(58)【調査した分野】(Int.Cl.,DB名)
前記第2の振動系の共振応答倍率が前記第1の振動系の共振応答倍率よりも大きくされていると共に、前記第1のマス部材の質量と該第1の振動系の共振応答倍率の積が、前記第2のマス部材の質量と該第2の振動系の共振応答倍率の積よりも大きくされている請求項1〜5の何れか1項に記載の発電装置。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、上述の事情を背景に為されたものであって、その解決課題は、広い周波数域の振動入力に対して高効率な発電を実現し得る、新規な構造の発電装置を提供することにある。
【課題を解決するための手段】
【0008】
すなわち、本発明の第1の態様は、振動部材に取り付けられる振動系を備えており、該振動系に取り付けられた発電素子が、該振動部材の振動エネルギーを電気エネルギーに変換する発電装置において、前記振動系が、第1のマス部材が第1のばね部材によって弾性支持される第1の振動系と、第2のマス部材が第2のばね部材によって該第1のマス部材に弾性連結された第2の振動系とを含んで構成された多自由度振動系とされていると共に、前記発電素子が該第1のマス部材と該第2のマス部材の間に配設されて、前記振動部材から該第1のマス部材に及ぼされた振動が該第2のマス部材に伝達されてそれら第1のマス部材と第2のマス部材が相対変位することにより前記振動部材の振動エネルギーが該発電素子に入力されるようになっており、且つ、前記第1の振動系の固有振動数と前記第2の振動系の固有振動数が異ならされている一方、前記第1のばね部材がゴム弾性体で形成されていると共に、該ゴム弾性体が、前記第1のマス部材と前記振動部材に取り付けられる取付部材とにおける振動入力方向に略直交する方向での対向面間で且つ該第1のマス部材の周上の複数箇所に配設されて
おり、更に、前記第1のマス部材が内部に空所を備える中空構造とされており、該空所内に前記第2の振動系が収容配置されていると共に、該第2の振動系における前記第2のばね部材が板ばねで形成されて該板ばねに前記発電素子が装着されており、該板ばねの一端側に前記第2のマス部材が取り付けられている一方、該板ばねの他端側が、前記第1のマス部材において前記空所内に突設された支持部に取り付けられることにより該第1のマス部材の周壁部よりも該空所の内方に位置して支持せしめられていることを、特徴とする。
【0009】
このような第1の態様に従う構造とされた発電装置によれば、互いに異なる複数の固有振動数において、第1のマス部材と第2のマス部材の相対変位量が共振現象によって大きく確保されて、第1のマス部材と第2のマス部材との相対変位量に応じて得られる発電素子の発電量を効率的に得ることができる。
【0010】
しかも、多自由度振動系の第1, 第2のマス部材間に発電素子を配することで、第1のマス部材と第2のマス部材が逆位相で相対変位する周波数域の振動入力時には、振動系の固有振動数を外れた周波数の入力振動であっても、第1のマス部材と第2のマス部材の相対変位量が大きく確保される。それ故、広い周波数域の振動入力に対して、発電素子の発電量が充分に得られて、電力を有効に得ることができる。
【0011】
ここで、相対変位とは、振動部材の振動が第1のばね部材を介して第1のマス部材に及ぼされ、第1のマス部材自身が振動し、更に、その振動が第2のばね部材を介して第2のマス部材に伝達されて、第2のマス部材が第1のマス部材に対して変位することをいう。
【0012】
このように、本態様に係る発電装置によれば、振動系の機械的な固有振動数に一致する周波数の振動入力のみならず、固有振動数を外れた周波数域の振動入力に対しても、有効な発電が実現されて、振動エネルギーを効率的に電気エネルギーに変換することが可能となる。
なお、上記本発明の第1の態様に係る発電装置においては、前記第1のばね部材がゴム弾性体で形成されている態様が、採用されている。
第1の態様によれば、第1のばね部材が減衰性能を有するゴム弾性体で形成されることから、より広い周波数域の振動入力に対して第1のマス部材と第2のマス部材の相対変位量が確保されて、有効な発電が実現される
。
本発明の第
2の態様は、第
1の態様に記載された発電装置において、前記振動部材の発電対象とされる振動周波数域において、前記第1のマス部材と前記第2のマス部材とが互いに逆相で変位するように設定されているものである。
