特許第5794601号(P5794601)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ フリースケール セミコンダクター インコーポレイテッドの特許一覧

<>
  • 特許5794601-差動容量型センサとその製造方法 図000002
  • 特許5794601-差動容量型センサとその製造方法 図000003
  • 特許5794601-差動容量型センサとその製造方法 図000004
  • 特許5794601-差動容量型センサとその製造方法 図000005
  • 特許5794601-差動容量型センサとその製造方法 図000006
  • 特許5794601-差動容量型センサとその製造方法 図000007
  • 特許5794601-差動容量型センサとその製造方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5794601
(24)【登録日】2015年8月21日
(45)【発行日】2015年10月14日
(54)【発明の名称】差動容量型センサとその製造方法
(51)【国際特許分類】
   G01P 15/125 20060101AFI20150928BHJP
   H01L 29/84 20060101ALI20150928BHJP
【FI】
   G01P15/125 Z
   H01L29/84 Z
【請求項の数】2
【全頁数】11
(21)【出願番号】特願2009-546386(P2009-546386)
(86)(22)【出願日】2007年12月18日
(65)【公表番号】特表2010-517014(P2010-517014A)
(43)【公表日】2010年5月20日
(86)【国際出願番号】US2007087846
(87)【国際公開番号】WO2008088644
(87)【国際公開日】20080724
【審査請求日】2010年11月22日
【審判番号】不服2014-10734(P2014-10734/J1)
【審判請求日】2014年6月6日
(31)【優先権主張番号】11/655,557
(32)【優先日】2007年1月18日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】504199127
【氏名又は名称】フリースケール セミコンダクター インコーポレイテッド
(74)【代理人】
【識別番号】100142907
【弁理士】
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】マクニール、アンドリュー シー.
(72)【発明者】
【氏名】リン、イーチェン
(72)【発明者】
【氏名】ミラー、トッド エフ.
【合議体】
【審判長】 酒井 伸芳
【審判官】 清水 稔
【審判官】 樋口 信宏
(56)【参考文献】
【文献】 仏国特許出願公開第2694403(FR,A1)
【文献】 米国特許第5831164(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01P 15/125, H01L 29/84
(57)【特許請求の範囲】
【請求項1】
装置であって、
前記装置は微小電気機械システム(MEMS)センサを備え、前記センサは、
可動エレメントの第1の端部と第2の端部との間でオフセットされている回転軸に対して動くように適合され、前記回転軸と前記第1の端部との間に第1の区画を形成し、前記回転軸と前記第2の端部との間に第2の区画を形成する前記可動エレメントであって、前記第1の区画は、前記回転軸から、前記回転軸と前記第2の端部との間の前記第2の区画の長さにほぼ等しい距離だけ離間された延在部を含み、前記可動エレメントは、第1の表面および第2の表面を含む、前記可動エレメントと、
前記可動エレメントの前記第1の表面から離間され、第1の感知電極と、第3の感知電極と、フィードバック動作のための第1のアクチュエーション電極とを含む、第1の固定導電層と、
前記可動エレメントの前記第2の表面から離間され、第2の感知電極と、第4の感知電極と、フィードバック動作のための第2のアクチュエーション電極とを含む、第2の固定導電層と
を含み、前記第1および第2のアクチュエーション電極は、前記延在部と対向し、前記第1及び第2の感知電極は、前記第1の区画と対向し、前記第3及び第4の感知電極は、前記第2の区画と対向し、前記第1のアクチュエーション電極は、前記第1の感知電極と隣接し、前記第2のアクチュエーション電極は、前記第2の感知電極と隣接している、装置。
