【実施例】
【0030】
実施例1
インスリン錠剤
以下を、錠剤コアを形成するために完全に混合して、圧縮する。
タルク 350mg/錠剤
ステアリン酸マグネシウム 350mg/錠剤
インスリン* 100単位
グルロン酸ナトリウム** 300mg/錠剤
*Alfa Chem,Kings Point,NY,US.から入手可能。
**WO2008/125828に記載のとおり調製したG−ブロックポリマーであるDP10。
【0031】
この錠剤コアを、腸溶性コーティング剤、例えば、Evonik Industries AG,Essen,Germanyから入手可能なEudragit(商標)FS30Dを用いて従来の方式でコーティングする。
【0032】
実施例2
粘液層での細胞中のマイクロビーズ取り込み
粘液分泌性HT20−MTX細胞がマイクロビーズを取り込む能力を評価した。不連続な粘液層を有する細胞、および連続した粘液層を有する細胞を、以下のとおり検討した。
【0033】
HT29−MTX細胞(Clin.Otolaryngol.Allied Sci.(2003)28(1):39〜42頁)を、24穴プレート中でコンフルエンスになるまで増殖した。ダルベッコの改変イーグル培地、DMEM(GIBCO)を用いた。コンフルエントを示したウェルについては、粘液層細胞を3μmの細孔サイズのTranswell(商標)フィルター(Corning)のもとで増殖させ、かつ全ての培地交換は、下層にある粘液層を保護するためにこのフィルター膜を通じて成し遂げられた。
【0034】
増殖培地を取り除き、750μlの新鮮培地、および250μlのオリゴウロン酸塩(重合度DP=20を有するG−ブロック)または生理食塩水(コントロール)のいずれかで置き換えた。
【0035】
40μlのマイクロビーズ(FluoSpheres(商標)カルボン酸修飾マイクロスフェア、0.02μm、黄緑色の蛍光;Invitrogen)を0.02%の懸濁液として試験ウェルに添加した。
【0036】
インキュベーションは、37℃で2時間行い、冷PBS(2ml)中で細胞を洗浄すること(×2回)によって停止させた。冷トリプシン/EDTAを用いて細胞を剥がし(2ml)、培地を添加し(2ml)、その細胞を遠心沈殿した。細胞を、冷PBS(2ml)中で洗浄し(×2回)、PBS(0.5ml)に懸濁した。
【0037】
フローサイトメトリーは、フルオロフォアに最適化された検出器を備える488nmのアルゴンレーザー光線を用いてフルオロフォア励起で行った。
【0038】
この実験の結果を
図1A、
図1Bおよび
図1Cに示す。
図1Aおよび
図1Bは、連続粘液層がマイクロビーズの細胞取り込みに対する障壁であることを示す。
図1Cは、オリゴウロン酸塩の添加が、連続した粘液層を有する細胞においてマイクロビーズの取り込みを有意に増大させることを示す。
【0039】
実施例3
siRNAリポプレックス(lipoplex)の細胞取り込みに対するオリゴウロン酸塩の効果
HeLa細胞またはHEK細胞(市販されている)を、optiMEM(商標)増殖培地(Invitrogen)を用いて6穴プレート中でコンフルエンスになるまで増殖させた。
【0040】
増殖培地を取り除き、750μlの新鮮培地、および250μlのオリゴウロン酸塩(重合度DP=20を有するG−ブロック)または生理食塩水(コントロール)のいずれかで置き換えた。
【0041】
次いで、蛍光siRNA/リポフェクタミン(商標)RNAimaxリポプレックス(lipoplexes)(Invitrogen)を、製造業者の推奨するプロトコールに従って試験ウェルに添加し、37℃で2時間インキュベートした。コントロールのウェルにはトランスフェクション試薬は添加しなかった。
【0042】
インキュベーションを、冷PBS(2ml)中で細胞を洗浄すること(×2回)によって停止させた。冷トリプシン/EDTAを用いて細胞(2ml)を剥がし、培地を添加し(2ml)、その細胞を遠心沈殿させ、冷PBS(2ml)中で洗浄した(×2回)。次いで細胞を、PBS(0.5ml)に懸濁した。
【0043】
フローサイトメトリーは、フルオロフォアに最適化された検出器を備える488nmのアルゴンレーザー光線を用いてフルオロフォア励起で行った。
【0044】
この実験の結果を
図2A、および
図2Bに示す。
図2Aは、HEK細胞のトランスフェクションに対するオリゴウロン酸塩の効果を示す(オリゴウロン酸塩なしで、ある程度の核酸の取り込みが見られるが、オリゴウロン酸塩が存在する場合はそれより大きい取り込みが観察される)。