【0013】
本発明の第
3の態様は、第1
又は第2の態様に記載された発電装置において、前記第2の振動系の固有振動数が、前記第1の振動系の固有振動数に対して低周波数に設定されているものである。
【0014】
第
3の態様の発電装置では、第2の振動系の固有振動数が第1の振動系の固有振動数に対して低周波数に設定されていることから、第2のばね部材のばね定数を小さく設定して、第1のマス部材に対する第2のマス部材の相対変位量を確保し易くなり、第1のマス部材と第2のマス部材の相対変位量に対応する発電効率の更なる向上も図り易い。また、2自由度の振動系における反共振周波数よりも低周波数の領域では、第1のマス部材と第2のマス部材が何れも入力振動に対して同位相で変位することから、入力振動のエネルギーが第1,第2の振動系に効率的に及ぼされて、有効な発電が実現可能となる。
【0015】
本発明の第
4の態様は、第1〜第
3の何れか1つの態様に記載された発電装置において、前記第1の振動系の固有振動数が、前記第2の振動系の電気的な反共振周波数よりも高周波数に設定されているものである。
【0016】
第
4の態様によれば、1自由度振動系の発電装置において発電効率の低下が問題となり易い電気的な反共振周波数よりも高周波数の領域において、振動系の2次固有振動数での共振等に基づいた発電効率の向上が図られて、より広い周波数域の振動入力に対して有効な発電を実現することができる。
【0017】
本発明の第
5の態様は、第1〜第
4の何れか1つの態様に記載された発電装置において、前記第1の振動系の固有振動数が、前記第2の振動系の固有振動数の√2倍以下とされているものである。
【0018】
第
5の態様によれば、第1の振動系の振動と第2の振動系の振動を相互に伝達させて連成的な振動状態とすることで、第1の振動系と第2の振動系の振動状態を広い周波数域に亘って相互補完的に維持することができて、効率的な発電を実現することができる。
【0019】
本発明の第
6の態様は、第1〜第
5の何れか1つの態様に記載された発電装置において、前記第2の振動系の共振応答倍率が前記第1の振動系の共振応答倍率よりも大きくされていると共に、前記第1のマス部材の質量と該第1の振動系の共振応答倍率の積が、前記第2のマス部材の質量と該第2の振動系の共振応答倍率の積よりも大きくされているものである。
【0020】
第
6の態様によれば、第2の振動系の共振応答倍率が第1の振動系の共振応答倍率よりも大きくされることで、振動入力時に第2のマス部材の振幅が大きく確保されて、第2の振動系に配設される発電素子において効率的な発電が実現される。また、第1の振動系と第2の振動系の間に作用する相殺的な制振作用が抑制されて、第1の振動系および第2の振動系の振動状態が安定して確保されることから、広帯域の振動に対して有効な発電が実現される。
【0021】
本発明の第
7の態様は、第1〜第
6の何れか1つの態様に記載された発電装置において、前記第2のマス部材の前記第1のマス部材に対する相対変位量を制限するストッパ手段が設けられているものである。
【0022】
第
7の態様によれば、第1のマス部材と第2のマス部材の過大な相対変位がストッパ手段によって防止されることから、発電素子に対する入力が制限されて、発電素子の損傷等が防止される。
【0023】
【0024】
【0025】
本発明の
一つの態様は、第1〜第
7の何れか1つの態様に記載された発電装置において、前記第1のばね部材がゴム弾性体で形成されていると共に前記第2のばね部材が板ばねで形成されており、該板ばねの一端側が前記第1のマス部材に取り付けられていると共に該板ばねの他端側に前記第2のマス部材が取り付けられて、前記振動部材の振動が該板ばねに及ぼされるようになっている一方、前記発電素子が該板ばねに装着されているものである。
【0026】
このような態様によれば、第1の振動系を構成するゴム弾性体の高減衰能によって周波数特性のブロード化が効果的に図られ得ると共に、第2の振動系を構成する板ばねの低減衰能によって大きな振動倍率を得ることができる。それ故、第2のばね部材である板ばねにおいて、広い周波数域の入力振動に対して大きな弾性変形が惹起されることとなり、板ばねに装着された発電素子によって一層優れた発電効率がより安定して発揮され得る。なお、板ばねに装着される発電素子としては、板ばねの歪や変形,応力等の機械的物理量をエネルギー変換し得る圧電素子や磁歪素子などが好適に採用される。また、板ばねとしては、ばね鋼などの金属ばねが好適に用いられるが、条件に応じて樹脂ばね等も採用可能であり、表面をゴム被覆して所望の減衰能を補助的に付加することも可能である。