【請求項2】
微小電気機械システム(MEMS)センサであって、
可動エレメントの第1の端部と第2の端部との間でオフセットされている回転軸に対して動くように適合され、前記回転軸と前記第1の端部との間に第1の区画を形成し、前記回転軸と前記第2の端部との間に第2の区画を形成する前記可動エレメントであって、前記第1の区画は、前記回転軸から、前記回転軸と前記第2の端部との間の前記第2の区画の長さにほぼ等しい距離だけ離間された延在部を含み、前記可動エレメントは、第1の表面および第2の表面を含む、前記可動エレメントと、
前記可動エレメントの前記第1の表面から離間され、第1の感知電極と、第3の感知電極と、フィードバック動作のための第1のアクチュエーション電極とを含む、第1の固定導電層と、
前記可動エレメントの前記第2の表面から離間され、第2の感知電極と、第4の感知電極と、フィードバック動作のための第2のアクチュエーション電極とを含む、第2の固定導電層と、
を備え、前記第1および第2のアクチュエーション電極は、前記延在部と対向し、前記第1および第2の感知電極は、前記第1の区画と対向し、前記第3および第4の感知電極は、前記第2の区画と対向し、前記第1、第2、第3、および第4の感知電極のそれぞれは、前記可動エレメントの全表面積の25〜35パーセントの範囲にある表面積を有し、前記第1のアクチュエーション電極は、前記第1の感知電極と隣接し、前記第2のアクチュエーション電極は、前記第2の感知電極と隣接している、センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主として、微小電気機械システム(MEMS)センサに関する。より具体的には、本発明は、MEMS差動容量型加速度計に関する。
【背景技術】
【0002】
加速度計は、加速力の測定に一般的に利用されるセンサである。加速力は、一定重力のように静的である場合もあれば、動的である場合もあり、これは、加速度計を移動または振動させることによって引き起こされる。加速度計は、1つ、2つ、または3つの軸、または方向に沿った加速や他の現象を感知することが可能である。この情報から、加速度計が設置されている装置の動きまたは方位を確認することが可能である。加速度計は、慣性誘導システム、自動車のエアバッグ展開システム、様々な装置の保護システム、および他の多くの科学技術システムで使用されている。
【0003】
高重力環境下での小型装置内での動作のために、かつ、比較的低コストであることから、容量感知型MEMS加速度計を設計することが非常に望ましい。容量型加速度計は、加速による電気容量の変化を感知して、通電されている回路の出力を変化させる、加速度計の一般的な形式の1つは、「シーソー」構造を有する2層容量型トランスデューサである。この一般的に利用されているタイプのトランスデューサは、z軸加速下において基板上方で回転する可動エレメントまたは可動プレートを使用している。この加速度計構造は、2つの別個の容量を測定して、差動容量または相対容量を求めることが可能である。
【0004】
図1は、従来のヒンジ型または「シーソー」型センサとして組み立てられた、先行技術の3層容量型加速度計20の分解側面図を示す。容量型加速度計20は、一対の固定基板22および24を含んでおり、静電基板22および24は、それぞれ対向する平行平面を有している。基板22と24は互いに離間されており、各基板は、片面に堆積された所定の構造のいくつかの金属電極エレメント26および28を有し、それぞれがキャパシタ電極、又は「プレート」を形成している。一例示的事例では、電極エレメント26は、刺激信号を受け取る励起電極、又は感知電極として動作する。他方の電極エレメント28は、静電リバランスのためのフィードバック電極として動作する。電極エレメント26(または28)の1つのセットは、フィードバック信号が感知信号に重畳された場合には、感知電極およびフィードバック電極の両方として動作する。
【0005】
一般に「プルーフマス」と称されている可動エレメント30が、回転軸36のまわりの回転のために、隆起した取り付け点34に位置する1つまたは複数の回転フレキシャ32によって、基板22と基板24との間で弾力的に浮いており、電極26および28とともに、様々なキャパシタセットを形成する。可動エレメント30は、加速に応じて動き、従って、可動エレメント30の位置が固定感知電極26に対して変化する。この位置変化の結果として、キャパシタのセットであって、それらの差、すなわち差動容量が加速を表す、キャパシタのセットが得られる。静電リバランスのための別のキャパシタセットが、可動エレメント30およびフィードバック電極28から構成される。フィードバック電極28は、可動エレメント30を、感知エレメント26間で平衡のとれた可動エレメント30の基準位置まで駆動して、その位置を維持するように機能する。