図2Bは、HeLa細胞のトランスフェクションに対するオリゴウロン酸塩の効果を示す(オリゴウロン酸塩の非存在下では核酸の取り込みは観察されないが、オリゴウロン酸塩が存在する場合は有意な取り込みが観察される)。
【0045】
実施例4
トランスフェリンの細胞取り込みに対するオリゴウロン酸塩の効果
MDCK細胞またはHeLa細胞(市販されている)を、optiMEM(商標)増殖培地(Invitrogen)を用いて6穴プレート中でコンフルエンスになるまで増殖させた。
【0046】
増殖培地を取り除き、750μlの新鮮培地、および250μlのオリゴウロン酸塩(重合度DP=20を有するG−ブロック)または生理食塩水(コントロール)のいずれかで置き換えた。
【0047】
細胞を37℃で2時間インキュベートし、次いで、ウェルをPBSを用いて2回洗浄した(洗浄サンプルはMDCK細胞のみ)。
【0048】
5μgまたは10μgのAlexa Fluor(商標)488−標識トランスフェリン(Invitrogen)を、試験ウェルに添加した。トランスフェリンなしのウェルを自家蛍光コントロールとして用いた。次いで細胞を、37℃で2時間インキュベートした。
【0049】
インキュベーションを、冷PBS(2ml)中で細胞を洗浄すること(×2回)によって停止させた。冷トリプシン/EDTAを用いて細胞を剥がし(2ml)、培地を添加し(2ml)、その細胞を遠心沈殿させた。次いで、細胞を冷PBS(2ml)中で洗浄し(×2回)、PBS(0.5ml)中に懸濁した。
【0050】
フローサイトメトリーは、フルオロフォアに最適化された検出器を備える488nmのアルゴンレーザー光線を用いてフルオロフォア励起で行った。結果を
図3〜
図6に示す。
【0051】
図3A〜
図3Cは、生理食塩水コントロール(すなわち、オリゴウロン酸塩なし)で処理したMDCK細胞のフローサイトメトリーの結果を示す。
図4A〜
図4Cは、オリゴウロン酸塩で処理されたMDCK細胞のフローサトメトリーの結果を示す。
図5A〜
図5Cは、上記したように含まれる洗浄工程を伴い、オリゴウロン酸塩で処理されたMDCK細胞のフローサイトメトリーの結果を示す。各々の場合に、A図は、非トランスフェリンのコントロール曲線であり;B図は、コントロール曲線および5μgのトランスフェリンサンプル曲線の重ね合わせであり;C図は、コントロール曲線および10μgのトランスフェリンサンプル曲線の重ね合わせである。
【0052】
図6は、処理したHeLa細胞のフローサイトメトリーの結果を示す。この図は、非トランスフェリンコントロール曲線(左側のピーク)、オリゴウロン酸塩処理なしの5μgのトランスフェリンサンプルの曲線(薄い灰色の中央のピーク)、およびオリゴウロン酸塩処理ありでの5μgのトランスフェリンサンプル曲線(濃い灰色の右側のピーク)の重ね合わせである。
【0053】
これらのデータから、オリゴウロン酸塩での処理は、トランスフェリンの取り込みを改善することが明らかに示され得る(
図4A、
図4Bおよび
図6)。同時投与は取り込みを改善した(
図4)。しかしオリゴウロン酸塩での前処理とその後の細胞の洗浄では、引き続いて投与されたトランスフェリンの取り込みは増大しなかった(
図5)。
【0054】
実施例5
小腸粘液におけるマイクロビーズの移動度
ブタ小腸粘液を、直近に屠殺したブタの粘膜からかきとり、使用するまで凍結した。使用前に、この凍結した粘液を4℃で24時間にわたって解凍した。
【0055】
用いたマイクロビーズは、0.1μm、0.2μmおよび0.5μmの直径のFluoSpheres(商標)カルボン酸修飾、黄緑色蛍光マイクロスフェア(Invitrogen)であった。
【0056】
5.1 0.1μmおよび0.5μmの直径のマイクロビーズを用いる実験
コントロールのサンプルは、32μlの0.05M NaCl溶液を、260μgの小腸粘液(上記のように調製)に添加することによって調製し、1時間よく攪拌して、1時間平衡にさせた。8μlのマイクロビーズ(2%懸濁液)をボルテックスし、次いで粘液調製物に添加した。その混合物を1時間よく攪拌して、4℃で一晩平衡にさせた。
【0057】
オリゴウロン酸塩を含むサンプルは、0.05MのNaCl中の40mg/mlのオリゴウロン酸塩(重合度DP=20を有するG−ブロック)32μlを0.05MのNaCl溶液の代わりに用いたこと以外は、コントロールのサンプルについてと同様に調製した。
【0058】
サンプルを用いて、共焦点画像化チャンバを満たした。
【0059】