【0027】
【0028】
【0029】
本発明の第
8の態様は、第1〜第
7の何れか1つの態様に記載された発電装置であって、前記振動部材において、互いに異なる周波数域で振動レベルが最大になる複数種類の振動が前記振動系に対して及ぼされる部位に装着されるものである。
【0030】
第
8の態様によれば、多自由度振動系を利用した本発明に従う構造の発電装置を、複数周波数域で振動ピークをもつ特定の振動部材へ適用することにより、多様な状況下で安定した発電効率を得ることが可能になる。なお、本態様が適用される振動部材としては、例えば洗濯物重量等に応じて振動周波数が異なる電気洗濯機や、走行状況等に応じて振動周波数が異なる自動車などを挙げることができる。
【0031】
また、本発明の第
9の態様は、第1〜第
8の何れか1つの態様に記載された発電装置において、前記第1のマス部材の質量が、前記振動部材の等価マス質量の10%以上とされているものである。
【0032】
第
9の態様によれば、第1の振動系を振動部材の振動を相殺して低減するダイナミックダンパとして機能させて、有効な制振作用を得ることも可能となる。
本発明の第
10の態様は、第1〜第
9の何れか1つの態様に記載された発電装置において、前記第1のマス部材が内部に収容空所を備える中空構造とされており、該収容空所内に前記第2の振動系が収容配置されているものである。
第
10の態様によれば、第1のマス部材と第2のマス部材の重心位置が低く、且つ近接して設定されることから、第1及び第2のマス部材の目的とする方向以外の振動が小さく抑えられると共に、目的とする方向の振動が安定して入力されて、第1及び第2の振動系による発電効率の向上が図られ得る。また、第2の振動系が外部空間から隔てられた収容空所内に収容配置されていることから、第2の振動系に対して別途防塵や防水のための部材等を設ける必要がない。
【発明の効果】
【0033】
本発明によれば、多自由度振動系を構成する第1のマス部材と第2のマス部材の間に発電素子を配設して、それら第1のマス部材と第2のマス部材の相対変位量に応じて発電素子において電力が得られるようになっている。それ故、互いに異なる複数の周波数の振動入力に対して発電素子によって電力を得ることができると共に、第1のマス部材と第2のマス部材が逆位相で変位する幅広い周波数域の振動入力に対して、発電素子による効率的な発電が実現される。
【発明を実施するための形態】
【0035】
以下、本発明の実施形態について、図面を参照しつつ説明する。
【0036】
図1には、本発明の1実施形態としての発電装置10が示されている。発電装置10は、
図2の振動モデルにも示されているように、振動部材としてのボデー12に取り付けられる第1の振動系14と、第1の振動系14を介してボデー12に取り付けられる第2の振動系16とを含む多自由度振動系を、備えている。なお、以下の説明において、特に説明がない限り、上下方向とは、振動部材12の主たる振動入力方向である
図1中の上下方向を言う。
【0037】
より詳細には、第1の振動系14は、取付部材18と第1のマス部材20が第1のばね部材としての連結ゴム弾性体22で弾性連結された構造を有しており、取付部材18がボデー12に対してボルト等で固定されることによって、第1のマス部材20がボデー12に対して連結ゴム弾性体22で弾性連結されるようになっている。第1のマス部材20の形状や形成材料は特に限定されるものではないが、小型化のために比重の大きな材料で形成されていることが望ましく、本実施形態では鉄で形成された中実の矩形ブロック状を呈する部材とされている。更に、第1のマス部材20には上方に突出する支持突部24が一体形成されており、その上面に開口するようにねじ穴が形成されている。連結ゴム弾性体22は矩形ブロック状のゴム弾性体であって、上下に対向配置された取付部材18と第1のマス部材20の間に介装されて、下面が取付部材18に固着されていると共に、上面が第1のマス部材20に固着されている。
【0038】