【0006】
シーソー型加速度計としての動作を意図される場合は、回転軸36に対して一方の側にある、可動エレメント30の第1の区画38が、回転軸36に対して他方の側にある、可動エレメント30の第2の区画40より、比較的重い質量で形成される。第1の区画38の、より大きな質量は、典型的には、第1の区画38の延在部42が回転軸36から見て遠方に形成されるように、回転軸36をオフセットすることによって作成される。さらに、電極エレメント26および28は、可動エレメント30の長手方向軸Lに対して対称になるようにサイズおよび間隔が決定されている。同様に、電極エレメント26および28はさらに、回転軸36に対して対称になるようにサイズおよび間隔が決定されている。
【0007】
シーソー型構造を有する2層および3層の容量型センサには、いくつかの欠点がある。容量性出力を増やして回路性能を高める(たとえば、雑音を低減する)ためには、シーソー型容量加速度計のプルーフマスを比較的大きくする必要がある。ところが、プルーフマスを大きくするには、ダイ面積を広くとる必要があり、コストおよびパッケージサイズが増える。さらに、プルーフマスは、剛体として回転しなければならない。プルーフマスの変形しやすさや曲がりやすさは、サイズが増えるにつれて大きくなり、特に、高い加速にさらされると大きくなる。このような変形や曲がりは、非線形効果を引き起こし、それによって、センサの精度が低下する。たとえば、この非線形性は、センサ出力においてDCオフセットを生成する可能性があり、場合によって、加速度計が配備されているシステムの機能不全を引き起こす可能性がある。プルーフマスと感知電極との間のギャップを小さくしたり、プルーフマスを厚くしたりすると、変形の問題およびそれにともなう非線形効果を軽減することが可能である。しかしながら、より小さいギャップおよび/またはより厚いプルーフマスを製造することは、製造上の問題につながる。
【0008】
図1に示された3層シーソー型構造に固有の問題は、感知電極26およびフィードバック電極28の両方が、回転軸36のそばに密集していることである。この構造は、一般にシールド面積と称される、可動エレメント30の延在部42の表面積が使用されないという点で、非効率的である。さらに、電極26および28の表面積は、電極26および28が回転軸36のまわりに密集している構造のために、比較的小さい。感知電極26の表面積が小さいほど、容量性出力は低い。フィードバック電極28の表面積が小さいほど、アクチュエーションによって与えられる、フィードバック回路(図示せず)から利用可能な電圧レベルが不十分になる。
【図面の簡単な説明】
【0009】
図1】従来のヒンジ型または「シーソー」型センサとして組み立てられた、先行技術の3層容量型加速度計20の分解側面図である。
図2】本発明による差動容量型センサの斜視図である。
図3】本発明による、処理中の差動容量型センサの一部分の拡大断面図である。
図4】差動容量型センサの上面図である。
図5】差動容量型センサの部分側面図である。
図6】差動容量型センサのキャパシタ間の数学的関係を示す表である。
図7】差動容量型センサを設置することが可能な装置を示す図である。
【発明を実施するための形態】
【0010】
詳細な説明および請求項を参照し、これらを図面と関連させて考察することにより、本発明のより完全な理解が得られるであろう。各図面を通して、類似の参照符号は類似のアイテムを指している。
【0011】
図2は、本発明による差動容量型センサ50の斜視図を示す。センサ50は、たとえば、微小電気機械システム(MEMS)加速度計または他のMEMS感知素子であってよい。このあとの説明のために、以降では、センサ50を容量型加速度計50と称する。容量型加速度計50は、3層のシーソー構造をとり、先行技術の素子より大きな容量性出力を提供し、非剛体変形によって引き起こされる非線形効果を効果的に打ち消し、自己診断および/または「閉ループ」、またはフィードバック設計に使用されるのに十分な静電アクチュエーションを可能にする。
【0012】
