特許第5795368号(P5795368)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ライフスキャン・スコットランド・リミテッドの特許一覧

特許5795368平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置
<>
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000074
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000075
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000076
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000077
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000078
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000079
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000080
  • 特許5795368-平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置 図000081
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5795368
(24)【登録日】2015年8月21日
(45)【発行日】2015年10月14日
(54)【発明の名称】平均の食事前と食事後のグルコース差のメッセージ表示について統計的検出力を確実にするための方法、システム、及び装置
(51)【国際特許分類】
   A61B 5/145 20060101AFI20150928BHJP
   G01N 33/49 20060101ALI20150928BHJP
【FI】
   A61B5/14 310
   G01N33/49 Y
【請求項の数】8
【全頁数】31
(21)【出願番号】特願2013-517514(P2013-517514)
(86)(22)【出願日】2011年6月30日
(65)【公表番号】特表2013-533783(P2013-533783A)
(43)【公表日】2013年8月29日
(86)【国際出願番号】GB2011000992
(87)【国際公開番号】WO2012001365
(87)【国際公開日】20120105
【審査請求日】2014年6月3日
(31)【優先権主張番号】61/360,137
(32)【優先日】2010年6月30日
(33)【優先権主張国】GB
(73)【特許権者】
【識別番号】510108582
【氏名又は名称】ライフスキャン・スコットランド・リミテッド
【氏名又は名称原語表記】LifeScan Scotland, Ltd.
(74)【代理人】
【識別番号】100088605
【弁理士】
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【弁理士】
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】ブライズ・スティーブン
(72)【発明者】
【氏名】マレチャ・マイケル
【審査官】 福田 裕司
(56)【参考文献】
【文献】 特開2009−037588(JP,A)
【文献】 国際公開第2008/013225(WO,A1)
【文献】 国際公開第2010/062898(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/145
G01N 33/49
(57)【特許請求の範囲】
【請求項1】
ユーザーに、食事事象付近の前記ユーザーの血糖データが既定の閾値を超えたことを警告するための糖尿病管理装置の作動方法であって、
前記糖尿病管理装置、特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集することと、
前記糖尿病管理装置のマイクロプロセッサ、前記特定の食事事象についての前記収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算することと、
前記マイクロプロセッサが、既定の有意水準(α)値及び既定の統計的検出力(1−β)値を決定し、その場合に、前記複数の食事前−食事後対(N)の数が、計算された試料規模(m)以上であることと、
前記マイクロプロセッサが、閾値(Δ)を超えているかどうか確認することと、
記閾値(Δ)を超えているという前記確認により、前記マイクロプロセッサが、前記特定の食事に関し、前記グルコース測定値の対の数についての前記値Dが前記閾値(Δ)を超えていることを前記ユーザーに出力することと、を含み、
前記確認が、式:
【数3】
の前記統計的試験の適用を含み、
式中、
【数4】
が、前記食事前−食事後対のグルコース濃度の差値の平均であり、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、
方法。
【請求項2】
前記決定が、等式:
【数1】
を用いて、前記計算された試料規模mを計算することを含み、
式中、mが、前記許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数2】
から得られる定数であり、
式中、z値が、特定の検出力に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値である、請求項1に記載の方法。
【請求項3】
前記確認が、以下のそれぞれの式:
【数5】
の量P及び臨界値Qを計算することを含み、
式中、
【数6】
が、前記食事前−食事後対のグルコース濃度の差値の平均であり、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模であり、
αN−1が、有意水準及び自由度に基づく統計表からの臨界値である、請求項に記載の方法。
【請求項4】
前記確認が、以下のそれぞれの式:
【数7】
の量P及び臨界値Qを計算することを含み、
式中、
【数8】
が、前記食事前−食事後対のグルコース濃度の差値の平均であり、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、請求項に記載の方法。
【請求項5】
ユーザーに、食事事象付近の前記ユーザーの血糖データが既定の閾値を超えたことを警告するための糖尿病管理装置の作動方法であって、
前記糖尿病管理装置が、流体試料中のグルコースを酵素的副産物に物理的に変換させ、前記流体試料のグルコース濃度に比例したある量の還元型の介在物質(例、フェロシアニド)を生成するように、複数のグルコース濃度測定を実施することと、
前記糖尿病管理装置が、前記複数のグルコース濃度測定を実施することで得た前記複数のグルコース濃度測定から特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集することと、
前記糖尿病管理装置のマイクロプロセッサが、前記特定の食事事象についての前記収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算することと、
前記マイクロプロセッサが、既定の有意水準(α)値及び既定の統計的検出力(1−β)値を決定し、その場合に、前記複数の食事前−食事後対(N)の数が、計算された試料規模(m)以上であることと、
前記マイクロプロセッサが、閾値(Δ)を超えているかどうか確認することと、
記閾値(Δ)を超えているという前記確認により、前記マイクロプロセッサが、前記特定の食事に関し、前記グルコース測定値の対の数についての前記値Dが前記閾値(Δ)を超えていることを前記ユーザーに出力することと、を含み、
前記確認が、式:
【数11】
の前記統計的試験の適用を含み、
式中、
【数12】
が、前記食事前−食事後対のグルコース濃度の差値の平均であり、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、
方法。
【請求項6】
前記決定が、等式:
【数9】
を用いて、前記計算された試料規模mを計算することを含み、
式中、mは、前記許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数10】
から得られる定数であり、
式中、z値が、特定の検出力に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値である、請求項に記載の方法。