なお、連結ゴム弾性体22として採用されるゴム弾性体の材料としては、天然ゴム、合成ゴム、あるいは天然ゴムと合成ゴムとのブレンドゴムが使用される。合成ゴムとしては、スチレン−ブタジエンゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、イソブチレン−イソプレンゴム、塩素化−イソブチレン−イソプレンゴム、アクリロニトリル−ブタジエンゴム、水素化−アクリロニトリル−ブタジエンゴム、エチレン−プロピレン−ジエンゴム、エチレン−プロピレンゴム、アクリルゴム、シリコーンゴム等を挙げることができる。
【0039】
また、本実施形態の第1のマス部材20は、カバー部材28を備えている。カバー部材28は、下方に開口する矩形枡状とされており、開口部に設けられたフランジ状の固定片が第1のマス部材20にボルト等で固定されることで、第1のマス部材20に対して上面を覆うように取り付けられている。かくの如きカバー部材28の装着によって、第1のマス部材20の上方には、カバー部材28で外部から隔てられた収容領域30が画成されており、第1のマス部材20の支持突部24が収容領域30に突出している。
【0040】
さらに、カバー部材28を含む第1のマス部材20の質量:m
1 は、ボデー12の等価マス質量:Mに対して、10%以上(m
1 ≧0.1*M)とされていることが望ましい。これにより、第1のマス部材20がボデー12の振動状態に対して充分な影響を及ぼして、ダイナミックダンパとして機能し得ることから、振動の相殺によるボデー12の振動低減が期待される。
【0041】
また、収容領域30には、第2の振動系16が配設されている。第2の振動系16は、第2のマス部材32が第2のばね部材としての板ばね34の一方の端部に固定されると共に、板ばね34の他方の端部が第1のマス部材20に固定されることで、第2のマス部材32が第1のマス部材20に対して板ばね34で弾性連結された片持梁状の構造を有している。
【0042】
第2のマス部材32は、矩形ブロック状とされており、第1のマス部材20と同様に鉄等の高比重の材料で形成されている。また、本実施形態では、第2のマス部材32の質量:m
2 は、第1のマス部材20の質量:m
1 との間で、m
1 *X>m
2 *Qを満たすように設定される。なお、Xは、第1の振動系14の固有振動数での応答倍率(共振応答倍率)を、Qは、第2の振動系16の共振応答倍率を、それぞれ示しており、本実施形態では、第2の振動系16の共振応答倍率:Qが、第1の振動系14の共振応答倍率:Xよりも大きくされている(X<Q)。また、好適には、第2のマス部材32の質量:m
2 が、第1のマス部材20の質量:m
1 に対して1/5倍以下とされる(m
2 ≦m
1 /5)ことによって、第2のマス部材32が第1のマス部材20に比して小型軽量とされている。このように第2のマス部材32が第1のマス部材20に比して軽量とされていることで、振動系の固有振動数を発電対象振動の周波数に応じて設定しながら、板ばね34のばね定数を充分に小さく設定して、第1のマス部材20の第2のマス部材32に対する相対変位を有効に生ぜしめることができる。
【0043】
板ばね34は、導電性のばね鋼で形成された長手板状の金属部材であって、長手方向一方の端部に第2のマス部材32が固定されていると共に、長手方向他方の端部が、第1のマス部材20の支持突部24に重ね合わされてねじ止めされている。これにより、第2のマス部材32が第1のマス部材20に対して板ばね34を介して弾性連結されており、第2のマス部材32の第1のマス部材20に対する相対変位が板ばね34の板厚方向(
図1中の上下方向)となる剪断方向での弾性変形によって許容されている。このことからも明らかなように、発電装置10は、第1の振動系14と第2の振動系16で構成された2自由度の振動系を備えている。
【0044】
本実施形態では、第2の振動系16を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r2が、第1の振動系14を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r1よりも低周波数に設定されている(f
r2<f
r1)。更に、第1の振動系14単体の固有振動数:f
r1が、第2の振動系16単体の固有振動数:f