容量型加速度計50は、基板54上に配置された第1の固定導電層52を含んでいる。第1の導電層52の上方に、本明細書では可動エレメント56と称する別の導電層が形成されている。可動エレメント56は、ヒンジエレメント58によって支持されており、ヒンジエレメント58によって定義されている回転軸60のまわりを旋回することが可能になっている。可動エレメント56の上方に、第2の固定導電層62が配置されている。可動エレメント56の、回転軸60のまわりの旋回運動を可能にするために、いくつかのフレキシャ、ヒンジ、および他の回転機構を利用することが可能であることを理解されたい。
【0013】
第1の固定導電層52は、第1の感知電極64、第3の感知電極66、および第1のアクチュエーション電極68を含む、3つの電気的に隔離された電極またはプレートの形式をとる。第2の固定導電層62は、基板54に固定され、第1の導電層52および可動エレメント56の上方に配置された、3つの電気的に隔離されたプレート、又は蓋の形式をとる。これらの蓋は、第2の感知電極70、第4の感知電極72、および第2のアクチュエーション電極74を含んでいる。可動エレメント56のヒンジエレメント58が見えるように、第4の感知電極72の一部分が切り取られている。
【0014】
図2は、差動加速度計50の、1つの可能な構造を示している。しかしながら、差動加速度計50の3層は、互いに電気的に隔離されている、第1、第2、第3、および第4の感知電極64、70、66、および72、ならびに第1および第2のアクチュエーション電極68および74のそれぞれを保持する、いくつかの形式をとることが可能であることを理解されたい。
【0015】
図3は、本発明による、処理中の差動加速度計50の一部分の拡大断面図を示す。基板54は、シリコンからなる半導体ウェハであってよいが、任意の機械的支持基板が利用可能である。基板54の表面に、絶縁層76を形成することが可能である。絶縁層76は、二酸化シリコン、窒化シリコンなどであってよい。絶縁層76をコンフォーマルに形成し、その後にパターニングおよびエッチングを行うことが可能である。絶縁層76は、第1の導電層52を基板54から絶縁するように動作する。ただし、基板54が非導電性であれば、絶縁層76を利用しなくてもよいことを理解されたい。
【0016】
第1の固定導電層52は、ポリシリコンからなるが、他の導電性材料を用いてもよい。第1の導電層52は、堆積やスパッタリングなどの既知の方法で形成可能である。基板54の表面に第1の導電層52をブランケット層として堆積させることが可能であり、その後にパターニングおよびエッチングを行って、第1の導電層52の第1の感知電極64、第3の感知電極66、および第1のアクチュエーション電極68を形成することが可能である。後の処理工程時に基板54を保護すること、ならびに、第1の導電層52と可動エレメント56との間の短絡および/または溶着を防ぐことのために、オプションで第1の保護層78を第1の導電層52の上に配置し、その後に、必要に応じてパターニングおよびエッチングを行うことが可能である。
【0017】
パターニングおよびエッチングが行われた第1の導電層52の上に、第1の犠牲層80を形成することが可能である。ここまでの層と同様に、第1の犠牲層80もコンフォーマルに形成され、その後に、必要に応じてパターニングおよびエッチングが行われる。当業者には知られているように、第1の犠牲層80は、リン酸シリケートガラスから形成されてよく、化学気相成長法によって堆積されることが可能である。リン酸シリケートガラスの代わりに他の犠牲材料を用いてもよいことを理解されたい。
【0018】
次の導電層、すなわち、可動エレメント56は、ポリシリコンからなり、第1の導電層52の上方に位置するシーソー型構造として形成される。可動エレメント56は、ヒンジエレメント58によって、基板54に機械的に取り付けられている。可動エレメント56の上に、第2の犠牲層82(リン酸シリケートガラスなど)をコンフォーマルに形成し、その後、パターニングおよびエッチングを行うことが可能である。可動エレメント56と第2の固定導電層62との間の短絡および/または溶着を防ぐために、オプションで第2の保護層84を第2の犠牲層82の上に形成することが可能である。
【0019】
第2の固定導電層62は、パターニングが行われた第2の犠牲層82の上に形成される。第2の固定導電層62も、ポリシリコンからなり、コンフォーマルに形成された後にパターニングおよびエッチングが適宜行われて、第2の感知電極70、第4の感知電極72、および第2のアクチュエーション電極74が形成される。第2の固定導電層62を形成した後に、第2の固定導電層62を保護するために、保護層86を形成することが可能である。
【0020】
