作可能に接続されている。一つの実施例においては、スタンドアロン溶接システムコントローラー10は、電源24aと24bに動作可能に接続された同期化コントローラー40を含んでおり、第1および第2の溶接電流がお互いにコントロールされた位相角になるように、第1および第2の波形ジェネレーターを同期させるための同期化情報(例えば、信号、メッセージ、等)を電源24に提供する。ワイヤーフィーダー26もまた、同期化コントローラー40、及び/又は直接的にそれぞれの電源24もしくは他の中間的なコンポーネントからの好適な情報(データ、信号、等)によって、またはそれらに応じて、同期がとられる。電流溶接波形や特定の時点における他の工程条件に応じてデュアルフィレット溶接工程に対する溶接ワイヤーの支給量を調整するためである。同様に、シールドガスサプライGS1,GS2も、同期化コントローラー40からの同期化情報に応じて溶接装置20のコントロール装置を使用して、同期をとるようにコントロールされ得る。さらに、典型的なシステムコントローラー10は、動作可能なように溶接装置20aと20bに接続されたワークポイント割り当てシステム12を含んでおり、デュアルフィレット溶接システム2のトータル出力を設定するために、ユーザーが選択した設定ポイントもしくはワークポイントを受け取り、溶接装置20に対してそれぞれの加工ワークポイント値を提供する。こうした共同コントロールによって、ユーザーは、例えば、デポジション(deposition)率、溶接サイズ、ワイヤーフィード速度、溶接電流、移動速度、等といった、溶接装置20、及び/又は所望のシステムワイドなパフォーマンスを達成するためにローカルなワークポイントについて提供されたコンポーネント、に関する一つのシステムワークポイント値を簡単に設定することができるようになる。さらには、割り当てシステム12、または同期化コントローラー、もしくは他のシステムコンポーネントは、ここ以降に説明されるように、ワークポイントの波形間においてコントロールされた加工ワークポイント位相角を提供するためのワークポイント波形に応じて、一つまたはそれ以上の加工ワークポイントに係る変調を提供し得る。他の実施例においては、同期化コントローラー40とワークポイント割り当てシステム12の一つもしくは両方は、別々に収納され得るし、例えば、溶接装置20もしくは電源24といった、一つまたはそれ以上のシステムコンポーネントに統合され得る。
【0017】
図3から
図6、
図15Aと
図15Bは、作業部品WP1とWP2によるT継ぎ手についてデュアルフィレット溶接を創出することにおいては、デュアルフィレット溶接のサイズと統一性、溶接深さの量、そして形状(コンケーブ形、コンベックス形、等)がコントロール可能であり、繰り返し性があり、そして溶接の長手方向に沿って均一であることが望ましいことを示している。得られた溶接構造の品質を向上させるためである。加えて、デュアルフィレット溶接の両側における溶接量の相対的な類似性が、T継ぎ手溶接の品質に影響する。均一でない溶接深さ、及び/又は両側における溶接深さ量の相違は、劣悪な溶接強度、クラック、もしくは他の品質問題を引き起こし得る。さらには、同時溶接工程に係る同期化により、溶接時間および使用される溶接充填剤の量を節約する可能性を促進することができる。
図3から
図6に示すように、デュアルフィレット溶接工程は、作業部品WP1とWP2に対する方向60において移動する溶接棒E1とE2を使用して実行され、溶接棒E1とE2は、それぞれスティフナー作業部品WP1の相対する第1および第2の側に向かってコントロールされたワイヤー送り速度で供給される。溶接電流I1とI2をコントロールする同期化された波形を供給することで、溶接棒E1、E2と作業部品WP1、WP2もしくは部品上の溶接プールとの間に、それぞれ溶接アークA1とA2を創出し、維持する。溶接アークA1とA2は、今度は、溶解した溶接棒材料のデポジションを生じ、溶接棒Eが溶接方向60に沿って与えられた場所を通過するにつれて、
図4に示すように溶解した溶接W1とW2を形成するためにある量の作業部品材料を融解する。溶接材料W1とW2は、
図5に最もよく表されるように、やがては冷め、そして固化し、デュアルフィレット溶接が完成する(または、複数パスのデュアルフィレット溶接の一つのパスが完成する)。
図4に最もよく表されるように、溶接工程の最中に作業部品WP1とWP2を局所的に熱することで、溶接材料の溶融を生じ、スティフナーWP1を第1および第2の側面溶け込み深さ62aと62bに、側面から溶け込ませる。側面溶け込み深さ62は、同一量であり得るが、必ずしもそうである必要はない。溶接W1及び/又はW2は、また、第2の作業部品WP2の平らな上面を垂直下方向に深さ63aと63bに、それぞれ側面から溶け込ませる。深さは、与えられた溶接工程により同一量であり得るが、必ずしもそうである必要はない。
【0018】
図5に、さらに示すように、完成したフィレット溶接W1とW2は特定のプロフィールまたは形状をしており、露出した溶接の外部表面は、図示された実施例のようにコンベックス形状であり得るし、または代替的には一般的に平らであり、またはコーンケーブ形状であり、または曲線表面形状もしくはフィレットフェイスコンター(fillet face contour)であり得る。溶接サイズは、垂直レグ(leg)寸法64aと64bによって特徴付けられる。側面もしくは水平レグ寸法65aと65bによっても同様に特徴付けられるが、垂直レグと側面レグの寸法は、必ずしもそうである必要はないが、与えられたフィレット溶接について同一寸法であり得るし、そして、これらのサイズ寸法は、必ずしもそうである必要はないが、第1および第2溶接W1とW2について同一であり得る。
図6は、また、第1フィレット溶接W1の拡大図を示している。完成した溶接W1の垂直レグと水平レグの寸法は、それぞれ64aと65aであり、合わせて理論上ののど寸法70を定めている。のど寸法は、元の第1の作業部品WP1の端部と元の第2の作業部品WP2の表面とのコーナーから、溶接W1のコーナー端の間にある線分L1に向かって延びる寸法であり、有効な溶接のど距離は、理論上ののど寸法70とのど溶け込み距離71を足したものである。さらに、図示されたコンベックス形状の例においては、コンベックス形状の程度は、理論上の線分71から溶接W1の露出した面または表面の最も外側の延長部に向かって延びる寸法72として数値化され得る。
図15Aと
図15Bに簡単に述べると、垂直な第1の作業部品WP1は、第2の作業部品WP2と接する端において傾斜面202、204を有し得る。さらには
図15Bに示すように、中央位置200において連結し、完全な溶け込み溶接を提供している。
【0019】
図7Aから
図7G、
図8、そして
図8Aは、溶接電流波形、及び/又は溶接装置のワークポイント値の同期化されたコントロールを示している。これにより、上述した各寸法の一貫性に対するコントロールと、T継ぎ手の両側が同時に溶接されるデュアルフィレット溶接における第1および第2の溶接W1とW2の特徴の実行を促進する。この点について、第1および第2の電源24aと24bに適用される溶接信号波形をコントロールされた波形位相角に調整することは、二つの相対する溶接W1とW2の溶け込みの程度が、第1および第2の作業部品WP1の両方の側において実質的に同一であることを保障するために有利に使用され得る。
図4と
図6に示されるように垂直溶け込み63、側面溶け込み62、そしてコーナー溶け込み72に関する相対的な類似性を含んで、第1および第2溶接が同一の寸法であることが望まれる場合においてである。加えて、第1および第2の溶接電流波形をコントロールされた位相角において提供することは、第1および第2の溶接が異なるように設計されている状況において、こうした寸法のコントロール可能性に貢献するものと考えられている。代替的に、もしくは組み合わせによって、コントロール可能な相対的な加工ワークポイントの位相角において、電源出力レベル、波形周波数、ワイヤーフィード速度、等といった、一つまたはそれ以上の加工ワークポイント値のコントロールされた変調は、デュアルフィレット溶接の向上のために使用され得る。
【0020】