【請求項7】
前記確認が、以下のそれぞれの式:
【数13】
の量P及び臨界値Qを計算することを含み、
式中、
【数14】
が、前記食事前−食事後対のグルコース濃度の差値の平均であり、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模であり、
αN−1が、有意水準及び自由度に基づく統計表からの臨界値である、請求項に記載の方法。
【請求項8】
前記確認が、以下のそれぞれの式:
【数15】
の量P及び臨界値Qを計算することを含み、
式中、
【数16】
が、前記食事前−食事後対のグルコース濃度の差値の平均であり、
sが、食事前と食事後の測定値のそれぞれの間の差値Dの標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、請求項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、35 USC§§119、120、又は365のもと、2010年6月30日に出願された米国特許仮出願第61/360,137号に対する優先権の利益を主張し、その出願は、参照によりその全体が本明細書に組み込まれる。
【背景技術】
【0002】
糖尿病の発生率は、現在、世界的に急上昇している。米国だけで4千4百万を超える人が前糖尿病性であると推定され、彼らはその状態に気付いていない。糖尿病は、血糖濃度の制御の損失を引き起こす。血糖制御の損失を介した糖尿病による合併症、特に高血糖(高血糖症)は、衰弱性であり、命にさえ関わる場合がある。そのような合併症を治療するための医療費は、莫大であり得る。
【0003】
画期的な研究である「糖尿病制御と合併症試験」(DCCT)が、USA及びカナダ全体のインスリン依存性糖尿病の1441人を対象として、9年(1984〜1993)にわたって実施され、糖尿病性合併症の発達及び進行に対する集中的なインスリン治療と従来のインスリン治療の効果が比較された。糖尿病患者は、心臓血管疾患、網膜症(眼疾患)、神経障害(神経損傷)、及び腎障害(腎臓疾患)をもたらす可能性がある微小血管疾患に関連する状態の危険性がある。他の糖尿病に関連した状態は、循環障害、心臓発作、及び脳卒中を含む。
【0004】
DCCT研究による結果は、従来の治療群のものと比較して、最も低い合併症の発生率が集中治療を受けたこれらの患者(平均8.6mmol/lの血糖レベル、及び約7%の糖化ヘモグロビン(HbA1c)を有するもの)の間で見られたことを示した。HbA1cは、患者の平均血糖濃度、又は典型的に過去2〜3ヶ月にわたる長期血糖状態の長期指標である。DCCT及び他の類似する研究は、長期糖尿病に関連する合併症を防止する最も効果的な方式が厳密な血糖レベルの制御によることを繰り返し示してきた。血糖レベル、よってHbA1cレベルを監視するための技法の1つは、市販のグルコース試験ストリップを使用して、血糖を測定することである。
【0005】
LifeScan,Inc.から入手可能なOneTouch(登録商標)Ultra(登録商標)全血試験キットに使用されるもの等の、電気化学的グルコース試験ストリップは、糖尿病の患者からの血液試料中のグルコースの濃度を測定するように設計される。グルコースの測定は、生成された電流が試料のグルコース含量に比例する、酵素グルコースオキシダーゼ(GO)によるグルコースの特定の酸化に基づく。血液中、特に糖尿病の人におけるグルコースの濃度を知ることは非常に重要であり得るため、一般の人々が、所与のいずれかの時点での彼らのグルコース濃度を判定するために、試料を採取し、彼らの血液を試験することができるように、試験測定器が開発された。生成された電流は、試験測定器によって検出され、単純な数式を介して試験電流をグルコース濃度に関連付けるアルゴリズムを使用して、グルコース濃度読み取りに変換される。一般に、そのような試験測定器は、酵素(例えば、グルコースオキシダーゼ)及び介在物質(例えば、フェロシアニド)に加え、典型的に試料受け取りチャンバ、及び試料受け取りチャンバ内に配置される少なくとも2つの電極を含む、使い捨て試験ストリップと共に動作する。使用中、患者は、出血を誘発するために彼らの指又は他の簡便な部位を穿刺し、血液試料を試料受け取りチャンバに導入することによって化学反応を開始させる。
【0006】
糖尿病の人々は、自身の疾患を管理するために、彼らの医師からのアドバイスと共に血糖測定器の使用に依存することが多い。加えて、糖尿病の人々は、自身のグルコース濃度測定値の経過を追うために、記録帳を使用することが多い。特定の状況において、記録帳形式で多数のグルコース濃度測定値を解釈することは、難しく、複雑で、時間がかかる場合がある。更なる複雑な事柄として、医師は、通常、多数のグルコース濃度測定値を解釈するために糖尿病の人々を補助するのに、制限された時間的制約がある。更に、患者に対するインスリンの効果又はインスリンの種類、並びに他の生理学的パラメータ若しくは外部パラメータを評価する必要がある医師によって、評価は更に複雑になることが多い。医師又は臨床医にとっての更なる障害は、医院を運営する経済状況による、患者の来院に課せられる時間的制約である。大半の場合において、医師又は臨床医は、典型的に、患者1人に対しておよそ7分未満を費やすと考えられており、これは、患者に対する評価又は指導の時間がほとんど、又は全くない。したがって、血糖データの簡単で、迅速な評価を提供する測定システムの必要性が存在する。
【発明の概要】
【課題を解決するための手段】
【0007】
一態様において、食事の前後に行われる血糖測定値間の差を調べることにより、患者の糖尿病の制御レベルを分析するために使用され得る糖尿病管理システム又はプロセスを提供する。特に、患者の血糖を監視する方法は、例えば、グルコース測定器等の適切な装置上に患者の血糖データを保存する工程を含んでもよい。糖尿病管理システム又はプロセスは、これらに限定されないが、例えば、グルコース測定器、パーソナルコンピュータ、インスリンペン、又はインスリンポンプ上にインストールされ得る。糖尿病管理システムは、採取した食事前と食事後の血糖測定値の数を監視する、並びに食事前と食事後の値の各対間の差Dを計算することができる。食事前と食事後の結果との間の計算された差Dの標準偏差が、所定の閾値と有意に異なる場合、メッセージ又はグラフ指示がユーザーに表示され得る。メッセージは、あらゆる処方された糖尿病レジメンのコンプライアンスを確実にするため、又は患者が自身の糖尿病を管理する指針となるように、彼らの状態を良好に管理する方式としてユーザーに案を提供することができる。
【0008】
一態様において、糖尿病管理装置を用いて、食事事象付近のユーザーの血糖データが所定の弁別閾値を超えたことをユーザーに警告する方法を提供する。本方法は、糖尿病管理装置を用いて、特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集する工程と、糖尿病管理装置のマイクロプロセッサを用いて、特定の食事事象についての収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算する工程と、特定の食事事象における食事前と食事後測定値のN対の数が、計算された試料規模(m)以上であることを、事象において、マイクロプロセッサを用いて判定する工程と、許容可能な確実性レベルで閾値(Δ)を超えているかどうかに関して、少なくとも1つの統計的試験を用いて確認する工程と、許容可能な確実性レベルで閾値を超えているという確認により、特定の食事について、グルコース測定値の対の数における値Dが閾値(Δ)を超えていることをユーザーに出力する工程と、によって達成され得る。
【0009】
更なる態様において、食事事象付近のユーザーの血糖データが所定の弁別閾値を超えたことを糖尿病管理装置を用いてユーザーに警告する方法を提供する。本方法は、糖尿病管理装置を用いて、特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集する工程と、糖尿病管理装置のマイクロプロセッサを用いて、特定の食事事象についての収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算する工程と、特定の食事事象における食事前−食事後測定値のN対の数が、計算された試料規模(m)以上であることを、事象において、マイクロプロセッサを用いて判定する工程であって、該判定する工程が、等式:
【数1】
を用いて、計算された試料規模mを計算することを含み、
式中、mが、許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数2】
から得られる定数であり、