r2の√2倍以下(f
r2<f
r1≦√2*f
r2)であることが望ましい。これにより、いわゆるスカイフックダンパー効果(sky hook damper effect)による制振作用で第2のマス部材32に対する第1のマス部材20の相対的な変位量が抑えられてしまうことに起因する発電効率の低下などの不具合を回避することが可能となる。なお、第1の振動系14単体の1自由度振動系における機械的な固有振動数:f
r1は、第1のマス部材20の質量:m
1 と連結ゴム弾性体22のばね定数:k
1 から[数1]のように算出される。第2の振動系16単体の1自由度振動系における機械的な固有振動数:f
r2は、第2のマス部材32の質量:m
2 と板ばね34のばね定数:k
2 から[数2]のように算出される。
【0047】
また、板ばね34には、発電素子38が固着されている。発電素子38は、一般的な圧電素子や電歪素子等が好適に用いられて、板ばね34の表面に重ね合わされて固着されることで、第1のマス部材20と第2のマス部材32の間に配設されている。そして、振動入力時に、ボデー12から第1のマス部材20に及ぼされた外力が第2のマス部材32に伝達されることで、それら第1のマス部材20と第2のマス部材32が相対変位して、板ばね34が弾性変形することにより、発電素子38が板ばね34と共に変形して電気を生じるようになっている。換言すれば、第1のマス部材20と第2のマス部材32の相対変位によって振動エネルギーが発電素子38に入力されるようになっており、発電素子38が、第1のマス部材20と第2のマス部材32の相対変位量に応じて、振動エネルギーを電気エネルギーに変換するようになっている。この発電素子38には、電気回路40が接続されており、整流回路や蓄電装置、センサ等の電力使用機器(デバイス42)等に対して電気的に接続されている。なお、発電素子38として圧電素子を採用する場合には、その形成材料としては、例えば、セラミック材料や単結晶材料等が採用される。より具体的には、例えば、チタン酸ジルコン酸鉛、窒化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム等が、圧電素子の形成材料として何れも好適に採用され得る。
【0048】
なお、本実施形態では、板ばね34に固着された発電素子38が、カバー部材28で外部空間から隔てられた収容領域30に配設されて、カバー部材28で覆われていることにより、水や埃等といった異物の付着が防止されている。
【0049】
本実施形態では、第2のマス部材32の第1のマス部材20に対する相対変位量を制限するストッパ手段44が設けられており、板ばね34および発電素子38の過大な変形が防止されて、発電素子38の損傷が回避されている。具体的には、第2のマス部材32が第1のマス部材20の上面およびカバー部材28の上底壁内面に当接することで、第2のマス部材32の変位が制限されるようになっており、第1のマス部材20とカバー部材28を含んでストッパ手段44が構成されている。また、本実施形態では、第1のマス部材20の上面と、カバー部材28の上底壁内面に、それぞれストッパゴム46が固着されており、第2のマス部材32が第1のマス部材20およびカバー部材28に対してストッパゴム46を介して緩衝的に当接されるようになっている。
【0050】
このような構造とされた本実施形態に係る発電装置10は、ボデー12への装着状態において、ボデー12の振動エネルギーを発電素子38で電気エネルギーに変換して取り出すようになっている。そこにおいて、発電装置10では、2自由度の振動系を設けると共に、第1, 第2のマス部材20,32の間に発電素子38を配することで、発電素子38による効率的な発電が実現されるようになっている。
【0051】
このような発電装置10は、機械的には、前述のとおり第1のマス部材20と第1のばね部材としての連結ゴム弾性体22とからなる第1の振動系14と、第2のマス部材32と第2のばね部材としての板ばね34とからなる第2の振動系16とが直列的に接続された2自由度振動系を構成しているから、公知の多自由度系の振動モデルを用いて解析することが可能である。即ち、かかる発電装置10の機械的な振動系の振動モデルは
図2に示すとおりであり、[数3]に示す公知の2自由度系の運動方程式で表される。なお、[数3]において、x