いかなる特定の理論にも拘束されることは望まないが、二つの工程の溶接パラメーターを時間的に調整することなく作業部品WP1の両側から同時に溶接することは、そうでなければ同一の溶接パラメーター設定であるとしても、溶接棒の移動方向に沿って、非対称な溶け込みと、溶け込み深さ、溶接形状、等について一貫性の欠如を生じ得るものであると考えられている。これらは、溶接棒Eを流れる電流と生じるアークAによって作り出されるフィールドでの材料の電気磁気的な相互作用によるものであり、溶接接合のどちらかの側における同期化されていない同時溶接工程の温度による影響も同様である。こうした非対象性、及び/又は一貫性の無さは、今度は、クラック、及び/又は腐食、接合強度不足、等を生じる可能性を含んだ、最適以下の溶接特性、及び/又はパフォーマンスを招きかねない。さらに、二つの溶接において溶け込みの一貫性をコントロールできることは、また、溶接時間の削減(溶接速度の向上)およびデュアルフィレット溶接において使用される溶接充填材の量の最適化を促進し得る。この点において、コントロールされた、二つのフィレット溶接W1とW2の溶け込みの一貫性により、より小さなレグのサイズ寸法でも与えられた溶接強度の仕様を満たすことができる。溶接移動速度の増加、及び/又は溶接充填材(溶接棒の使用)の量の削減により、溶接コストを削減が達成され得る。
【0021】
図7Aは、
図1Aおよび
図1Bのシステムにおける電源24によって提供される第1および第2の同期化されたDCパルスの典型的なプロット81と82をそれぞれ示したグラフである。それらは相互に実質的に同位相な、波形位相角Φがおよそ0度の溶接波形である。プロット80において示されるように、典型的な溶接システム2は、電源24aと24bを介して同期化された第1および第2の溶接波形81と82を、それぞれに提供するように動作可能である。波形の同期化は、同期化コントローラー40または他のシステムコンポーネントといった、システム2におけるあらゆる好適な手段によって可能であり、ハードウェア、ソフトウェア、もしくはそれらの組み合わせであってもよい。一つの望ましい実施例においては、
図1A、
図1B、
図2B、そして
図3から
図6において例示したように、システム2は、フラックス有心溶接棒E1とE2を使用したデュアルフィレットDCパルス溶接工程の実行に使用され、一時的に整列された
図7のDCパルス波形81と82が、デュアルフィレット溶接を実行するために提供され得る。さらに、
図7Aのプロット80に示されるように、DCパルス波形81と82は実質的に同位相であり、波形位相角Φはゼロである。溶接溶け込みの一貫性と対象性に対するコントロールを促進するためである。この実施例においては、両方のDCパルス溶接波形81、82は、バックグラウンド電流レベルI
Bと高いパルス電流レベルI
Pを含んだ一連のパルスから構成されている。第1および第2の溶接電流I1とI2は、互いに約10電気角以内といった、実質的に同位相であり、この場合における相対的な波形位相角Φは、約10電気角またはそれ以下といった、ほぼ0である。図示された実施例においては、第1および第2の波形81と82は実質的に同一であるが、これは本発明が要求するものではない。この点において、このタイプの実施に係る可能な適用例では、第1および第2の溶接W1とW2が、スティフナー作業部品WP1の両方の側において、等しいか、類似の溶接レグ寸法64と65となることが望まれる。
【0022】
図7Aから
図7CにおけるDCパルス溶接の実施例の電流波形は、50%以下のデューティーサイクル(パルス電流時間をバックグラウンド電流時間で割った割合)として図示されているが、与えられたデュアルフィレット溶接工程を実施するために、波形はあらゆる好適なデューティーサイクルであり得る。さらに、
図7Aに示す実施例においては、パルス電流値I
P1とI
P2は実質的に等しく、同様にバックグラウンド電流レベルI
B1とI
B2も実質的に等しい。しかしながら、他の実施例においては波形の値は異なっていてもよく、I
P1とI
P2は等しい必要は無く、及び/又はI
B1とI
B2は等しくない。例えば、溶接装置20で直径が異なる溶接棒が使用される場合、及び/又は異なる第1および第2の溶接サイズが望ましい場合である。
【0023】
ある実施例においては、電源24は、ハートビート(heartbeat)信号、メッセージ、等といった、同期化情報を同期化コントローラー40(
図1)から備えており、電源24の波形発生ジェネレーターは、コントロール可能な波形位相角Φを持った第1および第2溶接電流I
1とI
2を創出するように動作している。このように、
図7Aにおいては約ゼロ度の波形位相角Φを伴って、第1および第2の電流I
1とI
2に係るパルス電流レベルI
P1とI
P2は、時間において実質的にそろっており、同時にバックグラウンド電流レベルI
B1とI
B2も実質的に等しい。このようにして、結果として生じるフィレット溶接W1とW2が、同一のサイズの溶接であり一般的に対称形の溶け込みとなるようにコントロールすることができる。溶接の長手方向に沿って一貫性のある溶接溶け込みも同様に達成し得る。
【0024】
溶接サイズが異なることが望ましい他の実施例(例えば、異なる第1および第2のパルスレベルI
P1とI
P2、及び/又は異なるバックグラウンドレベルI
B1とI
B2を使用)においては、第1および第2の波形81と82の時間的な同期化によって、溶接W1とW2が異なる量の溶け込みを生じるような場合においても、溶接の長手方法に沿った溶接溶け込みの一貫性が促進される。別の可能な実施例においては、第1および第2の溶接波形81と82について、パルス、及び/又はバックグラウンドのレベルが異なってもよい。異なるワイヤー直径、異なる材料、等というように溶接棒E1とE2が同一でなく、溶接サイズ、プロフィール、等は同一であり、ワイヤー送り速度が、必ずしも必要ではないが、等しい場合である。こうした実施における溶接波形81と82の同期化は、また、スティフナーWP1の二つの側において実質的に対称形の溶け込みを可能にすることに加えて、溶接の長手方向に沿った溶接溶け込みに係る一貫性のコントロールを有利に促進し得る。このように、波形同期化システム2は、種々の可能なデュアルフィレット溶接の適用において溶接の一貫性、溶接強度、そして溶接コストといった点で重要なアドバンテージを提供するために使用され得る。
図7Aのプロット80やその変形例において例示されるように、実質的に位相がコントロールされた第1および第2の溶接電流波形の供給を通じて行われている。加えて、以降の
図14Aから
図14Cにおいて説明されるDCパルス波形81と82およびAC波形は一般的に矩形波のパルス波形である一方で、他の波形の形状も考えられるので、説明された実施は単なる例示にすぎないことに留意すべきである。
【0025】
本発明に係るこの態様は、また他のコントロールされた波形位相角値Φも提供する。
図7Bは、波形位相角Φがゼロでない値にコントロールされた、典型的な第1および第2のDCパルス溶接電流波形85と86をそれぞれ示しており、
図7Cは、約180度の波形位相角を伴い実質的に位相がはずれた溶接波形である第1および第2の溶接電流波形のプロット88と89を表したグラフ87を示している。
図7Cの場合には、二つのパルス溶接アークの磁気的効果により、実質的に位相がはずれて、175度から185度といった、約180度の波形位相角Φである。それにより、システム2におけるコントロールされた波形の同期化を通じて、デュアルフィレット溶接の均一性、溶け込み、形状、サイズ、等についてコントロールすることができる。
【0026】
図7Dから
図7Gは、また、本発明のさらなる態様を示しており、加工ワークポイント波形間のコントロールされたワークポイント位相角を提供することで、溶接装置20aと20bに関連した波形に応じてワークポイントの変調をコントロールすることを含んでいる。一つの実施例においては、加工ワークポイントは、加工ワークポイント割り当てシステム12(
図1B)によって提供され、変調される。ワークポイントは、矩形波、サイン波、ランプ、もしくは他のあらゆる波形の形状、といった波形を確立するために、様々な方法で、溶接装置20に対して提供される。別の可能な実施例においては、加工ワークポイントは同期化コントローラー40によってコントロールされる。他の実施も可能であり、ワークポイント割り当てシステム12と同期化コントローラー40との協同の相互作用によって、または、溶接システム2のあらゆる他の単一のエレメントもしくはシステムエレメントの組み合わせによって、または、有線か無線か、等にかかわらず、ネットワークを介して溶接システム2と通信できるように接続されたコンポーネントといった、溶接システム2に対して動作可能に接続された外部コンポーネントによって、ワークポイント変調が提供される。