式中、z値が、特定の検出力に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値である、工程と、
許容可能な確実性レベルで閾値(Δ)を超えているかどうかに関して、少なくとも1つの統計的試験を用いて確認する工程と、許容可能な確実性レベルで閾値を超えているという確認により、特定の食事について、グルコース測定値の対の数における値Dが閾値(Δ)を超えていることをユーザーに出力する工程と、によって達成され得る。
【0010】
また別の態様において、食事事象付近のユーザーの血糖データが所定の弁別閾値を超えたことを糖尿病管理装置を用いてユーザーに警告する方法を提供する。本方法は、糖尿病管理装置を用いて、特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集する工程と、糖尿病管理装置のマイクロプロセッサを用いて、特定の食事事象についての収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算する工程と、特定の食事事象における食事前−食事後測定値のN対の数が、計算された試料規模(m)以上であることを、事象において、マイクロプロセッサを用いて判定する工程であって、該判定する工程が、等式:
【数3】
を用いて、計算された試料規模mを計算することを含み、
式中、mが、許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数4】
から得られる定数であり、
式中、z値が、特定の検出力に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値である、工程と、
許容可能な確実性レベルで閾値(Δ)を超えているかどうかに関して、少なくとも1つの統計的試験を用いて確認する工程と、許容可能な確実性レベルで閾値を超えているという確認により、特定の食事について、グルコース測定値の対の数における値Dが閾値(Δ)を超えていることをユーザーに出力する工程であって、該確認する工程が、式:
【数5】
の統計的試験の適用を含み、
式中、
【数6】
が、試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の試料規模である、工程と、によって達成され得る。
【0011】
別の態様において、食事事象付近のユーザーの血糖データが所定の弁別閾値を超えたことを糖尿病管理装置を用いてユーザーに警告する方法を提供する。本方法は、糖尿病管理装置を用いて、特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集する工程と、糖尿病管理装置のマイクロプロセッサを用いて、特定の食事事象についての収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算する工程と、特定の食事事象における食事前−食事後測定値のN対の数が、計算された試料規模(m)以上であることを、事象において、マイクロプロセッサを用いて判定する工程であって、該判定する工程が、等式:
【数7】
を用いて、計算された試料規模mを計算することを含み、
式中、mが、許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数8】
から得られる定数であり、
式中、z値が、特定の検出力に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値である、工程と、
許容可能な確実性レベルで閾値(Δ)を超えているかどうかに関して、少なくとも1つの統計的試験を用いて確認する工程と、許容可能な確実性レベルで閾値を超えているという確認により、特定の食事について、グルコース測定値の対の数における値Dが閾値(Δ)を超えていることをユーザーに出力する工程であって、該確認する工程が、以下のそれぞれの式:
【数9】
の量P及び臨界値Qを計算することを含み、
式中、
【数10】
が、試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の試料規模であり、
α,N−1は、有意水準及び自由度に基づく統計表からの臨界値である、工程と、によって達成され得る。
【0012】
また更なる態様において、食事事象付近のユーザーの血糖データが所定の弁別閾値を超えたことを糖尿病管理装置を用いてユーザーに警告する方法を提供する。本方法は、糖尿病管理装置を用いて、特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集する工程と、糖尿病管理装置のマイクロプロセッサを用いて、特定の食事事象についての収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算する工程と、特定の食事事象における食事前−食事後測定値のN対の数が、計算された試料規模(m)以上であることを、事象において、マイクロプロセッサを用いて判定する工程であって、該判定する工程が、等式:
【数11】
を用いて、計算された試料規模mを計算することを含み、
式中、mが、許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数12】
から得られる定数であり、
式中、z値が、特定の検出力に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値である、工程と、
許容可能な確実性レベルで閾値(Δ)を超えているかどうかに関して、少なくとも1つの統計的試験を用いて確認する工程と、許容可能な確実性レベルで閾値を超えているという確認により、特定の食事について、グルコース測定値の対の数における値Dが閾値(Δ)を超えていることをユーザーに出力する工程であって、該確認する工程が、以下のそれぞれの等式:
【数13】
の量P及び臨界値Qを計算することを含み、
式中、
【数14】
が、試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定の対の試料規模である、工程と、によって達成され得る。
【図面の簡単な説明】
【0013】
本明細書に援用する明細書の一部をなす添付図面は、現時点における本発明の好適な実施形態を示したものであって、上記に述べた一般的説明並びに下記に述べる詳細な説明とともに、本発明の特徴を説明する役割を果たすものである(同様の数字は同様の要素を表す)。本発明の特徴及び利点は、次の、本発明の原理が利用される例示的な実施形態を記載する以下の発明を実施するための形態、並びに添付の図面を参照することによって、詳細に理解されるであろう。
図1A】検体測定及びデータ管理ユニット、並びにデータ通信装置を含む糖尿病管理システムの図示。
図1B】簡略図で、糖尿病データ管理ユニットの例示的回路基板の図示。
図2A】統計分析用の試料対信頼区間の規模の図示。
図2B】更なる分析に必要なデータの精度において十分な確実性を提供する計算された試料の数mを判定するための方法。
図3A】特定の食事における異なるいくつかの食事前と食事後のグルコース測定値がユーザーへの警告を必要とするのに十分に事前設定された閾値を超えたかどうかを判定する方法。
図3B】特定の食事における異なるいくつかの食事前と食事後のグルコース測定値が、ユーザーへの警告を保証するため事前設定された閾値を十分に超えたかどうかを判定するのに、計算にあまり集中しない代替的な方法。
図4】臨界値tα,N−1の単純近似と比較した、Qα,Nの真の関数の例示的プロット。
図5】ポータブルの携帯用糖尿病管理ユニットを介して患者に表示されるメッセージの例示的実施形態を示す。
【発明を実施するための形態】
【0014】
以下の詳細な説明は、図面を参照しつつ読まれるべきもので、異なる図面中、同様の要素は同様の参照符号にて示してある。図面は必ずしも一定の縮尺を有さず、選択した実施形態を示したものであって、本発明の範囲を限定するものではない。詳細な説明は本発明の原理を限定するものではなく、あくまでも例として説明するものである。この説明文は、当業者による発明の製造及び使用を明確に可能ならしめるものであり、出願時における発明を実施するための最良の形態と考えられるものを含む、発明の複数の実施形態、適応例、変形例、代替例、並びに使用例を述べるものである。
【0015】
本明細書で任意の数値や数値の範囲について用いる「約」又は「およそ」という用語は、構成要素の部分又は構成要素の集合が、本明細書で述べるその所望の目的に従って機能することを可能とするような適当な寸法の許容誤差を示すものである。更に、本明細書で用いられる「患者」、「ホスト」、「ユーザー」、及び「被験者」なる語は、いずれかのヒト又は動物被験対象を指し、ヒト患者における本発明の使用は好ましい実施形態であるが、システム又は方法をヒトへの使用に制限することは意図されない。