上述の構造が形成された後に、従来の方法に従って、第1の犠牲層80および第2の犠牲層82がそれぞれ除去される。たとえば、第1の固定導電層52、可動エレメント56、および第2の固定導電層62のポリシリコン、または保護層78、84、および86に目立つ損傷を与えることなく、リン酸シリケートガラスの犠牲層を除去することが可能な選択的エッチング液を用いることが可能である。
【0021】
図4は、差動容量型センサ、すなわち、容量型加速度計50の上面図を示す。可動エレメント56は、第2の固定導電層62の第2の感知電極70、第4の感知電極72、および第2のアクチュエーション電極74の下にある。第1の固定導電層52の第1の感知電極64、第3の感知電極66、および第1のアクチュエーション電極68は、可動エレメント56の下にあり、図4では見えない。
【0022】
可動エレメント56は、可動エレメント56の第1の端部88と第2の端部90との間でオフセットされている回転軸60に対して動くように適合されている。回転軸60は、可動エレメント56の長手方向次元92に対して垂直な方向を向いている。可動エレメント56の第1の区画94が、回転軸60と第1の端部88との間に形成され、可動エレメント56の第2の区画96が、回転軸60と第2の端部90との間に形成される。可動エレメント56の第1の区画94は、延在部98が回転軸60から見て遠方に形成されるように回転軸60をオフセットすることによって、第2の区画96より比較的大きい質量を有するように形成されている。一実施形態では、第1の区画94の延在部98は、回転軸60から距離100だけ離間されており、距離100は、第2の区画96の長さ102とほぼ同じである。
【0023】
図4および5を参照すると、図5は、差動容量型センサ、すなわち、容量型加速度計50の部分側面図を示す。可動エレメント56は、第1の表面104および第2の表面106を含んでいる。第1の固定導電層52は、可動エレメント56の第1の表面104から離間されており、第2の固定導電層62と、第2の表面106から離間されている。
【0024】
第1の感知電極64、第3の感知電極66、および第1のアクチュエーション電極68は、可動エレメント56の第1の表面104と対向している。同様に、第2の感知電極70、第4の感知電極72、および第2のアクチュエーション電極74は、可動エレメント56の第2の表面106と対向している。より具体的には、第1の感知電極64および第2の感知電極70は、可動エレメント56の第1の区画94の相対する表面と、回転軸60の近傍で対向している。同様に、第3の感知電極66および第4の感知電極72は、第2の区画96の相対する表面と、回転軸60の近傍で対向している。
【0025】
第1の感知電極64は、可動エレメント56の第1の区画94とともに、第1のキャパシタ108を形成しており、第3の感知電極66は、可動エレメント56の第2の区画96とともに、第3のキャパシタ110を形成している。さらに、第2の感知電極70は、可動エレメント56の第1の区画94とともに、第2のキャパシタ112を形成しており、第4の感知電極72は、可動エレメントの第2の区画96とともに、第4のキャパシタ114を形成している。
【0026】
第1の感知電極64および第3の感知電極66はそれぞれ、回転軸60に対して対称に配置されており、第2の感知電極70および第4の感知電極72は、回転軸60に対して対称に配置されている。電極64、66、70、および72のそれぞれは、サイズおよび形状がほぼ同じである。第1のアクチュエーション電極68は、第1の感知電極66と隣接しているが、回転軸60から見て遠方に位置して、第1の区画94の延在部98と対向している。同様に、第2のアクチュエーション電極74は、第2の感知電極70と隣接しているが、回転軸60から見て遠方に位置して、第1の区画94の延在部98と対向している。第1のアクチュエーション電極68および第2のアクチュエーション電極74はそれぞれ、非平衡プルーフマス実装の未使用シールド面積に有利に組み込まれており、これに伴ってそのような素子のダイ面積が増えることがない。
【0027】