【0027】
図7Dは一つの例を示している。グラフ90は、典型的なプロット90aから90dであり、システム2における同期化された矩形波タイプの溶接装置のワイヤー送り速度の波形と電源出力ワークポイント値の波形を示している。装置動作のワークポイント位相角βは、175度から185度といった、約180度であり、実質的には位相がずれている。あらゆる好適な相対的位相角βが使用され得るもので、本発明は、
図7Dの例に示されるような実質的に位相がずれた動作に限定されるものではない。この実施例に示されるように、第1の加工ワークポイント値は、(例えば、一つの実施例においては、ワークポイント割り当てシステム12によって)ワイヤー送り速度(wire feed speed:WFS
1)または電源出力値(Power Source Output
1)のどちらかとして提供され、第1の溶接装置20aは一方から他の一方を得る。図示された実施例においては、第1の加工ワークポイント値は、ワークポイント割り当てシステム12によって、矩形波形状で時間に関して変調されている。期間Tは、高い値WFS
1aと低い値WFS
1bの間で交互に変わる第1のワイヤー送り速度値90aを伴う。第1の電源出力90bは、この矩形の波形を高い出力値Power Source Output
1aと低い出力値Power Source Output
1bをもって追いかけ、それぞれが高いWFS値と低いWFS値であるWFS
1aとWFS
1bにそろっている。ワークポイント割り当てシステム12は、また、第2の溶接装置20bに対して第2の加工ワークポイントを提供する。ワイヤー送り速度(WFS
2)または電源出力値(Power Source Output
2)といったものであり、第2のワイヤー送り速度加工ワークポイント値90aは、高い値WFS
2aと低い値WFS
2bの間で交互に変わり、第2の電源出力90dは、この同一の期間Tにおける矩形の波形を高い出力値Power Source Output
2aと低い出力値Power Source Output
2bをもってそれぞれ追いかける。さらに、本発明のある態様に従えば、第1および第2の加工ワークポイント値は、第1および第2の加工ワークポイント波形間のコントロールされた加工ワークポイント位相角βを提供するために、第1および第2の加工ワークポイント波形に応じて変調される。位相角は、図示された実施例において実質的には位相がずれている相対する溶接工程の動作に対する約180度といったような、あらゆる値であり得る。
【0028】
ワークポイント位相角βをコントロールすることによって、割り当てシステム12は、望ましい全般的なシステム出力を達成しながら、結果として生じるデュアルフィレット溶接に係るサイズ、均一性、一貫性、等をコントロールすることができる。この点において、ワークポイント割り当てシステム12(
図1B)は、ユーザーが選択したワークポイント値を受け取り、システムワークポイント値に対して複数のアーク溶接システム2の全体出力を設定するためのシステムワークポイント値に基づいて、それぞれの溶接装置20について変調された第1および第2の加工ワークポイント値を提供する。システムワークポイント値は、システム2もしくはデュアルフィレット溶接工程に関連するあらゆる好適な値、パラメーター、手段、等であり得るし、これらに限定されるわけではないが、システムのデポジット率、溶接サイズ、ワイヤー送り速度、溶接電流、溶接電圧、移動速度、等を含んでいる。ユーザーが選択したシステムワークポイントに従った望ましいシステム全般のパフォーマンスの実施において、ワークポイント割り当てシステム12は、溶接装置20に対してあらゆる好適な形式の加工ワークポイントを提供することができ、これらに限定されるわけではないが、電源の出力値、波形周波数、そしてワイヤー送り速度を含んでいる。さらに、実際には、ワークポイント値変調波形は、あらゆる好適な期間T、および、一つの例として約0.1Hzから10Hzといった、対応する周波数において変調される。一方、電源電流出力波形は一般的に、パルス溶接で約60から300HzでAC溶接で約20Hzから90Hzといった、もっと高い周波数であるが、こうした周波数の値は単なる例示に過ぎず、本発明に対する制限や要求を代表するものではない。加えて、溶接装置20はそれ自身で共同作用的であることに留意すべきである。ワークポイント割り当てシステム12(または他のシステムエレメント)は、それぞれの溶接装置20に対して単一の加工ワークポイントを提供することができ、溶接装置20は、そこから電源出力値、波形周波数、そしてワイヤー送り速度、等の二つまたはそれ以上のワークポイントを得る。代替的には、ワークポイント割り当てシステム12は、一つまたは両方の溶接装置20、もしくはコンポーネントに対して一つ以上のワークポイントを提供する(例えば、ワイヤーフィーダー26に対するWFSワークポイント、および電源24に対する電源出力値、及び/又は周波数である)。提供された加工ワークポイント値は、本発明の種々の態様に応じて、有利なように変調され得る。
【0029】
図7Eは、他の可能なワークポイント変調波形を示しており、グラフ91は、システム2における同期化され角が丸くされたワイヤー送り速度と電源出力ワークポイント値波形のプロット91aから91dを示している。典型的なワークポイント位相角βは、再び約180度である。この場合において、第1および第2のワイヤー送り速度ワークポイント値91aと91cは、高い値と低い値の間での、よりスムーズな移行を提供する。これにより機械的時定数はワイヤーフィード装置と連携することができ、電源出力ワークポイント波形91bと91dは、対応するワイヤー送り速度と共同して角の丸い波形の移行を備える。
図7Fはグラフ93を示しており、同期化されたランプ型のワイヤー送り速度と電源出力ワークポイント値波形のプロット93aから93dが表されており、典型的な期間Tにおいて動作している全ての波形について約180度のワークポイント位相角βであるように描かれている。
図7Gは、別の例としてグラフ95を示しており、システム2における同期化されたサイン波のワイヤー送り速度と電源出力ワークポイント値波形95aから95dを表している。波形95は、それぞれ期間Tにあり、第1の溶接装置20aの波形は、第2の溶接装置20bの波形からワークポイント位相βだけオフセットしており、それはこの例においても再び約180度である。
【0030】
図8は、デュアルフィレット溶接システム2の他の実施例を示しており、ロボットまたは機械駆動システムといった移動メカニズム52と共に、動作可能に溶接システムコントローラー10に接続された移動コントローラーコンポーネント50を含んでいる。溶接棒E1とE2を溶接方向60に沿ってガイドするためにフィクスチャー(fixture)30をコントロール可能なように移動させ、溶接W1とW2を同時に形成するデュアルフィレット溶接を実行する。移動メカニズム52は、デュアルフィレット溶接工程を実施するために、作業部品WP1、WP2と溶接棒E1、E2との間の空間的な関係をコントロールするいかなるシステムであり得る。関連する移動コントローラー50は、ハードウェア、ソフトウェア、等であり、一つまたはそれ以上のシステムコンポーネントと、分離して、または統合されて、もしくはその中に配置され、移動メカニズム52の動作をコントロールする。この点において、
図8Aは、移動メカニズム52の代替的な構成を示しており、移動可能なキャリッジ上の作業部品WP1とWP2またはフィクスチャー30aを、方向60において、固定されたフィクスチャー30と静止した溶接トーチに対して移動するように動作する。
【0031】
図1Bと