【0016】
図1Aは、検体測定及び管理ユニット10、治療用投与装置(28又は48)、並びにデータ/通信装置(68、26、又は70)を含む糖尿病管理システムを図示する。検体測定及び管理ユニット10は、本明細書に記載されるように、例えばインスリンペン28、インスリンポンプ48、携帯電話68等の携帯用グルコース−インスリンデータ管理ユニット、即ちDMUと、又はパーソナルコンピュータ26若しくはネットワークサーバー70と通信する例示的な携帯用グルコース−インスリンデータ管理ユニット装置の組み合わせを通じて、無線で通信するように構成されてもよい。本明細書で使用する時、用語「DMU」は、個々のユニット10、28、48、68を別々に、又は疾患管理システムにおいて共に使用可能である携帯用グルコース−インスリンデータ管理ユニット(28、48、68)全ての、いずれかを表す。更に、分析物測定及び管理ユニット、即ちDMU 10は、グルコース測定器、測定器、検体測定装置、インスリン送達装置、又は分析物試験及び薬剤送達装置の組み合わせを含むことが意図されている。一実施形態において、検体測定及び管理ユニット10は、ケーブルを用いてパーソナルコンピュータ26に接続されてもよい。代替として、DMUは、好適な無線技術、例えば、GSM、CDMA、BlueTooth、WiFi等を介して、コンピュータ26又はサーバ70に接続されてもよい。
【0017】
図1Aに図示されるように、グルコース測定器10、即ちDMUには、ハウジング11、ユーザーインターフェースボタン(16、18及び20)、ディスプレイ14、ストリップポートコネクタ22、及びデータポート13が含まれる。ユーザーインターフェースボタン(16、18及び20)は、データの入力、メニューのナビゲーション、及びコマンドの実行を可能とするように構成することができる。データには、検体濃度及び/又は患者の日常の生活習慣に関連した情報を表す値を挙げることができる。日常の生活習慣に関連した情報には、食物の摂取、薬の使用、健康診断の実施、並びに個々の一般的な健康状態及び運動レベルを挙げることができる。具体的には、ユーザーインターフェースボタン(16、18及び20)には、第1のユーザーインターフェースボタン16、第2のユーザーインターフェースボタン18、及び第3のユーザーインターフェースボタン20が含まれる。ユーザーインターフェースボタン(16、18及び20)には、ユーザーがユーザーインターフェースをナビゲートすることを可能にする第1のマーキング17、第2のマーキング19、及び第3のマーキング21がそれぞれ含まれる。
【0018】
測定器10の電子構成要素は、ハウジング11内部の回路基板34上に配置することができる。図1Bは、それぞれ、回路基板34の上面上(図示せず)に配置された電子構成要素を(概略的な形で)図示する。上面の電子構成要素には、ストリップポートコネクタ22、オペアンプ回路35、マイクロコントローラ38、ディスプレイコネクタ14a、不揮発性メモリ40、クロック42、及び第1の無線モジュール46が含まれる。マイクロコントローラ38は、ストリップポートコネクタ22、オペアンプ回路35、第1の無線モジュール46、ディスプレイ14、不揮発性メモリ40、クロック42、及びユーザーインターフェースボタン(16、18、及び20)に電気的に接続することができる。
【0019】
オペアンプ回路35は、ポテンシオスタット機能及び電流測定機能の一部を提供するように構成された2つ以上のオペアンプを含むことができる。ポテンシオスタット機能とは、試験ストリップの少なくとも2つの電極間に試験電圧を加えることを指し得る。電流機能とは、加えられた試験電圧によって生じる試験電流を測定することを指し得る。電流測定は、電流電圧変換器によって行うことができる。マイクロコントローラ38は、例えばTexas Instrument MSP 430などの混合シグナルマイクロプロセッサ(MSP)の形態であってよい。MSP 430は、ポテンシオスタット機能及び電流測定機能の一部を行うように構成することもできる。更に、MSP 430は、揮発性及び不揮発性メモリを含むこともできる。別の実施形態において、電子構成要素の多くを特定用途向け集積回路(ASIC)の形態でマイクロコントローラに組み込むことができる。
【0020】
ストリップポートコネクタ22は、試験ストリップと電気的接続を形成するように構成することができる。ディスプレイコネクタ14aは、ディスプレイ14に取り付けるように構成することができる。ディスプレイ14は、測定された血糖値を報告し、生活習慣に関連した情報の入力を容易にするための、液晶ディスプレイの形態であってよい。ディスプレイ14は、バックライトを含むことができる。データポートは、接続リード線に取り付けられた好適なコネクタを受容することにより、グルコース測定器10をパーソナルコンピュータ等の外部装置に接続するために提供され得る。データポートは、例えば、シリアル、USB、又はパラレルポート等、データ送信が可能ないずれのポートであってもよい。クロック42は、ユーザーが位置する地理的領域に関連する現在時刻を維持し、また時間を計測するように構成され得る。DMUは、例えば、電池などの電源に電気的に接続されるように構成され得る。
【0021】
例示的な一実施形態では、試験ストリップ24は、電気化学的グルコース試験ストリップの形態であり得る。試験ストリップ24は、1つ以上の作用電極及び対電極を含んでよい。試験ストリップ24は、更に複数の電気的接触パッドを含んでもよく、その場合、各電極は、少なくとも1つの電気的接触パッドと電気的に連通してもよい。ストリップポートコネクタ22は、電気的接触パッドと電気的にインターフェースし、電極と電気的に連通しているように構成されてよい。試験ストリップ24は、少なくとも1つの電極上に配置されている試薬層を含んでよい。試薬層は、酵素及び介在物質を含み得る。試薬層に使用するのに適した例示的な酵素としては、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ(ピロロキノリンキノン補因子「PQQ」とともに)、及びグルコースデヒドロゲナーゼ(フラビンアデニンジヌクレオチド補因子「FAD」とともに)が挙げられる。試薬層に使用するのに適した例示的な介在物質としては、フェリシアニドがあり、この場合では酸化型である。試薬層は、グルコースを酵素的副産物に物理的に変換させ、その過程でグルコース濃度に比例したある量の還元型の介在物質(例、フェロシアニド)を生成するように構成することができる。この後、作用電極によって還元型の介在物質の濃度を電流の形態で測定することができる。次いで、グルコース測定器10は電流の大きさをグルコース濃度に変換することができる。好ましい試験ストリップの詳細は、米国特許第6179979号、同第6193873号、同第6284125号、同第6413410号、同第6475372号、同第6716577号、同第6749887号、同第6863801号、同第6890421号、同第7045046号、同第7291256号、同第7498132号に提供されており、当該特許の全ては、参照によりその全体が本明細書に組み込まれる。
【0022】
再び図1Aを参照すると、インスリンペン28は、好ましくは細長く、人の手で快適に扱えるような充分な大きさを有するハウジングを含んでもよい。装置28には、ユーザーによって投与される用量を記録するための電子モジュール30が設けられてもよい。装置28のハウジング内には、ユーザーから指示されることなく自動的にDMU 10の第1の無線モジュール46に信号を送信する、第2の無線モジュール32が配置されてもよい。例示的な一実施形態における無線信号としては、(a)投与される治療薬の種類、(b)ユーザーに投与される治療薬の量、又は(c)治療薬の投与の時間及び日付のデータが含まれる。
【0023】
一実施形態では、治療用送達装置は「ユーザー起動型」の治療用送達装置の形態であってよく、この装置は、1回の治療薬送達事象を開始するために、装置とユーザーとの間で手による相互作用(例えば、ユーザーが装置のボタンを押すことによる)を必要とし、こうした手による相互作用がなければユーザーに治療薬を送達しない。こうしたユーザー起動型の治療薬投与装置の非限定的な例が、同時係属中の米国特許非暫定出願第12/407173号(代理人整理番号LFS−5180USNPにより暫定的に識別される)、同第12/417875号(代理人整理番号LFS−5183USNPにより暫定的に識別される)、及び同第12/540217号(代理人整理番号DDI−5176USNPにより暫定的に識別される)に述べられており、これらの出願の全容を参照により本願に援用するものである。こうしたユーザー起動型の治療薬送達装置の別の非限定的な例は、インスリンペン28である。インスリンペンにはインスリンの容器又はカートリッジを装填することができ、使い捨ての針に取り付けることができる。インスリンペンの各部分が再使用可能であってもよく、インスリンペンが完全に使い捨てであってもよい。インスリンペンはNovo Nordisk、Aventis、及びEli Lillyなどの会社から市販されており、Novolog、Humalog、Levemir及びLantusといった各種のインスリンとともに使用することができる。