1 は発電装置10における第1のマス部材20の変位量に相当すると共に、x
2 は発電装置10における第2のマス部材32の変位量に相当する。更に、[数3]中のF
0 sin2πftは、発電装置10におけるボデー12から入力される振動荷重に相当する。
【0053】
良く知られているように、[数3]に示された一般的な2自由度振動系の運動方程式の解として求められるΩ
1 ,Ω
2 (Ω
1 <Ω
2 )が、それぞれかかる2自由度振動系の固有振動数である。ところで、機械装置としての発電装置10は2自由度振動系として把握されるが、発電素子38への振動エネルギーは第1のマス部材20に対する第2のマス部材32の相対的な変位量として及ぼされる。それ故、第1のマス部材20と第2のマス部材32の位相差が略180度となって逆向きに変位することにより、発電装置10へ及ぼされる振動エネルギーが、発電素子38へ効率的に及ぼされて大きな発電電力を得ることができる。
【0054】
具体的に説明すると、上述の2自由度振動系の固有振動数:Ω
1 ,Ω
2 では、何れも、理論上はマス変位の運動量がピークとなるものの、第1の固有振動数:Ω
1 までの低い周波数では、第1及び第2のマス部材20,32が同相で動くことから、入力される振動エネルギーが発電電力へ効率的に変換され難い。これに対して、第1の固有振動数:Ω
1 から第2の固有振動数:Ω
2 までの周波数では、第1及び第2のマス部材20,32が逆相で動くことから、振動エネルギーが発電電力へ効率的に変換されて大きな発電電力を得ることができる。
【0055】
ここにおいて、理解を容易とするために、第2のマス部材32が第1のマス部材20に対して相対的に弾性変位する一自由度系として第2の振動系16をとらえることができるとすれば、かかる第2の振動系16の第2のマス部材32は、第2の振動系16の1自由度振動系としての機械的な固有振動数:f
r2において、第1の振動系14の第1のマス部材20に対する位相が反転する。しかも、かかる固有振動数:f
r2の周波数域では、第2の振動系16の機械的な共振現象により、第2のマス部材32の第1のマス部材20に対する相対変位量も効率的に得ることが可能になる。
【0056】
このことから、第1の振動系14よりも第2の振動系16の方が、機械的な固有振動数を低周波数域に設定された本実施形態では、2自由度振動系の振動モードで第1及び第2のマス部材20,32が逆相で動く高周波側の固有振動数:Ω
2 までの低い周波数域でも、第2の振動系16の1自由度振動系としての機械的な固有振動数:f
r2を超えた周波数域では、第2のマス部材32の第1のマス部材20に対する位相が反転することにより、優れた発電効率で大きな発電電力を得ることができるのである。
【0057】
このことは、本発明者が発電電力を実測した結果によっても確認されている。即ち、
図1及び
図2に示された本実施形態に従う構造とされた発電装置10を試作して、ボデー12側からスィープ加振することにより、発電素子38による発電電力の周波数特性を測定した。その結果を
図3に示す。かかる
図3では、発電素子38の発電電力の実測値が実施例データとして実線で示されていると共に、第1の振動系が省略された第2の振動系単体に相当する機械的な1自由度系の構造体からなる発電装置による発電電力の実測値が比較例データとして破線で示されている。
【0058】
図3からも明らかなように、実質的に第2の振動系単体からなる比較例では、発電電力が、第2の振動系の機械的な固有振動数:f
r2の周波数域だけで一つのピークを有するに過ぎず、入力振動が固有振動数:f
r2を外れてしまうと発電効率が著しく低下してしまう。これに対して、本発明の実施例では、発電電力が、二つの周波数:P
1 ,P
2 でそれぞれピークを有していると共に、それら二つの周波数:P
1 ,P
2 間の周波数域やP
2 を超えた高周波数域に至る広い周波数域に亘って高い発電効率が維持されている。ここにおいて、高周波側のピークとなる周波数:P
2 は、2自由度振動系の振動モードで第1及び第2のマス部材20,32が逆相で動く高周波側の固有振動数:Ω
2 に相当する周波数である。一方、低周波側のピークとなる周波数:P
1 は、2自由度振動系の振動モードで第1及び第2のマス部材20,32が逆相で動く低周波側の固有振動数:Ω