図8に最もよく示されるように、典型的なシステムコントローラー10は、同期化コントローラー40とワークポイント割り当てシステム12を含んでおり、システムコントローラー10は、デュアルフィレット溶接システム2の中のスタンドアロンなコンポーネントであるか、コントローラー10の一つまたはそれ以上のコンポーネントが、一つまたはそれ以上の溶接装置20もしくは他のシステムコンポーネントの中に統合され、または配置され得る。一つの可能な実施例においては、溶接装置20aと20bは、それぞれ、例えば、電源24の中にシステムコントローラーコンポーネントを含み得る。一つの装置20がマスターとして動作するように設計され(例えば、プログラムされるか、構成される)、他の一方の装置はスレーブとして動作するように構成される。このタイプの実施例においては、マスター装置20は、動作可能にスレーブ装置20に接続され、ここにおいて説明されるように、システムコントロール機能を提供する。この点において、システムコントローラー10は、ワークポイント割り当てシステム12と同期化コントローラー40と同様に、ハードウェア、ソフトウェア、ファームウェア、プログラム可能なロジック、等のあらゆる好適な形式で実施される。その機能は、単一のシステムコンポーネントにおいて実行されるか、溶接システム2の二つまたはそれ以上のコンポーネントに渡って配分される。ワークポイント割り当てシステム12は、動作可能に第1および第2の溶接装置20に接続され、ユーザーが選択したシステムワークポイント値14を受け取る。例えば、ユーザーが利用可能なノブ18、もしくは別の入力デバイスまたはシステム2の外部ソースからの信号またはメッセージである。ワークポイント割り当てシステム12は、システムワークポイント値14に基づいて、第1および第2の溶接加工ワークポイント値を、それぞれ溶接装置20aと20bに対して提供する。さらに、提供された加工ワークポイント値を対応する波形に応じて変調するようにワークポイント割り当てシステム12を構成することもできる。波形は、デュアルフィレット溶接工程の改善された動作のために、コントロールされたワークポイント波形位相角の関係を与えるものである。変調されているか、いないかにかかわらず、ワークポイント割り当てシステム12は、システムワークポイント値14に応じてデュアルフィレット溶接システム2のトータルアウトプットを効率的に設定するために加工ワークポイント値を提供する。このようにして、システム12は、ユーザーが単一の共同作用の調整ができるようにして、溶接システム2におけるコンポーネントの種々の動作パラメーターが構成される。
【0032】
システムコントローラー10は、ワークポイント割り当てや同期化機能に加えて、データ獲得、モニタリング、等といった、溶接システム2における他のコントロール機能を提供することができ、ユーザーとの対話のための種々のインターフェイス装置を提供できる(例えば、ノブ18、スイッチ、等といった一つまたはそれ以上の値調節装置をもったユーザーインターフェイスや、画像または数値ディスプレイ、発声器、等といった、情報表示デバイスである)。コントローラーは、直接的に、または間接的に相互に接続され、もしくは供給されたシステムにおける他の装置と相互に接続され、これらに限定されるわけではないが、溶接装置20またはシステム2の一部分を構成する他の溶接装置、及び/又はネットワーク接続を通じて、等といったように通信、及び/又は信号または値の交換のために動作可能に接続されている。有線ベースと無線の動作可能な結合を含み、信号、及び/又はメッセージの通信を交換するためである。
図8において最もよく示されるように、システムコントローラー10は、ユーザーが選択したシステムワークポイント値14を受け取る。それらは、システムコントローラー10のインターフェイス前面プレート上にあるユーザーが調整する一つまたはそれ以上のノブ18によって得ることができ、もしくは、例えば、有線、無線、または他の形式(図示なし)にかかわらずネットワークまたは他の通信手段を通じてシステム2と接続されている階層的なコントローラーまたはユーザーインターフェイスから得ることもできる。システムコントローラー10は、例えば、プロセスタイプ情報、溶接棒サイズ情報、プロセスレシピまたは手順、等のユーザーが選択したプロセス情報を保管し、及び/又は動作可能に受け取ることもできる。
【0033】
ワークポイント割り当てシステム12は、システムワークポイント値14に基づいて、個々の溶接装置20について溶接装置ワークポイント値(例えば、
図8におけるワイヤー送り速度値WFS1とWFS2)を引き出す。生じた加工ワークポイントは、必ずしも必要ではないが、特定の望ましい、もしくは選択された溶接プロセスまたは動作に関するユーザーが選択した情報を考慮している。ユーザーが選択したプロセス情報16は、例えば、与えられたプロセスが、上述の
図1、
図2B、そして
図3から
図7Cにおいて例示されたような、フラックス有心溶接棒Eを使用したデュアルフィレットDCパルスプロセスであるのか、後述の
図10から
図14において示されるACソリッドワイヤーデュアルフィレットサブマージドアークプロセス(AC solid wire dual fillet submerged arc process)であるかを特定し得る。ワークポイント割り当て機能は、これら限定されるわけではないが、ユーザーが選択したシステムワークポイント値を加工ワークポイント値にマップするためのルックアップテーブルを含み、あらゆる好適な形式において実行され得る。溶接プロセスタイプおよびワイヤー直径、及び/又は他のプロセスパラメーター(例えば、情報16)を考慮したものであり、ユーザーが選択したシステムワークポイント値14に基づくアルゴリズムもしくは等式ベースの加工ワークポイントの計算についても同様である。
図8に示された実施例においては、例えば、ワークポイント割り当てシステム12は、デポジション率、溶接サイズ、ワイヤー送り速度、溶接電流、溶接電圧、移動速度、等といった、システムワークポイント値14を受け取り、単一のシステムワークポイント値14に応じて、ワイヤー送り速度、デポジション率、溶接電流、溶接電圧、移動コントローラー50に対する移動速度設定、等といった、ニつまたはそれ以上の加工ワークポイント値を引き出す。このようにして、共同作用のワークポイント割り当てシステム12は、システム設定14を個別の溶接装置20のための溶接装置ワークポイント値に分割もしくは割り当てる。システムワークポイント値14と引き出された加工ワークポイント値は、必ずしもそうである必要はないが、同一のタイプである。例えば、ユーザーが選択した値14は、加工ワークポイントのワイヤー送り速度または他の値を伴った、トータルシステムのデポジション率であり、1時間単位あたりのポンドで表される。この点に関して、一つの実施例においては、割り当てシステム12は同一のサイズの対称な溶接W1とW2が望まれる実施について、溶接装置20aと20bそれぞれに対して、ほとんど同等な第1および第2のワイヤー送り速度加工ワークポイント値WFS1とWFS2を提供する。溶接装置20またはそのコンポーネント(例えば、電源24)は、単一の加工ワークポイント値からさらなるコンポーネント設定を引き出す。電源24は、加工ワイヤー送り速度を受け取り、そこから単一の溶接パラメーター(例えば、電圧、電流、パルス幅、デューティーサイクル、等)をローカル化された共同作用の形式で引き出す。または、割り当てシステム12が、それぞれの溶接装置20に対して複数のワークポイントを提供することができる。さらに、
図8の実施例で示されたワークポイント割り当てシステム12は、また、システムワークポイント値14に基づいて少なくとも一つの移動コントロール値(例えば、移動速度)を引き出し、移動コントローラー50に対して移動コントロール値を提供する。
【0034】
図9は、また、典型的な波形コントロールの第1の電源24aに係るさらなる詳細を示しており、第2の電源24bも溶接システム2の特定の実施例において同様に構成され得る。一般的に、システム2は、一つまたはそれ以上のスイッチング信号に応じて電気的な溶接信号を提供するあらゆるタイプの溶接電源24を使用し得る。典型的な電源24aは、単一または複数位相のAC入力パワーを受け取り、スイッチングインバーター152に対してDCバス出力を提供する。インバーター152は、出力チョッパー154を駆動し、チョッパー154とインバーター152はパルス幅変調(PWM)スイッチングコントロールシステム168からのスイッチング信号に応じて駆動され、端子25aにおいて、フィレット溶接工程またはオペレーションの適用のために好適な溶接出力信号を提供する。実際には、一方または両方の出力端子25aは、電源ケーブルを通じてワイヤーフィーダーに接続されている。トーチにケーブル(図示なし)を通じて溶接オペレーションに対して最高の溶接信号を供給するためである。溶接電流と電圧のセンサー172と174が電源24の中に備えられ、適用する溶接信号波形81のクローズドループコントロールのためにフィードバック信号を創出する。電源24aは、また、出力チョッパー154と任意的にインバーター152に対してスイッチング信号を提供する波形ジェネレーションシステム160を含んでいる。システム160は、選択された望ましい波形164、一つの例においてはファイルとして保管されている、に応じてコンパレーター168の入力として望ましい波形コントロール信号を提供する波形ジェネレーター162を含んでいる。望ましい波形は、フィードバックコンポーネント170からの一つまたはそれ以上の実際の溶接プロセス条件と比較され、比較の結果は、PWMスイッチイングシステム168をコントロールして、それにより望ましい波形に応じて溶接信号を調整する(例えば、