【0024】
図1Aを参照すると、治療用投与装置はまた、ハウジング50、バックライトボタン52、アップボタン54、カートリッジキャップ56、ボーラスボタン58、ダウンボタン60、バッテリーキャップ62、OKボタン64、及びディスプレイ66を含むポンプ48であってもよい。ポンプ48は、例えば血糖値を調節するためのインスリンなど薬物を分配するように構成することができる。
【0025】
患者によって行われる各個々の測定は、DMU 10のメモリに保存され得、対応するデータ及び時間で印が付けられてもよく、血糖が数日間連続して平均で所与の食事時間付近でどのように変動するかを見るのに有用であり得るため、食事前と食事後等の追加の印が付けられてもよい。各測定が、例えば、朝食前、朝食後、昼食前、昼食後、夕食前、又は夕食後の特定のスロットの範囲内に入ることを確実にするために、特定の時間期間が測定器のソフトウェアにプログラムされてもよい。患者に、自身の状態の管理に関してメッセージ表示を提供することが、本発明の態様であり、具体的なメッセージは、患者の測定データによる。しかしながら、好ましい実施形態によると、患者へのそのようなメッセージの送達は、特定の信頼レベルでメッセージ表示を提供することができるように、装置、例えばグルコース監視測定器のメモリ内に保存される十分な数の測定結果が存在することに依存し得る。例示的実施形態では、必要な信頼レベル、例えば、95%又は99%は、以下の図に関してより詳細に説明されるように、固定の有意水準並びに固定の統計的検出力レベルを使用することにより達成され得る。
【0026】
食事前と食事後のグルコース濃度Dにおける閾値差が、異なるメッセージ表示をするために設定されている場合、統計的有意性及び検出力の問題が生じる。偽陽性(食事前と食事後の平均に差はないが、メッセージは差があると示す)及び偽陰性(食事前と食事後との間の平均に差はあるが、メッセージは差がないと示す)は、患者の判断を誤らせ得、患者に危険である可能性がある。そのような事象の危険性は、したがって、制御される必要がある。
【0027】
統計的試験の検出力は、試験が偽の帰無仮説(すなわち、偽陰性)を拒絶する確率である。検出力が増加すると、不正確に帰無仮説を拒絶する確率が減少する。データ収集前の検出力分析の実施は、典型的に、適切な検出力を達成するための適当な試料規模を判定するために使用される。統計的試験の検出力は、試験が試料集団間で有意差を見出す確率である。統計的検出力は、試験の有意水準及び試料規模に依存し、したがって、試験の検出力を増加させるための一方式(即ち、偽であるとき、帰無仮説を正確に拒絶する可能性を増加させる)は、有意水準を増加させる、又は低下させることである。しかしながら、有意水準の低下は、帰無仮説が実際に真であるときに統計的に有意な結果を得る、即ち、偽陽性結果を得る危険性を増加させる。
【0028】
更に、ユーザーが時間とともに自身の糖尿病を制御できるようになると、彼らが検出したいと願うグルコースの食事前/食事後の平均の変化の規模が減少するはずである。有意水準(α)が偽陽性の数を制御し、統計的検出力(1−β)が偽陰性の数を制御するとすれば、固定の試料規模が使用される場合、試験の統計的検出力、即ち、ユーザーが偽陰性を得る確率は、変動する。患者に偽陰性を提供することは、彼らがインスリンを自分で注射する等の行動をとるという危険な可能性があり、これは、彼らに提供された結果又はメッセージが不正確であった場合、不適切な行動であり得る。したがって、測定データを分析し、患者に提供される結果を判定するために使用される試料規模を含む測定値の数を変動させる統計的試験の有意水準及び統計的検出力を固定することが出願者の意図である。
【0029】
一般用語において、DMU 10は、食事前と食事後の測定結果の各対間の差Dの標準偏差(SD)が妥当な信頼性によって推定され得るまでの期間、各食事時間における食事前と食事後のグルコースの結果を監視する。SDの95%信頼区間は、
【数15】
によって提供され、
式中、σが、真のSDであり、
nが、試料の規模であり、
sが、推定(測定値)SDであり、
χ値が、統計的な分布の表集計値を指す。
【0030】
試料規模「n」に固定された規則はないが、図2Aから、n=20以上の試料規模(矢印102により示される地帯に近接)が、区間において収束を提供するはずであることが分かる。しかしながら、通常のそのような統計的計算の使用は、関連タイプ1及び2の誤差をもたらす、即ち、偽陰性結果又は偽陽性結果を患者に提供する。
【0031】
したがって、出願者は、本開示において、食事の都度、常に固定の統計的検出力及び有意性を維持する食事前/食事後のグルコース変化を試験する方法を実施することを提案する。
【0032】
図2Bから、食事前のグルコース濃度の測定結果(例えば、2時間等の、食事前の既定の期間)は、DMU 10を使用して、患者により得られ、その後、工程202で、監視装置のメモリに保存される。次に、対応する食後のグルコース測定値(例えば、2時間等の食後の既定の期間)が取得され、同様に保存される(工程204)。その後、食事前と食事後の測定値の間の差Dが計算され、保存される(工程206)。差値Dは、特定の食事時間、例えば昼食の間に、患者が経験したグルコース濃度の変化の指標となる。彼らの身体が、より安定した血糖レベルを維持するために必要なインスリンを生成することができないため、糖尿病患者のグルコース濃度が、食物を摂取した後に増加するのは典型的である。これらの高グルコース濃度の期間又は「スパイク」は、例えば、網膜症(眼疾患)、神経障害(神経損傷)、及び腎障害(腎疾患)、循環障害、心臓発作、並びに脳卒中を引き起こす場合がある微小血管疾患等の糖尿病関連状態の危険性の増加により、患者の長期にわたる健康に損害を与える可能性があり得る高血糖の期間である。
【0033】
加えて、試料規模を含む食事前と食事後の測定結果の対の数Nは、差Dの標準偏差(SD)が、必要とされる統計的信頼性のレベル、例えば95%で推定することが可能であるように十分な数のデータ点を試料が含んでいるかどうかを判定するために、統計的に分析され得る(工程208)。
【0034】
全ての個々の測定結果、並びにそれらの間の計算された差D、及び標準偏差sは、装置DMU 10のメモリ内に保存され得る。一実施形態では、1つの閾値差値Δが保存され、いずれかの食事時間による測定データの比較として使用され得る。別の実施形態では、1つ以上の閾値差値Δが保存され、それによって、各個々の食事時間は、特定の対応する閾値差値Δを有してもよい(工程216)。
【0035】
工程216の閾値Δは、製造中に装置、例えばグルコース測定器又は携帯電話内のデフォルト値に初期設定されてもよく、個々の患者の個々の管理レジメンに、より厳密に合致するようにユーザー又はHCP設定可能であってもよい。血糖濃度を制御するために、閾値差値はまた、患者の血糖濃度をより厳密に管理するように設定可能であってもよい。
【0036】
統計的検出力1−βのレベル(工程212)と同様に、少なくとも事前設定された閾値Δの差を検出するために、片側t検定の有意水準αが提供される(工程210)。有意水準α及び統計的検出力(1−β)は、本発明の一例示的実施形態において、製造時に既定されてもよく、例えば、ユーザー又はHCPによって設定が可能でなくてもよい。他の実施形態では、α及び(1−β)は、設定可能であってもよい。
【0037】
少なくとも既定の閾値Δより上の食事前と食事後の測定値の各N対において、既定の有意水準(α)及び統計的検出力(1−β)との差を検出するために、試料規模「m」に対するα及びβの作用が、予め計算された定数「K」の形式で工程214で実装され得:
【数16】
式中、それぞれのz値が、適当な確率を有する標準変量の値と対応する。そのような統計的方法は、当該術分野において周知であり、本明細書において更に詳細に説明されない。
【実施例】
【0038】
(実施例1)