第1のアクチュエーション電極68および第2のアクチュエーション電極74を延在部98に配置することにより、電極64、66、70、および72の表面積を広くとることが可能になり、これによって、第1のキャパシタ108、第2のキャパシタ112、第3のキャパシタ110、および第4のキャパシタの容量性出力を、先行技術による設計より大きくすることが可能になる。たとえば、電極64、66、70、および72のそれぞれの表面積(すなわち、第1の寸法116と第2の寸法118とを掛け合わせたもの)は、所望の性能を得るために、可動エレメント56の全表面積(すなわち、長さ92と幅120とを掛け合わせたもの)の約25〜35パーセントの範囲にある。可動エレメント56のそれぞれの側に対して感知電極が2つあるため、第1の表面104および第2の表面106のそれぞれの約50〜70パーセントが、それぞれに対する感知電極64、66、70、および72によって利用されている。言い換えると、可動エレメント56の所与の側に対する感知電極のそれぞれは、可動エレメント56のその所与の側の全表面積の25〜35パーセントの範囲にある表面積を備える。
【0028】
さらに、第1のアクチュエーション電極68および第2のアクチュエーション電極74を延在部98に配置することにより、第1のアクチュエーション電極68および第2のアクチュエーション電極74の表面積を比較的広くとることも可能になる。たとえば、第1のアクチュエーション電極68および第2のアクチュエーション電極74のそれぞれの表面積(すなわち、第3の寸法122と第4の寸法124とを掛け合わせたもの)は、可動エレメント56の全表面積の約20〜25パーセントの範囲にある。第1のアクチュエーション電極68および第2のアクチュエーション電極74を延在部に配置することは、アクチュエーションにとって望ましい配置である。なぜなら、延在部98が回転軸60から遠くにあるため、大きなモーメントが得られるからである。
【0029】
第1および第2のアクチュエーション電極68および74は、フィードバック「閉ループ」動作および/または「自己診断」動作のためのアクチュエーションを提供する。フィードバック動作の場合には、これらのアクチュエーション電極は、大きな加速を打ち消す機能を提供する。したがって、フィードバック動作では、可動エレメントの位置をキャパシタンスで感知し、アクチュエーション電極に静電バイアスを与えて、可動エレメントを静止状態に保ったり、特定の周波数レンジでの動きを制限したりするために、第1および第2の電極68および74にフィードバック信号を印加することが可能である。たとえば、高い周波数の動きを可能にし、低い周波数の動き(たとえば、パッケージストレスに起因する、温度および/または時間に依存するオフセット)を打ち消すように動きを制限することが可能である。「自己診断」動作の場合には、これらのアクチュエーション電極は、差動加速度計50の機能を試験するために、大量のアクチュエーションを与えることが可能である。さらに、両方の場合において、アクチュエーションは双方向である。すなわち、可動エレメント56をどちらかの方向に回転させることが可能である。
【0030】
この構造により、可動エレメント56の全表面積が有効利用される。さらに、この構造により、キャパシタ108、112、110、および114の有効な容量性出力を可能にし、第1および第2のアクチュエーション電極68および74それぞれにおける十分なアクチュエーション電圧を可能にしながら、プルーフマス、すなわち可動エレメント56をより小さくすることが可能になる。
【0031】
図6は、差動加速度計50(図2)の第1のキャパシタ108、第2のキャパシタ112、第3のキャパシタ110、および第4のキャパシタ114の間の数学的関係を示す表126である。可動エレメント56(図5)を、第1の区画94が第1の感知エレメント64に接近し、第2の区画96が第4の感知エレメント72に接近するように回転軸60のまわりを旋回させる加速により、第1のキャパシタ108および第4のキャパシタ114の両方における増加が測定され、第2のキャパシタ112および第3のキャパシタ110の両方における減少が測定される。このようにして、差動感知機構が形成される。第1のキャパシタ108と第4のキャパシタ114とが結合され、第2のキャパシタ112と第3のキャパシタ110とが結合されているため、差動加速度計50は、所与の加速の下で、従来の2層シーソー型構造に比べて、約2倍の基本キャパシタンスCと約2倍のデルタキャパシタンスΔCとを与える。さらに、この差動感知機構は、2層シーソー型設計において見られる、非剛体プルーフマス変形に起因する2次非線形項を打ち消す。
【0032】