図7の溶接電流信号波形81)。
【0035】
図9の実施例における波形ジェネレーションシステム160とそのコンポーネントは、望ましくはハードウェアプラットフォームベースのマイクロプロセッサーの中で実行されるソフトウェアもしくはハードウェアとして実施される。しかしながら、あらゆる好適なプログラム可能なハードウェア、ソフトウェア、ファームウェア、ロジック等、もしくはそれらの組み合わせが使用され得る。それによって、一つまたはそれ以上のスイッチング信号が、望ましい波形もしくは波形ファイル164に応じて創出され(フィードバックありでも、無しでも)、スイッチングタイプの電源24aは、スイッチング信号に応じて溶接信号を提供する。一つの好適な電源はブランケンシップ(Blankenship)米国特許第5278390号公報に示されている。電源24aは、状態テーブルベースのスイッチング電源であり、シーケンスコントローラー、溶接システムコントローラー10、等といった、他のシステムコンポーネントからの一つまたはそれ以上の出力を、入力として受け取ることができる。波形ジェネレーションシステムコンポーネント162,166,170は、PWMシステム168を介してインバーター152、及び/又はチョッパー154に対してコントロール信号を提供することによって電源の出力波形を定義し、調整するマイクロプロセッサー(図示なし)上で動作し、もしくは実行され、波形コントロールプログラムとして実施され得る。出力波形は、第2の電源24に関して実質的に位相の合った動作となるように同期化される、パルスタイプのあらゆる波形もしくは形状であり、以降の
図10から
図14のサブマージ(submerged)アーク溶接の実施例において示されるように、DCまたは代替的な電流極性(AC)を備えている。
【0036】
図10から
図14Dは、溶接システムに係る他の可能な実施例が示されている。波形位相角の関係がコントロールされているか、ワークポイント値変調が同期化されている、同期化されたACパルス溶接波形を伴うデュアルフィレットサブマージアーク溶接プロセスにおいて、ソリッドワイヤー溶接棒E1とE2(上記の
図2A)が使用される。
図14Aは、典型的な第1および第2のパルス溶接電流波形181と182を表したプロット180を示しており、それぞれが、正の電流レベルI
Pと負の電流レベルI
Nを含んだ一連のパルスから成っている。第1および第2の溶接電流は実質的に互いに位相が合っており、波形位相角βは約0+/−0.5度にコントロールされている。
図14Bのグラフ190は、別の実施例を示しており、第1および第2の電流波形191と192は同一の周波数で動作しているが、それらの波形の波形位相角Φはゼロではなく時間的にオフセットしている。
図14Cのグラフ195は、さらに別の実施例を示しており、電源出力電流波形196と197は実質的に位相がずれており相対的な波形位相角Φは約180度(例えば、一つの実施例においては175度から185度)である。装置電源24によって出力される種々のAC電流、及び/又は電圧波形は、あらゆる形もしくは形状であり得るし、同一である必要はなく、数字は単なる例示であって本発明の要件でも限定するものでもないことが正しく理解されるべきである。さらに、上記のDCパルスの実施例については、位相がコントロールされたAC波形181と182が使用される。同時デュアルフィレット溶接の際に相対する溶接棒E1とE2の溶接溶け込みの一貫性と対称性をコントロールするためである。図示された
図10から
図13の実施例では、サブマージアーク溶接(SAW)プロセスにおいて、AC波形コントロールが、比較的大きな直径の中実な溶接棒E(
図2A)と粒状フラックスF(
図10と
図11)と組み合わされて使用される。波形181と182は、それぞれ、正の部分(I
P1とI
P2)および負の部分(I
N1とI
N2)を持った一連のパルスを含んでおり、
図14Aから
図14Cにおいて電流I
1およびI
2として示されている。第1および第2の溶接電流I
1とI
2に係るパルスは、同期化コントローラー40によって同期化されており、位相角がΦ(例えば、一つの実施例においては目標位相角に対して約+/−0.5度の電気角)にコントロールされた、もしくは調整された波形を提供する。
【0037】
さらに、一つの望ましい実施例においては、プロット180に示すように、本発明の要件ではないものの、第1および第2の波形181と182は実質的に同一である。加えて、典型的な波形181と182は約50パーセントのデューティーサイクルであるが、他の実施例ではあらゆる好適なデューティーサイクルを使用することができる。さらに加えて、図示された波形は、ゼロ電流の軸に関してI
P1の大きさは実質的にI
N1の大きさと同等であり、I
P2の大きさは実質的にI
N2の大きさと同等であるが、他の実施例においては、この点において非対称な波形を使用することが可能である。さらには、
図10から
図14Cに係る望ましい実施例においては、実質的に同一な第1および第2の波形181と182が使用されるが、これは本発明の要件ではない。上記のデュアルフィレットDCパルス溶接の実施例と同様に、
図10から
図14において、さらに、電源24は、同期化コントローラー40(
図1、
図8、そして
図9)からの同期化情報(例えば、ハートビート信号、メッセージ、等)を使用してACサブマージアーク溶接信号波形181と182を生成する。結果として生じるフィレット溶接W1とW2の改善したコントロールを促進するように、お互いに関して位相角の関係がコントロールされた溶接電流I
1とI
2を提供するためである。
図10から
図13に最もよく示されるように、デュアルフィレットSAWプロセスは、スティフナー作業部品WP1とベース作業部品WP2の間のT継ぎ手の両側に沿って二つのパイル(pile)になるように形成された粒子状のフラックスF(
図10と
図11)を使用し、エネルギー化された溶接棒E1とE2(
図2A)はフラックスパイルFを貫いて進められる。溶接棒E1とE2に適用される電流信号波形181と182は、溶接アークA1とA2を粒子状のフラックスFの中に溶接アークA1とA2を確立し、維持し、
図11において最もよく表されるように、フラックスFを溶かして、溶融した溶接W1とW2に上にスラグ(slag)S(図
10と
図12)を形成する。AC溶接波形は、ゼロ電圧軸に関してバランスがとれていることが望ましく、50パーセントのデューティーサイクルであることが望ましい。これらの望ましい条件は、溶接溶け込みやビード形状のコントロールに貢献するが、こうした条件は本発明の厳格な要件ではない。デュアルフィレット溶接プロセスは、作業部品材料を部分的に消費して溶接W1、W2の中に包含することを通じて、溶接材料W1、及び/又はW2が、作業部品WP1とWP2の一方、もしくは両方を貫くようにさせ、結果として側面溶け込み寸法92aと92b、及び/又は第1および第2の下向き溶け込み深さ94aと94bを生じる。溶接棒Eが溶接方向60に沿って移動されると(例えば、
図8の移動メカニズム52を介して)、
図12において示されるように、溶接材料W1,W2はスラグSの下で固化し、スラグSもまた固化する。次に、スラグSは除去され;
図13において示されるように、完成したフィレット溶接W1とW2が残される。図示された実施例におけるのと実質的に同一である。本発明は、このようにデュアルフィレット溶接適用のためのデュアルフィレット溶接システムおよび方法を提供する。デュアルフィレット溶接システムのパフォーマンスと完成した溶接の品質に対するコントロールを促進するように、溶接信号のコントロールされた位相角動作のために、溶接信号は同期化される。
【0038】
図14Dは、上述のように、位相関係がコントロールされた溶接装置ワークポイント変調を備える本発明のさらなる態様を示しており、ACデュアルフィレット溶接の適用に関しても実用性がある。
図10から
図12、