図示される一実施形態では、80%の特定の検出力(妥当性に典型的に使用される標準レベル)を使用して、β=1−80/100=0.2の値を得、これは、適当な標準統計表又は関数から値zβ=0.8416を生成する。更に、α=5%(即ち、5%有意性)の100α%の片側検定において、同じく統計表からzα/2=1.6449を得た。したがって、上に提示する「K」の等式に従うと、この例は、
【数17】
の定値をもたらす。
【0039】
特定の有意水準で、特定の検出力を有する事前設定された閾値Δを検出するために、統計的試験の試料規模「m」は、したがって、少なくとも、
【数18】
であり得る。
一般に、これは整数ではないため、より一般的な使用は、工程218:
【数19】
である。
【0040】
本実施例を続けると、工程218でたった今計算した定数「K」を得て、標準偏差(SD)の半分であるΔの閾値を検出するために必要な最小試料規模「m」は、
【数20】
として計算され得る。
【0041】
特定の食事事象(例えば、昼食)におけるいくつかの食事前と食事後の測定値のN対が、値m以上である場合、適当な確実性のレベルで閾値を超えたかどうかを確認するために、適切な統計的試験(例えば、片側検定)が使用され得る(工程220)。
【0042】
図3Aは、図2Bに関して説明されるように、既定の有意水準α及び統計的検出力(1−β)にも合致しつつ、少なくとも既定の閾値Δの差を検出することができるために必要とされる試料規模「N」の判定に関与する工程を図示する。
【0043】
最初に、特定の食事、例えば昼食等の、対形成された食事前と食事後のグルコース濃度測定値が、患者によって取得され、彼らの測定器のメモリ内に保存される(工程302及び304)。次に、食事前と食事後の測定値の平均差値
【数21】
及び標準偏差「s」が、工程306で計算される。
【0044】
有意差が2つの平均値間で存在するかどうかを検出するために典型的に使用される統計的試験は、片側t検定であり得る。これは、通常、一例示的実施形態において、工程310(又は図3Bの工程308’)で推定され得る、平均の食事前/食事後差
【数22】
が閾値Δ未満又はそれに等しい帰無仮説H、及び平均差
【数23】
が閾値Δ(工程312(又は図3Bの工程309’))より大きい対立仮説Hとして示される。片側検定が利用され得るかを判定するために、工程307の論理演算子は、試料規模N及び有利水準αが既知であるかを判定する。真であれば、論理は工程307から工程308に流れる。
【0045】
その後、平均
【数24】
標準偏差「s」、及び閾値Δを使用して、片側t検定が工程308で実行され得る。例えば、試験量Tは、
【数25】
として計算され得、
式中、
【数26】
は、工程306で計算された、試料の平均の食事後−食事前の差である。次いで、得られたTの値は、t検定の適当な統計表から導き出された臨界値tα,N−1と比較される。表1は、t検定の適当な統計表の例を示す。
【表1】
【0046】
典型的に、Tが有意水準α及び試料規模Nによって設定されたt分布の臨界値tα,N−1を超える場合、帰無仮説Hは、Δが超えた対立仮説を選択して拒絶される。本発明の例示的実施形態によると、有意水準αは、既定されてもよいが、試料規模「N」は、例えば製造時に既定又は固定されなくてもよく、したがって、既知ではないため、計算に使用することができない。前述のように、本計算は、適当なt分布表を調べることができるために、予め有意水準α及び試料規模「N」の両方が既知であることに依存している。
【0047】
一例示的実施形態では、α及びNが両方とも既知であると仮定すると、得られた「T」の値は、工程310で、臨界値tα,N−1と比較され、Tが臨界値tα,N−1を超えない場合、帰無仮説Hは、対立仮説Hを選択して拒絶され(工程312)、適当なメッセージが、工程314で、ユーザーに表示され得る。ユーザーに表示されるメッセージの例は、図5に関して示され、説明される。しかしながら、Tが工程310で臨界値tα,N−1を超えない場合、以前に値Δを超えたかを判定するために、工程316でクエリーが作製される。工程316で真の場合、論理は、仮説H1を受け入れ、適当なメッセージ表示が、工程320で、ユーザーに表示され得る。工程316で真ではない、即ち、以前に値Δを超えていない場合、帰無仮説Hが受け入れられ、論理は302に戻る。
【0048】
しかしながら、代替的に、試料規模「N」は、既知又は既定されていなくてもよい。試料規模を含む測定結果の数は、少なくとも閾値Δの差が、必要とされる信頼区間で食事前と食事後のグルコース測定値の間の差の標準偏差から検出され得ることを確実にするために、可変である。そのような場合、工程307の論理の流れは、これが上述の臨界値tα,N−1をどのように得るかの問題を未解決のまま残すことを意味する偽を返す。これを達成するための多くの方式があり、問題の修正再表示を利用するその例をここに示す。Tを臨界値tα,N−1と比較することは、量P及び臨界値Qα,Nを比較することと同等であり、これは、以下の
【数27】
臨界値
【数28】
のように判定される。
【0049】
工程309でα=5%の場合、推定される臨界値Qα,Nは、非常に大きい値のNに対しても、図4においてここに示される単純な関数:
【数29】
によって良好に近似され、
関数は、図4に示される。図4において、線402は、Q0.05,Nのいくつかの値がt0.05,N及びNの関数として計算される等式8を使用して生成される。線402の形状に基づき、出願者は、線402を近似するために、経験的なフレームワークとして関数Y=a×N−bを選択する。最小化ソフトウェアルーチンを経験的関数Y=a×N−bに適用した後、a及びbの関連する定数を有する等式10が導かれる。P及びQ0.05,Nの使用には、計算的であり、かつ/又は携帯用装置内のメモリ集中型プロセスである、メモリに保存されるt表又はt表の計算を必要としないことに留意する。よって、P及びQ0.05,Nの使用は、T及びt0.05,Nの使用よりも計算的により単純であり、それ故に、マイクロプロセッシングの出力及びメモリの量を低減する。
【0050】
以下は、tの値を推定するのに必要な計算的に集中的な計算の例を示す。等式10において、f(t)は、スチューデントt変量の確率密度関数であり、n−1の自由度である。
【数30】
【0051】
用語
【数31】
は、ガンマ関数である。Xは、有意水準100α%の片側有意試験において所望の臨界値であってもよく、Xは、積分方程式
【数32】
の解である。関数F(t)は、t変量の累積分布関数であり、I(a,b)が不完全ベータ関数である、関係
【数33】
を使用して計算され得る。参考までに、不完全ベータ関数を数値的に評価するためのコンピュータコードは、t計算の複雑さを図示する「Numerical Recipes in C」の本のオンラインバージョンの一部である、http://www.fizyka.umk.pl/nrbook/c6−4.pdfで見ることができる。
【0052】
図2Bを参照に先に述べたように、標準偏差(SD)が最初に計算され、次に、最小試料規模「m」、その後、食事前と食事後のm対の読み取りが行われるまで待ち、試験の検出力が制御される。固定の統計的検出力(1−β)を維持するために、この方式で試料規模「m」を変動させることにより、患者に表示される偽陰性の確率を最小にすることができる。その後、図3Aを参照すると、本方法は、量Pを計算し、工程309で(等式8〜9より)同等の臨界値Q0.05,Nを得る。
【0053】
本明細書で説明される方法は、個々の読み取りがどれだけ可変であり得るか(SDがどれだけ大きいか)に関わらず、統計的検出力を制御するために使用され得る。患者が時間とともに彼らの状態を制御できるようになると、検出される食事前/食事後の平均のグルコース変化の規模は、減少するが、統計的検出力、即ち偽陰性の制御は、それでも、試料規模「m」を含む測定結果の数を修正することによって維持され得る。試料規模「m」の規模は、検出される既定の閾値Δの相対的規模に関して変動してもよい、即ち、より小さい食事前/食事後の平均のグルコース変化は、必要とされる信頼区間と合致しつつも、差を検出するためにより小さい試料規模「N」を必要とする場合があると思われる。
【0054】
図4は、等式9から生成した単純な近似と比較した、Qα、N 402の真の関数の比較を示すプロット400である。
【0055】
図4は、単純な近似404が5%の有意水準αで、臨界値関数402の真の関数にいかに近接して合致するかを示す。単純な近似404は、非常に小さい試料規模並びに非常に大きい試料規模を含む、広範な試料規模「N」にわたって、真の関数402に対して得た曲線と近接して合致する。本明細書に記載する目的において、単純な近似404が真の関数402と等しく、したがって、試料規模「N」の値が計算され得ると仮定することは、妥当である。
【0056】