図7は、差動加速度計50を設置することが可能な装置128を示す。装置128は、慣性誘導システム、自動車のエアバッグ展開システム、様々な装置の保護システム、および他の多くの科学技術システムなどの様々な装置のうちのどれでもよい。装置128は、加速度計パッケージ130を含んでおり、これに差動加速度計50が組み込まれている。この例示的状況では、加速度計パッケージ130は、回路132と通信しており、回路132は、たとえば、当業者には知られている従来型のバス構造を介して相互接続されているプロセッサ、ハードディスクドライブ、および他の構成要素を含んでよい。当業者であれば理解されるように、装置128は、簡略化のために本明細書では論じられていない他の多くの構成要素を含んでよい。さらに、装置128は、本明細書で具体的に記された構造を有しなくてもよい。
【0033】
一般に、回路132は、加速度計パッケージ130からの信号を監視する。これらの信号は、Z軸方向の加速を含む。加速度計パッケージ130の差動加速度計50は、Z軸加速度(A)136を感知する。本発明によれば、Z軸加速度136は、図6に関して論じられた第1のキャパシタ108、第2のキャパシタ112、第3のキャパシタ110、および第4のキャパシタ114からのキャパシタンスによって生成される。差動加速度計50からのキャパシタンス信号は、入出力回路チップ138の感知回路に伝達され、そこで、当業者には知られている適切な処理を施されてから、回路132へ出力される。
【0034】
加速度計パッケージ130はさらに、デジタル入力電圧信号142の印加のために、回路132と通信するアクチュエーション電圧入力ポート140を含む。電圧信号142は、第1のアクチュエーション電極68および第2のアクチュエーション電極74のそれぞれにアクチュエーション電圧(V+およびV−)146を与えることを、入出力回路チップ138のアクチュエーション回路144に信号で指示する。差動加速度計50が「閉ループ」設計として構成されている場合、アクチュエーション電圧146は、フィードバック電圧である。このフィードバック電圧を第1の電極68および第2の電極74に印加することにより、パッケージストレスに起因する、温度および/または時間に依存するオフセットを打ち消して、可動エレメント52の位置をほぼ一定にすることが可能である。一方、加速度計パッケージ130が自己診断モードになっている場合には、アクチュエーション電圧は、自己診断電圧であってよい。差動加速度計50の機能を試験するために、自己診断電圧を第1のアクチュエーション電極68および第2のアクチュエーション電極74に印加することが可能である。回路132はさらに、外部入力信号が回路132に伝達されるように、装置128の外部にあるポート(図示せず)と通信することが可能である。続いて、回路132上のプロセッサソフトウェアまたはハードウェアが電圧信号142を生成し、電圧信号142は入力ポート140へ搬送される。
【0035】
本明細書に記載の一実施形態は、差動容量型センサを含む装置を備える。別の実施形態は、本発明の微小電気機械システム差動容量型センサを組み立てる方法を備える。このセンサは、3層シーソー型構造として組み立てられた差動加速度計であってよい。アクチュエーション電極を、シーソー型構造の回転軸から見て遠方に配置することにより、比較的大きな感知電極を回転軸の近くに密集させることが可能になる。さらに、可動エレメントの回転軸から見て遠方に比較的大きなアクチュエーション電極を配置することにより、可動エレメントの大きなモーメントアームを活用することが可能になる。感知電極およびフィードバック電極のこの構造は、十分なキャパシタンスおよび/または信号レベルを有しながら、パッケージがより小さく、コストがより低いセンサの設計に用いられることが可能な、より小さい可動エレメント(すなわち、プルーフマス)の利用を可能にする。より小さいこのセンサは、プルーフマスの変形がより少ないため、より精度が高い。可動エレメントの位置をキャパシタンスで感知し、アクチュエーション電極に静電バイアスを与えて、非剛体変形に起因する非線形効果を有効に打ち消し、かつ/または、自己診断動作において十分な静電アクチュエーションを与えるために、3層シーソー型構造を、フィードバック「閉ループ」システムとともに用いることも可能である。
【0036】
本発明の好ましい実施形態を図示し、詳細に論じてきたが、当業者には自明であるように、それらに対して、本発明の趣旨または添付の特許請求の範囲から逸脱することなく、様々な修正を施すことが可能である。たとえば、アクチュエーションを必要としない応用では、第1および第2のアクチュエーション電極を感知電極として利用することが可能である。そのような場合は、それに応じてキャパシタンス出力の量を増やすことが可能である。
図1
図2
図3
図4
図5
図6
図7