図14におけるサブマージアーク溶接の実施例に係るグラフ198は、典型的な同期化された矩形波タイプの溶接装置ワイヤー送り速度波形198aと198d、電源出力波形198bと198e、および典型的なデュアルフィレット溶接システム2における溶接周波数ワークポイント値波形198cと198fを示している。第1の溶接装置20aに係るワークポイント波形198aから198cは、期間Tにおいて変調されており、第2の加工ワークポイントに係る変調されたワークポイント波形198dから198fに関してワークポイント位相角がβであるようにコントロールされ、全てのワークポイント変調波形が期間Tにおいて動作している。さらに、この実施例においては、第1および第2のワークポイントは、実質的に位相がはずれたように変調され、ワークポイント位相角ベータは約180度であるが、あらゆる好適なコントロールされた位相角βが使用され得る。この実施例においては、電源の動作周波数(例えば電源出力電流/電圧波形の周波数)もまた、ワークポイント変調技術で変調されることに留意すべきである。この実施例においては、AC溶接波形周波数は振幅と共同して変化する。上記のパルス溶接の実施例と同様に、AC適用におけるワークポイントの変調は、あらゆる好適な変調波形形状、形、等に応じたものになり得る。
図14Dにおいて示される矩形波のワークポイント変調波形198aから198fは単なる例示に過ぎない。さらには、与えられた溶接装置に係る変調された波形は、示されるように類似の形状、形、等であり得るし、もしくは違ったものでもよい。さらに変調された加工ワークポイント波形は一つのグループとしてそれぞれの溶接装置に提供されるか、ワークポイント割り当てシステム12(または他のシステムコンポーネント)が溶接装置20に対して単一の変調されたワークポイントを提供し、続いて溶接装置20が種々の装置コンポーネントのために残りのワークポイントを引き出す。
図14Dの実施例においては、さらに、それぞれの装置の電源波形出力周波数は、対応するワイヤー送りしく度と出力振幅が増加するときに増加し、その逆もまた同様である。
【0039】
図15Aと
図15Bでは、パルス溶接、AC溶接、または他のデュアルフィレット溶接タイプのプロセスのために、溶接装置20aと20bの溶接電流とワイヤー送り速度がコントロールされ、上記の
図5と
図6に示したようにコントロールされたT継ぎ手の部分的な溶接溶け込み、もしくは
図15Aと15Bに示すように本質的に完全な溶け込みを提供する。上述の溶接波形の同期化、及び/又はワークポイントの同期化は、与えられたデュアルフィレット溶接の適用のための、あらゆる望ましい量や形状の溶接溶け込みの供給を促進する。
図15Aは、先端が面取りされた第1の作業部品WP1aを示しており、斜めの下方表面202と204を含むデュアルフィレット溶接されたT継ぎ手を形成するのに使用される。斜めの表面は、単独でも、本発明に係る波形もしくははワークポイントの同期化態様の一つ又は両方と組み合わせても使用することができる。
図15Bにおいて示されるように、第1の作業部品WP1aの下で第1および第2のフィレット溶接W1とW2が結合するオーバーラップ領域200を提供するように、実質的に完全な溶け込みのあるデュアルフィレット溶接を達成するためである。
【0040】
図16Aから
図16Cは本発明の代替的な実施例を示しており、溶接棒間の干渉が予測されるようなアプリケーションにおいて材料をデポジットするために二つまたはそれ以上の溶接棒Eが使用される。例えば、
図16Aは相対する溶接棒を使用するデュアルフィレット溶接を示している。図で示されるように、本発明のコンセプトに従って、波形の同期化、及び/又はワークポイントの同期化が使用され、添付のチャートに示されるような互いに位相がずれた波形を適用することで、溶接棒が互いに干渉しないように溶接棒上のアークをコントロールする。同様な同期化が、例えば、
図16Bで示されるタンク溶接への適用といった、溶接棒が共通のグラウンド軸を共有する適用例においても使用される。そこでは、溶接棒は離れた溶接上で動作しているものの、共有されたグラウンド軸は溶接棒間の干渉を生じやすく、溶接の品質に影響を与える。添付のチャートに示されるように、上述の波形の同期化、及び/又はワークポイントの同期化技術は、溶接棒間の干渉を最小化、及び/又は除去するために使用され得る。このタイプの干渉が見られる別の適用例は、両方の溶接棒が同一の溶接パドル(puddle)もしくはプール(pool)上で動作する場合である。例えば、
図16Cに示すように、二つの溶接棒が同一の溶接バドルにおいて動作し、連続したやり方で突合せ継ぎ手に対して溶接棒材料の層を充当する。すなわち、第1の溶接棒が材料のベース層を敷き、第2の溶接棒がすぐ後を追って、ベース層の上に材料の第2の層をおく。これらの溶接棒は同一のパドルにおいて動作するので、溶接棒間で干渉が生じるのは当たり前である。
図16Cにおける添付のチャートに示されるように、上述の波形の同期化、及び/又はワークポイントの同期化技術がこの干渉を最小化、及び/又は除去するために使用され、このタイプの適用においてより均一で一貫性のある溶接を提供している。例えば、第1および第2のアークがお互いに180度位相が
ずれているように、波形を生成することができる。
図17に示すように、波形は、一つのアークの電流がゼロに近づくと他のアークがエネルギー化されるといったもので、交互に入れ替わるやり方で効果的にアークが適用される。
【0041】
図18から
図20は、一般的に300で示される代替的な溶接システムである。以前の実施例において述べたように、一般的に溶接システム300は、システムコントローラー10と共に第1および第2の溶接装置を含んでおり、一方または両方の溶接電流波形と、及び/又は一つまたはそれ以上の加工ワークポイントとの間の位相関係をコントロールして、溶接棒E1とE2および溶接アークA1とA2を使用して溶接W1とW2をそれぞれ創出し、第1の作業部品WP1を第2の作業部品WP2に対して溶接する。溶接システム300は、さらに、一般的に310で示される、レーザーといった、局所的に強烈な加熱を行うことができる高エネルギー熱源を含んでおり、以降により詳細に述べるように、溶接溶け込みを改善するために溶接装置20と協同して使用される。溶接システム300は、以前の実施例に係る溶接装置20とコントローラー10を組み入れることができ、アーク溶接コンポーネントについて同様なやり方で構成され得る。その限りにおいて、溶接システム300には、コントローラー10、同期化コントローラー40、そしてワークポイント割り当てシステム12を含む以前の実施例に係るアーク溶接コンポーネントやコントローラーの詳細が参考として取り込まれており、同様なコンポーネントを参照するのに同様な数字が使用されている。両方の実施例に共通なコンポーネントであり、ここにおいて詳細が記載されていない限りにおいて、以前の実施例を参照すべきである。
【0042】
図18から
図20に示されるように、本実施例は第1の作業部品WP1を第2の作業部品WP2に溶接するためのデュアルフィレット溶接に関して使用される。溶接システム300は、また、以前の実施例に関して述べたアーク間の干渉が問題となる別のアプリケーションにおいても使用される。デュアルフィレット溶接の実施例においては、溶接棒E1、E2は作業部品WP1の相対する側に配置されており、一般的にお互いに向かい合った関係にある。溶接棒E1,E2はお互いに一直線上に配列されていることを要せず、必要に応じて作業部品WP1の両側において複数の溶接棒が使用され得る。以前の実施例において詳細に述べたように、溶接棒E1とE2は、電気的にシステムコントローラー10と接続されている。システムコントローラー10は、以前の実施例において詳細に述べたワークポイントの割り当てや同期化の機能に加えて、データ獲得、モニター、等といった、他の機能を溶接システム300において提供し得る。さらに、以下により詳しく述べるように、レーザー310がシステムコントローラー10に接続され得る。
【0043】
本実施例のコンセプトに従って、溶接システム300は、溶接接合を形成するために溶接棒E1,E2と協同して動作するレーザー310を含んでいる。溶接システム300の溶接棒Eとレーザー310は、溶接動作を実行するために、溶接ロボット、マニピュレーター、もしくは他の移動装置に取り付けられ得る。代替的には、溶接システム300は固定されており、