最終工程は、図3Aに関する説明に概説されるどの仮説が試験によって支持されているかを利用すること、そして図5に関して説明されるように、それに応じて適当なメッセージ表示を選択することである。310での論理演算が、Tが臨界値tα、N−1より大きいと判定した場合、閾値Δを超えた(そして対立仮説Hが選択される)という結論が工程312で出され、図5の510等のメッセージが表示される。一方、工程310で、Tが臨界値tα、N−1未満、又はそれと等しい場合、閾値Δを超えなかった(よって、帰無仮説が選択される)という判定が工程316で出される。
【0057】
図3Aの単純化されたアルゴリズムが意図される代替的な実施形態では、図3Bのプロセスの流れが、一定期間にわたって、各食事事象に利用され得る。最初に、特定の食事、例えば昼食等の、対形成された食事前と食事後のグルコース濃度測定値が、患者によって取得され、彼らの測定器のメモリ内に保存される(工程302’及び304’)。次に、食事前と食事後の測定値の平均差値
【数34】
及び標準偏差「s」が、工程306’で計算される。これは、通常、一例示的実施形態において、平均の食事前/食事後の差
【数35】
が、閾値Δ未満又はそれに等しい帰無仮説H(工程308’)、及び平均差
【数36】
が工程312’で閾値Δより大きい対立仮説H(工程309’)として示される。308’で論理演算が、食事前/食事後差
【数37】
が閾値Δ未満又はそれと等しいと判定する場合、以前に閾値Δを超えたかどうかについて、クエリーが工程316’で作製される。工程316’より前に閾値を超えた場合、帰無仮説がさもなければ選択され、適当なメッセージが工程320’で表示される。そうでなければ、以前に閾値を超えなかった場合、論理は工程302’に戻る。工程308’が「いいえ」を返す場合、判定は、
【数38】
が工程312’で閾値Δより大きいかどうかについての判定が行われる。真の場合、閾値Δを超えた(そして対立仮説Hが選択される)という結論が工程312で出され、図5の510等のメッセージが表示される。
【0058】
図3A又は3Bのフローチャートは、本発明のソフトウェアアルゴリズムの実施形態内で行われてもよい主なプロセス工程を概説する。前述のように、出願者は、装置のメモリに保持される食事前/食事後の測定結果の数、即ち食事前/食事後の差の試料規模が変動することを可能にし、それによって、統計的試験の有意水準及び統計的検出力を予め定める、即ち製造中に固定することが可能になることを目的とする。統計的試験の有意水準及び検出力の固定は、食事前/食事後の差の標準偏差と既定閾値Δとの間の比較が妥当な信頼性、即ち必要な信頼区間内で検出され得ることを確実にする。統計的検出力の制御は、ユーザーに表示される、ユーザーの糖尿病管理レジメンに関して不適切な行動を彼らに取らせる可能性がある偽陰性結果の数も最小にしてもよい。
【0059】
試験に関連するタイプ1(偽陽性結果)及びタイプ2(偽陰性結果)の誤差率は、十分に大きい試料規模が標準偏差の安定した推定値をもたらし、かつ食事の都度、食事前と食事後の間の許容可能な閾値平均差Δを超えたかどうかを判定するためのt検定において、適切な検出力を提供するように両方に使用されることを確実にすることにより、DMU 10内で制御され得る。
【0060】
(実施例2)
表2に図示されるように、食事前と食事後の血糖測定値(1デシリットル当りミリグラムの単位)が、20日間の周期にわたり、ユーザーにより収集された。表の本体の列「日」、「前」、及び「後」は、それぞれ、日を数え、食事前と食事後の測定値を列挙する。
【表2】
【0061】
以下は、食事前と食事後のグルコース測定値の間の平均差が所与の日で有意であるかを判定するための計算を説明する。食事前と食事後のグルコース測定値の間に有意な平均差がある場合、図5に図示されるように、ディスプレイ装置500等のグルコース測定器スクリーン上に指示が表示され得る。表2のデータが食事の種類(例えば、朝食、昼食、又は夕食)のうちの1種類のみを有することに対応する場合、表2の結果は、図5のグラフ棒(502、504、又は506)のうちの1つを生成するために使用され得る。
【0062】
計算の初期部分として、値Kは、6.186に設定され、DELTA(Δ)は、7.5mg/dLに設定される。表2の最上段に示される値Kは、5%の有意性(α)及び80%の検出力(β)のt検定において、式2を用いて計算される。表2の2番目の段は、有意差を判定するための食事前と食事後の平均レベル間の最小レベルの差であるDELTA(Δ)の値をもたらす。列「D」は、1デシリットル当りミリグラムの単位での、各日にちの食事前と食事後の測定値間の差を含む(工程206で説明される)。列「s」は、特定の段の日までを含む全てのD値の標準偏差(SD)を含む。SDを計算するためには最低2つの値を必要とするため、最初の段はSD値を持たないことに留意する。列「m」は、特定のK、s、及びΔの等式4を使用する、その日の有意な試験に必要な計算された試料規模mを含む。列「N」は、その日の実際の試料規模Nを含む。表2において、Nは、日数と相関することに留意する。しかしながら、他の場合において、1日当り1つの食事前/食事後の測定値の対組が収集され得ることにほかならない。
【0063】
Nの値がmの計算値(表2の10日目に初めて起こる)を超えると、t検定相当が既定の有意性及び検出力で実施され得る。「ready」列は、Nがm未満である「偽」、及びNがmより大きい又はそれと等しい「真」を含む。
【0064】
十分な数の食事前と食事後の測定値(即ち、Nがより大きい又はそれと等しい日(即ち、N≧m))が存在することを確立した後、表2の以下の列は、食事前と食事後の測定値の平均差が有意であるかどうかを示す。列「Dbar」は、その特定の段の日までを含む平均差Dの計算値を含む。列「P」及び「Q」は、それぞれ、等式7及び9に定義されるように、それらの量の計算値を示す。列「有意?」は、P>Qであるかを尋ねる。そうである場合、試験は、(既定の有意性及び検出力の)平均の食事前と食事後のグルコースにおける統計的な有意差を明らかにした。この例において、平均差は、10日目から有意であるため、「有意?」は、10〜20日目を通して真である。平均差が有意であるという警告指示は、以下に説明される(図5を参照)ディスプレイ装置500上に示され得る。
【0065】
図5は、適切なポータブルの糖尿病管理ディスプレイ装置500を用いて、患者に表示されるメッセージの例示的実施形態を示す。ディスプレイ装置500は、各食事時間にわたる患者のグルコースレベルの変化の基準である、測定され、マイクロプロセッサのメモリに保存される食事前/食事後の差のグラフ指示を含む。
【0066】
図5に示される例示的実施形態では、結果は、特定の食事時間、例えば、朝食前と朝食後502、昼食前と昼食後504、及び夕食前と夕食後506により分類され得る。破線508は、図5に示されるように、標的又は閾値食事前/食事後差値を示すために使用され得、この場合、およそ75mg/dLの1つの標的差値が与えられる。1つ以上の標的差値が、例えば、異なる食事時間により使用され得る。代替的に、異なる色の使用が、ユーザー(及び/又はHCP)に、測定結果がユーザーのHCPによって定義されるもの等の閾値標的値に近いかどうかをより容易にかつ迅速に示すために使用され得る。別の実施形態では、異なる色の使用は、ユーザー(及び/又はHCP)に、異なる値が等式7及び9に基づき統計的に有意であるかどうかをより容易にかつ迅速に示すために使用され得る。例えば、緑色は、結果が閾値内であることを示すために使用され得、一方、例えば赤色は、閾値と有意に異なる結果を示すために使用され得る。患者及び/又はHCPにとって、この種類のメッセージを見て、患者の糖尿病の制御レベルの認識を得ることは非常に容易であろう。ユーザーに表示されるグラフ出力における色の使用は、定義された閾値に対して測定結果を比較し、かつ/又は計算的により単純な様式で統計的有意性を示す1つの迅速かつ理解しやすい方式である。情報を表示する代替的形態が可能であり、本明細書に含まれることが意図される。
【0067】
図5は、朝食502、昼食504、及び夕食506付近の患者のグルコース差の測定値を表す例示的データを示す。朝食及び昼食付近の差の測定値は、この例示において非常に可変であることが示され、一実施形態では、これはある程度の注意を必要とする領域であり得ることを患者及び/HCPに迅速かつ容易に識別させるために赤で表示され得る。夕食時間506付近の測定された食事前/食事後のグルコース差を表すために示される例示的データは、標的値508を非常に下回り、したがって、患者の測定レジメンのこの特定の構成要素は、良好に制御されていることを示すために、例えば、緑で表示され得る。
【0068】