次いで、目的の領域を、488nmのアルゴンレーザー光線をフルパワーで用いて退色させ、拡散による光退色後蛍光回復(fluorescence recovery after photobleaching)(FRAP)を2%のレーザーパワーでモニターした。
【0060】
5.2 0.2μm直径のマイクロビーズを用いる実験:
ムチン(上記のように調製した)を、50mMのNaClに25mg/mlの濃度で可溶化した。オリゴウロン酸塩(重合度DP=20を有するG−ブロック)を、50mMのNaClに30mg/mlの濃度で可溶化した。
−マイクロビーズサンプル(ムチンなし)
16μlのマイクロビーズ懸濁液をボルテックスして、384μlの50mMのNaClに添加した。
最終濃度1.8×10
11ビーズ/ml
−ムチンサンプル(オリゴウロン酸塩なし)
16μlのマイクロビーズ懸濁液をボルテックスして、64μlの50mMのNaClおよび320μlのムチン溶液に添加した。
最終濃度1.8×10
11ビーズ/ml、20mg/mlムチン
−ムチンおよびオリゴウロン酸塩サンプル
16μlマイクロビーズ懸濁液をボルテックスして、64μlのオリゴウロン酸塩溶液に添加した。次いで、320μlのムチン溶液を添加した。
最終濃度1.8×10
11ビーズ/ml、20mg/mlのムチン、4.8mg/mlのオリゴウロン酸塩。
【0061】
サンプルを用いて、共焦点画像化チャンバを満たした。
【0062】
次いで、目的の領域を、488nmのアルゴンレーザー光線をフルパワーで用いて退色させ、拡散によるFRAPを5%のレーザーパワーでモニターした。
【0063】
5.3 結果:
結果を
図7、
図8および
図9に示す。
【0064】
図7は、小腸粘液における0.5μmのマイクロビーズのFRAPを示す。黒い下側の線は、コントロールのサンプル(オリゴウロン酸塩なし)であり、灰色の上側の線はオリゴウロン酸塩で処理したサンプル中の蛍光の回復を示す。
【0065】
図8は、小腸粘液中の0.1μmのマイクロビーズのFRAPを示す。黒い下側の線は、コントロールのサンプル(オリゴウロン酸塩なし)であり、灰色の上側の線はオリゴウロン酸塩で処理したサンプル中の蛍光の回復を示す。
【0066】
図9は、小腸粘液中の0.2μmのマイクロビーズのFRAPを示す。黒い下側の線は、コントロールのサンプル(オリゴウロン酸塩なし)であり、濃い灰色の上側の線は、ムチンなしのサンプルのFRAPを示し、2つの内側の線(濃い線および薄い線)は、オリゴウロン酸塩で処理したムチンサンプル中の蛍光の回復を示す。
【0067】
これらのデータによって、小腸の粘液は、サブミクロンの直径を有する粒子の拡散に対する有意な障壁であることが示される。オリゴウロン酸塩の添加は、粘液によってもたらされる拡散の障壁を有意に低減する。
【0068】
実施例6
胃のムチンの走査電子顕微鏡(SEM)
ムチン(上記のように調製したブタ胃ムチン)を50mMのNaClに25mg/mlおよび30mg/mlの濃度で可溶化させた。
【0069】
オリゴウロン酸塩(実施例5に記載のとおり)を、50mMのNaClに30mg/mlの濃度で可溶化させた。
【0070】
SEMサンプルは以下のように調製した:
−ムチン(25mg/ml)
336μlの30mg/mlのムチンを64μlの0.05MのNaClに添加して、混合した。
−ムチン(20mg/ml)
320μlの25mg/mlのムチンを80μlの0.05MのNaClに添加して混合した。
−ムチン(25mg/ml)+オリゴウロン酸塩
336μlの30mg/mlのムチンを64μlのオリゴウロン酸塩を含む0.05MのNaClに添加して、混合した。
−ムチン(25mg/ml)+オリゴウロン酸塩
320μlの30mg/mlのムチンを64μlのG−ブロックが含有される0.05MのNaClおよび16μlの0.05MのNaClに添加して、混合した。
【0071】
サンプルは、段階的なアセトン/水の中で脱水し、臨界点乾燥を用いて乾燥させ、走査電子顕微鏡によって可視化した。
【0072】
結果を
図10〜
図13に示す。
【0073】
図10および
図11は、それぞれオリゴウロン酸塩なしおよび4.8mg/mlのオリゴウロン酸塩を含む20mg/mlのムチンサンプルの構造を示す。
図12および
図13は、それぞれオリゴウロン酸塩なしおよび4.8mg/mlのオリゴウロン酸塩を含む25mg/mlのムチンサンプルの構造を示す。
【0074】
これらのデータによって、胃粘液へのオリゴウロン酸塩の添加は、ムチン基質のネットワーク構造の開放および細孔サイズの増大を生じることが示される。