図19に示すように、作業部品が溶接システム300に対して移動することもできる。作業部品WPと溶接システム300との間の相対的な動作に関しては、レーザー310は溶接棒E1,E2の上流に配置され、レーザー310からのビーム312が第1の作業部品WP1のある部分に方向付けられる(
図20A)。例えば、レーザービーム312は、第1の作業部品WP1のコーナー、第1の作業部品WP1の前縁、または第1の作業部品WP1のノーズに対して方向付けることができる(図に示すように)。一般的に、レーザービーム312は、溶接接合の境界面に近い、作業部品WP1またはWP2いずれかの表面に方向付けられる。レーザー310は浅い角度で向けられ、レーザー310からのビーム312が、水平に近い角度θで第1の作業部品WP1に当たるようにする(
図20A)。
図20Aに示されるように、浅い角度を使用することで、デュアルフィレット溶接のアプリケーションにおいて、レーザーのエネルギーをより直接的に第1の作業部品WP1に向けることができる。望むのであれば、この同じアプリケーションにおいて、第2の作業部品WP2に向かってより大きなエネルギーを向けるために、より大きな角度を使用することもできる。また、レーザー310は、より広い領域閾値発生回路を取り囲み、レーザー溶け込みの幅を増すために、接合上に渡り、ストリーブされ、発振させられる。このことは、レーザービームに係るアプリケーションをより寛大なものにすることによって、溶接プロセスを促進している。図示されたレーザービームの方向312は、例示である。アプリケーションやレーザーエネルギーが適用される望ましい領域に応じて、あらゆる角度θを含む他の方向が使用され得ることが正しく理解されるべきである。
図20Aに図示された実施例においては、水平から0度と約5度の間にある角度θが使用されている。
【0044】
レーザー310は、溶接プロセスの全ての期間、または溶接プロセスの選択された部分についてビーム312を発生し、第1の作業部品WP1の一部が溶融、もしくは蒸発するように、第1の作業部品WP1に対して熱を加える。第1の作業部品WP1の一部の溶融/蒸発は、作業部品WP1とWP2との間での溶融材料流れを促進し、溶接の完全な溶け込みができる。溶接の溶け込みに加えて、レーザー310は、
図20Bに図示されるキーホール(keyhole)Kを、レーザー310が最初に当てられた作業部品を蒸発させることによって、形成することができる。このボイド(void)は、溶接材料を溶接棒E1,E2からキーホールKの中に流れ込むようにし、レーザー310によって創出された溶融した作業部品材料と混合して、溶接の完全な溶け込みを促進する(
図20C)。
【0045】
溶接棒E1とE2は、以前の実施例に従ってコントロールされ、レーザーが第1の作業部品WP1に入力されると同時に、もしくは近い時間にアーク溶接を実行する。以前の実施例において述べたように、溶接棒E1とE2はお互いに関して位相付けられ、交互に入れ替わるやり方で(
図17)作業部品WP1に対してアークA1,A2を適用する。このようにして、以前の実施例において述べたのと同じやり方で、溶接棒材料が接合部に適用され、一つまたはそれ以上の作業部品に対してレーザーエネルギーを適用することにより改善した溶接溶け込みが提供される。
【0046】
図示されたレーザー310は、溶接棒E1,E2に対して上流側に配置されているが、同一の効果を達成するように、レーザー310は、溶接棒E1,E2に対してあらゆる場所に配置することができる。例えば、
図19に示すように、溶接棒E1,E2と一直線上に整列され得るし、もしくは溶接棒E1,E2の上流側または下流側に配置することもできる。レーザーが一直線上に整列された位置または下流側の位置から適用されたときは、レーザーは一つまたはそれ以上の溶接棒Eと作業部品WPによって生じた溶接材料に対して熱を適用する能力を、同じ効果をなすように有しており、これは溶接棒Eによって溶接材料が適用される前に作業部品のみに対してレーザーが適用されるときと同様であること、が正しく理解されるべきである。一般的に、レーザー310はビーム312を溶接棒E1,E2近くの作業部品のある部分に当てるように方向付けられ、作業部品を局所的に熱し、レーザービーム312が通過するところの溶接材料を溶かし、溶接の溶け込みを改善する。レーザービーム312は、溶接棒E1,E2からの溶接材料が適用される地点か、それに近い点に向けられることが正しく理解されるべきである。
【0047】
本発明に従って、一つまたはそれ以上のレーザー310が使用され得る。単一のレーザーが作業部品上の単一の地点に対してエネルギーを適用するために使用され、複数のレーザーが作業部品WP上の複数の地点に対してエネルギーを適用するために使用される。
図18に示すように、単一のレーザー310とビームスプリッター314が、第1の作業部品WP1上の相対する地点に対してレーザー310からのエネルギーを適用するために使用され得る。光ファイバールーメン(lumen)315、もしくは、鏡などといった、他の光搬送機器が、レーザービーム312を作業部品312または溶接に方向付けるために使用され得る。
【0048】
図18から
図20における実施例において、溶接装置20とレーザー310は、システムコントローラー10の同期化コントローラー40とワークポイント割り当てシステム12に動作可能に接続されており、データ、コントロール信号、メッセージ、等の交換を行っている。一つの実施例においては、スタンドアロンの溶接システムコントローラー10は、溶接装置20の電源24aと24bおよびレーザー310の光源316に動作可能に接続された同期化コントローラー40を含んでいる。コントローラー10は、電源24に対して第1および第2の波形ジェネレーターを同期させるための同期化信号(例えば、信号、メッセージ、等)を提供し、第1および第2の溶接電流はお互いに関してコントロールされた位相角となる。ワイヤーフィーダーもまた、同期化コントローラー40からの、及び/又は直接的にそれぞれの電源24もしくは他の中間的なコントローラーからの好適な情報(データ、信号、等)によって、またはそれに応じて、同期化され、ある特定の時点において電流溶接波形と他のプロセス条件に従って、溶接プロセスに対する溶接ワイヤーの供給を調整する。加えて、溶接システムコントローラー10を通じた溶接装置20からの情報は、レーザー310の向きをコントロールするために使用され得る。例えば、「スティックアウト(stick out)」に関する情報が溶接システムコントローラー10に対して伝達されると、光源316もしくはレーザー310出力をコントロールしている他のコンポーネントに対して、溶接システムコントローラー10からの通信信号によってレーザー310出力の調整がなされる。コントローラー10は、レーザー310出力を調整するために溶接装置20からのスティックアウトフィードバックを使用することができる。例えば、もはやスティックアウトは、溶接パドルがより大きな溶接またはより広いギャップの中に沈んでいることを意味するものではない。より広いギャップでは、より少ないエネルギーで完全な溶け込み溶接を得ることができ、このように、コントローラー10は、レーザー310の電源駆動を減少させ、または、そうでなければ、レーザー出力を調整することによって、レーザー310に適用されるエネルギーを削減し得る。このようにして、コントローラー10は、溶接装置20のパラメーターを同時に調整することができ、結果としてシステム全体の溶接条件に対してリアルタイムに対応している。
【0049】
同様にして、以前の実施例において述べたように、同期化コントローラー40からの同期化情報に応じて溶接装置20の溶接システムコントローラー10を使用して、でシールドガス(shielding gas)の供給を同期化されたやり方でコントロールすることができる。溶接システムコントローラー10は、さらに、溶接装置20aと20bに動作可能に接続されたワークポイント割り当てシステム12を含むことができ、ユーザーが選択したシステム設定ポイント値を受け取って、溶接システム300のトータルアウトプットを設定するために、溶接装置20に対してそれぞれの加工ワークポイント値を提供する。このコントロールは、システム全体の望ましいパフォーマンスを達成するためのローカルなワークポイントが用意されているところで、溶接装置20、及び/又はそのコンポーネントに対して、例えば、デポジション率、溶接サイズ、ワイヤー送り速度、溶接電流、溶接電圧、等の一つのシステムワークポイント値を、ユーザーが設定できるようにしている。さらに、同期化コントローラー40または他のシステムコンポーネントのための割り当てシステム12は、以前の実施例において述べたように、ワークポイント波形間のコントロールされた加工ワークポイント位相角を提供するためにワークポイント波形に応じて一つまたはそれ以上のワークポイントの変調を行う。ワークポイント割り当てに基づいて、システムコントローラー10は、アーク溶接プロセスを促進するためにレーザー310のパワーレベルを変化させることもできる。この限りにおいて、システムコントローラー10は、レーザー310(