更に、ディスプレイ装置500は、これらに限定されないが、例えば、薬物、運動、及び/又は炭水化物の摂取を含む、患者に対する提案510、512を含んでもよい。図5において、提案510は、朝食502及び昼食504付近の測定データを指し、したがって、特定の提案は、患者のグルコース変化を、定義された標的値508に近づける、即ち、患者を良好に制御する可能性がある。提案512は、この例示的実施形態では、良好であることに対して患者をほめてもよい。
【0069】
先に述べたように、マイクロプロセッサは、本明細書に記載の様々なプロセスのステップを一般的に実施するようにプログラムされてもよい。このマイクロプロセッサは、例えば、血糖値計、インスリンペン、インスリンポンプ、サーバ、携帯電話、パーソナルコンピュータ、又は移動携帯型装置などの特定の装置の一部であってよい。更に、本明細書で述べた様々な方法を用い、例えば、C、C+、C++、C−Sharp、Visual Studio 6.0、Windows 2000 Server及びSQL Server 2000などの既存のソフトウェア開発ツールを使用することによってソフトウェアコードを生成することができる。しかしながら、これらの方法は、こうした方法をコードするための新しいソフトウェア言語の必要条件及び入手可能性に応じて、他のソフトウェア言語に変換することもできる。更に、本明細書で述べた様々な方法は、適当なソフトウェアコードに一旦変換されれば、適当なマイクロプロセッサ又はコンピュータによって実行される際に、これらの方法において述べられた工程をあらゆる他の必要な工程とともに実行するように動作する、任意のコンピュータ読みだし可能な記憶媒体として実施することができる。
【0070】
本発明の利点は、患者が偽陰性結果を提供される、即ち、患者の食事前と食事後のグルコース濃度の平均の間に有意差があるが、患者に提供されるメッセージがそうではないと患者に伝える可能性を低減する工程を含む。患者が提供された結果により指導された行動を取る場合、そのような結果は、患者に判断を誤らせ、患者に危険な可能性がある。したがって、本発明は、必要とされる信頼区間内の既定の閾値Δから有意差を検出するために、統計的計算(即ち試料規模)により考慮される食事前/食事後のグルコース測定値の数を変動させながら、有意値α及び統計的検出力(1−β)を制御することにより生じるそのような事象の危険性を最小にする。
【0071】
本発明を特定の変形例及び説明図に関して述べたが、当業者には本発明が上述された変形例又は図に限定されないことが認識されよう。更に、上述の方法及び工程が特定の順序で起こる特定の事象を示している場合、当業者には特定の工程の順序が変更可能であり、そうした変更は本発明の変形例に従うものである点が認識されよう。更に、こうした工程のうちのあるものは、上述のように順次行われるが、場合に応じて並行したプロセスで同時に行われてもよい。したがって、開示の趣旨及び本発明の同等物の範囲内にある本発明の変形が存在する範囲では、本特許請求がこうした変形例をも包含することが意図されるところである。
【0072】
〔実施の態様〕
(1) ユーザーに、食事事象付近の前記ユーザーの血糖データが所定の弁別閾値を超えたことを糖尿病管理装置を用いて警告する方法であって、
前記糖尿病管理装置を用いて、特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値(a plurality of pre and post-prandial pairs (N) of glucose concentration measurements)を収集する工程と、
前記糖尿病管理装置のマイクロプロセッサを用いて、前記特定の食事事象についての前記収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算する工程と、
前記特定の食事事象における前記食事前−食事後測定値のN対の数が、計算された試料規模(m)以上であることを、前記事象において、前記マイクロプロセッサを用いて判定する工程と、
許容可能な確実性レベルで閾値(Δ)を超えているかどうかに関して、少なくとも1つの統計的試験を用いて確認する工程と、
許容可能な確実性レベルで前記閾値(Δ)を超えているという前記確認により、前記特定の食事について、前記グルコース測定値の対の数における前記値Dが前記閾値(Δ)を超えていることを前記ユーザーに出力する工程と、を含む、方法。
(2) 前記判定が、等式:
【数39】
を用いて、前記計算された試料規模mを計算する工程を含み、
式中、mが、前記許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数40】
から得られる定数であり、
式中、z値が、特定の検出力(specified power)に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値である、実施態様1に記載の方法。
(3) 前記確認が、式:
【数41】
の前記統計的試験の適用を含み、
式中、
【数42】
が、前記試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、実施態様2に記載の方法。
(4) 前記確認が、以下のそれぞれの式:
【数43】
の量P及び臨界値Qを計算する工程を含み、
式中、
【数44】
が、前記試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模であり、
αN−1が、有意水準及び自由度に基づく統計表からの臨界値である、実施態様2に記載の方法。
(5) 前記確認が、以下のそれぞれの式:
【数45】
の量P及び臨界値Qを計算する工程を含み、
式中、
【数46】
が、前記試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、実施態様2に記載の方法。
(6) ユーザーに、食事事象付近の前記ユーザーの血糖データが所定の弁別閾値を超えたことを糖尿病管理装置を用いて警告する方法であって、
流体試料中のグルコースを酵素的副産物に物理的に変換させ、前記流体試料のグルコース濃度に比例したある量の還元型の介在物質(例、フェロシアニド)を生成するように、複数のグルコース濃度測定を実施する工程と、
前記実施工程で得た前記複数のグルコース濃度測定から特定の食事事象についての複数の食事前−食事後対(N)のグルコース濃度測定値を収集する工程と、
前記特定の食事事象についての前記収集した複数の食事前−食事後対のグルコース濃度間の差に基づき、複数の値(D)を計算する工程と、
前記特定の食事事象における前記食事前−食事後測定値のN対の数が、計算された試料規模(m)以上であることを、前記事象において判定する工程と、
許容可能な確実性レベルで閾値(Δ)を超えているかどうかに関して、少なくとも1つの統計的試験を用いて確認する工程と、
許容可能な確実性レベルで前記閾値(Δ)を超えているという前記確認により、前記特定の食事について、前記グルコース測定値の対の数における前記値Dが前記閾値(Δ)を超えていることを前記ユーザーに出力する工程と、を含む、方法。
(7) 前記判定が、等式:
【数47】
を用いて、前記計算された試料規模mを計算する工程を含み、
式中、mは、前記許容可能な確実性の試料規模の値であり、
Kが、以下の等式:
【数48】
から得られる定数であり、
式中、z値が、特定の検出力に依存する統計表からの標準変量の値と対応し、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値である、実施態様6に記載の方法。
(8) 前記確認が、式:
【数49】
の前記統計的試験の適用を含み、
式中、
【数50】
が、前記試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、実施態様7に記載の方法。
(9) 前記確認が、以下のそれぞれの式:
【数51】
の量P及び臨界値Qを計算する工程を含み、
式中、
【数52】
が、前記試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模であり、
αN−1が、有意水準及び自由度に基づく統計表からの臨界値である、実施態様6に記載の方法。
(10) 前記確認が、以下のそれぞれの式:
【数53】
の量P及び臨界値Qを計算する工程を含み、
式中、
【数54】
が、前記試料の平均の食事後−食事前の差であり、
sが、食事前と食事後の測定値の標準偏差であり、
Δが、既定閾値であり、
Nが、食事前と食事後の測定値の対の前記試料規模である、実施態様6に記載の方法。
図1A
図1B
図2A
図2B
図3A
図3B
図4
図5