図18)の電源316に接続され、事前にプログラムされたインストラクションに応じて、または溶接システムからのフィードバックに基づいて、電源316によってレーザー310に対して供給されるパワーの量を変化させるように動作可能である。
【0050】
溶接の創出においては、溶接のサイズと均一性、溶け込み量、そして形状がコントロール可能であり、繰り返し可能であり、そして溶接の長手方向に沿って均一であることが望ましい。結果として生じる溶接構造物の品質向上のためである。同一の溶接パドルにおいて、もしくは溶接棒が共通のグラウンド軸を共有しているアプリケーションにおいて、複数の溶接棒をお互いに非常に近接させて使用することは、しばしば、溶接アークの干渉を招き、結果として、不均整な溶接のサイズ、均一性、溶け込み、そして形状を生じてしまう。特に、アーク間の干渉は、電磁気力および圧力を創出し、溶接材料のデポジションをアークによって生成される圧力ポイントから離れてそらしてしまう。本発明の溶接システムは、上述のように、溶接棒E1とE2の同期化およびワークポイント割り当てを通じて、この干渉を最小化する。さらには、同時に起こるローカルなプロセスを同期化させることによって、溶接時間や使用材料量を節約する能力を促進し得る。レーザー310の使用は、さらに、溶接接合の完全な溶け込みを提供すること、および溶接接合への材料流れを改善することにより、こうした節約を増進し、完全な溶け込みや充填を達成するのに複数のパスが必要ではなくなる。
【0051】
溶接部に関しては、波形が同期化されコントロールされた溶接電流I
1とI
2を溶接棒E
1とE
2に対して提供することは、作業部品WP1における溶接棒E1とE2と、WP2または溶接プール/パドルの間の溶接アークA1とA2を創出し、維持する。溶接アークA1とA2は、次に、溶接棒Eが溶接方向60(
図19)に沿って与えられた場所を通過する際に、溶融した溶接材料のデポジションと作業具品材料の特定量の可能な溶解を生じ、
図20Cに示すように、溶融した溶接Wを形成する。上述のように、レーザー310は、作業部品WP1とWP2の一つまたはそれ以上を局所的に熱し、特定量の作業部品材料を溶かし、及び蒸発させ、溶接棒Eからの溶融した溶接材料が、作業部品WP1とWP2の間の接合に完全に溶け込むようにしている。作業部品WPの一部を蒸発させることで、レーザー310は、溶接接合の溶け込みを改善するキーホールKを生成する。例えば、作業部品WPからの溶融した材料や溶接棒Eによって適用された充填材料である溶接材料は、
図20Cに最もよく示されるように、ついには冷め、固化し完全な溶け込みを持った溶接が完成する。
【0052】
図20Cに示すように、完成した溶接は特定のプロフィールまたは形状をしており、外側に露出された溶接表面は、図示された実施例においてはコーンケーブ形状であるが、または一般的には、平面上、コンベックス形状、曲線からなる表面形状、もしくはフィレットフェイスコンター(fillet face contour)であり得る。溶接サイズは、垂直方向のレグ寸法によって特徴付けられ、水平方向または両方のレグ寸法についても同様である。こうした寸法に関しては以前の実施例において十分に述べられている。
【0053】
以前に述べたように、溶接プロセスの際には、作業部品または溶接材料の選択された部分に対してレーザービーム312を適用するために、一つまたはそれ以上のレーザー310が直接的に、もしくはビームスプリッター314と併せて使用される。示されたデュアルフィレット溶接の実施例においては、第1の作業部品WP1の両方の側に対してレーザービーム312を適用することで、溶接棒E1とE2によって適用された溶融した材料の溶け込みを促進する。溶接電流波形のコントロール、及び/又は溶接装置ワークポイント値のコントロールの同期化は、レーザー310からのエネルギーの適用と併せて、T継ぎ手の両側が同時に溶接されるデュアルフィレット溶接における溶接Wの寸法の一貫性とパフォーマンス特性についてのコントロールを促進する。加えて、作業部品WPまたは溶接接合に対して、レーザーエネルギーの適用と併せて、位相角がコントロールされた第1および第2の溶接電流を提供することは、溶接棒E1,E2が適用される第1および第2の溶接が異なるように設計されているような状況において、こうした寸法のコントロールに貢献するものと考えられている。代替的に、もしくは組み合わせにおいて、電源出力レベル、波形周波数、ワイヤー送り速度、レーザーパワー、等といった、一つまたはそれ以上のコントロールされた加工ワークポイント値の変調が、こうした寸法のコントロール性を改善するために使用され得るし、そうでなくとも、結果として生じる溶接の品質を改善する。
【0054】
上記の実施例は、本発明の種々の態様に係るいくつかの可能な実施例を説明したに過ぎないものであり、当業者であれば、本明細書および添付の図面の記載に基づいて、均等な代替、及び/又は変更をなし得る。特に、上述のコンポーネント(アセンブリー、装置、システム、回路、といったもの)によって実行される種々の機能に関しては、そのようなコンポーネントについて述べるために使用された用語(「手段(means)」を参照するものを含む)は、他に意図がなければ、ハードウェア、ソフトウェア、またはそれらの組み合わせ、といった記載のコンポーネント(例えば、機能的に均等なもの)に係る特定の機能を実行するあらゆるコンポーネントに対応するものである。本発明の図示された実施例において、その機能を実行するための開示された構造と構成的に均等なものではないにしてもである。加えて、本発明の特定の特徴がいくつかの実施例のうちのたった一つに関して開示されていたとしても、そういった特徴は、あらゆる与えられた、もしくは特定のアプリケーションにとって望ましく、そして有利なように、他の実施例に係る一つまたはそれ以上の他の特徴と組み合わされ得る。また、用語「含む(“inclding”、“includes”、“having”、“has”、“with”)」またはその変形が、発明の詳細な説明、及び/又は特許請求の範囲の中で使用されている限りにおいては、それらの用語は、用語「含む(comrising)」と類似の方法において、包括的であることを意図している。
【0055】
さらなる実施例において、本発明は第1および第2の作業部品の間に溶接を創出する溶接システムを提供する。その装置は、以下を含む。
【0056】
第1の溶接装置であり、
第1の溶接棒に接続された出力端子を有する第1の電源を含み、
該第1の電源は、該第1の電源の出力端子において第1の波形を持った第1の溶接電流を提供する第1の波形ジェネレーターを含み、
前記第1の波形ジェネレーターは、第1の波形を生成し、前記第1の電源の電流動作を決定するために前記第1の電源のパルス幅変調回路をコントロールし、
第1のワイヤー送り速度で、前記第1の溶接棒を溶接接合に向かって方向付ける第1のワイヤーフィーダー、
を含む第1の溶接装置と;
第2の溶接装置であり、
第2の溶接棒に接続された出力端子を有する第2の電源を含み、
該第2の電源は、該第2の電源の出力端子において第2の波形を持った第2の溶接電流を提供する第2の波形ジェネレーターを含み、
前記第2の波形ジェネレーターは、第2の波形を生成し、前記第2の電源の電流動作を決定するために前記第2の電源のパルス幅変調回路をコントロールし、
第2のワイヤー送り速度で、前記第2の溶接棒を溶接接合に向かって方向付ける第2のワイヤーフィーダー、
を含む第2の溶接装置と;
前記第1および第2の波形ジェネレーターの同期をとるために前記第1および第2の電源に動作可能に接続され、コントロールされた前記第1および第2の波形の間の波形位相角を提供する同期化コントローラーと;
前記溶接棒の近くの少なくとも一つの作業部品の一部分を熱するように適合された高エネルギー熱源を含む、
ことを特徴とする溶接システムである。
【0057】
望ましくは、請求項2から12の一つの特徴を含んでいる。