1 に相当する周波数であり、また第2の振動系16が1自由度振動系として第1のマス部材に対する位相が反転する固有振動数:f
r2に略対応する周波数である。
【0059】
また、本実施形態では、第2の振動系16の共振応答倍率:Qが、第1の振動系14の共振応答倍率:Xよりも大きくされている(X<Q)と共に、第1のマス部材20の質量:m
1 と第1の振動系14の共振応答倍率:Xとの積が、第2のマス部材32の質量:m
2 と第2の振動系16の共振応答倍率:Qとの積よりも大きくされている(m
1 *X>m
2 *Q)。これにより、振動入力時には、第2のマス部材32の振幅ひいては板ばね34の弾性変形量が大きく確保されて、発電素子38による発電が効率的に実現される。また、第1のマス部材20に共振状態で及ぼされる加振力が、第2のマス部材32に共振状態で及ぼされる加振力に対して大きくされていることから、第2の振動系16による入力振動の相殺的な制振作用が抑制されて、第1のマス部材20と第2のマス部材32の相対変位が安定して生じることで、より有効な発電が広帯域に亘って実現される。
【0060】
さらに、発電装置10では、第2のマス部材32の質量:m
2 が、第1のマス部材20の質量:m
1 に対して、1/5倍以下とされており、2自由度振動系の機械的な固有振動数を所定値に設定しながら、板ばね34のばね定数:k
2 が小さく設定されている。それ故、第2のマス部材32の第1のマス部材20に対する相対変位が生じ易くなっており、発電素子38による発電量を効率的に得ることができる。
【0061】
また、本実施形態では、第2の振動系16単体の1自由度振動系における機械的な固有振動数:f
r2が、第1の振動系14単体の1自由度振動系における機械的な固有振動数:f
r1よりも、低周波数に設定されている(f
r2<f
r1)。これにより、振動入力時に第1のマス部材20に対する第2のマス部材32の相対変位が充分に生ぜしめられて、第1のマス部材20と第2のマス部材32の相対変位量に対応する発電効率の向上が図られ得る。
【0062】
さらに、f
r2<f
r1とされていることにより、第2の振動系16の1自由度振動系における機械的な固有振動数:f
r2から第1の振動系14の1自由度振動系における機械的な固有振動数:f
r1までの周波数域においては、第1のマス部材20が入力振動に対して同相で変位する。それ故、ボデー12に対して同相で振動変位する第1のマス部材20を介して、第2の振動系16に対して振動エネルギーがより効率的に伝達されて発電効率の一層の向上が図られ得る。一方、f
r2>>f
r1とした場合では、2自由度振動系における低周波側の固有振動数:Ω
1 にて、第1の振動系14が入力振動に対して逆相で変位するため、第2の振動系16に対して振動エネルギーを効率的に伝達することができない。そこで、本実施形態のようにf
r2<f
r1とすることで、
図3に示されるP
1 〜P
2 間の周波数域を充分に大きく設定して一層広い周波数域で優れた発電効率を得ることが可能になる。
【0063】
また、発電装置10の2自由度振動系を構成する第1の振動系14のばね成分が、ゴム弾性体で形成された連結ゴム弾性体22で構成されている一方、第2の振動系16のばね成分が、金属で形成された板ばね34で構成されている。これにより、
図4に示されているように、第2の振動系16では、大きな共振応答倍率で、発電可能な振幅を共振周波数付近の狭い周波数域でのみ得られる一方、第1の振動系14では、第2の振動系16に比して小さな共振応答倍率で、発電可能な振幅を広い周波数域に亘って得ることができる。それ故、第1の振動系14と第2の振動系16を組み合わせて採用することで、第2の振動系16単体では著しく狭い周波数域でのみ実現される発電が、第1の振動系14の連結ゴム弾性体22の減衰性能に基づいた特性のブロード化によって、より広い周波数域の振動入力に対して有効に実現される。これにより、種々の振動入力条件下において有効な発電が可能とされて、高い実用性を備えた発電装置10を提供することができる。なお、
図4では、第1の振動系14単体の1自由度振動系における周波数−振幅特性が実線で示されていると共に、第2の振動系16単体の1自由度振動系における周波数−振幅特性が破線で示されている。
【0064】
また、発電装置10では、第1の振動系14単体の1自由度振動系における機械的な固有振動数:f
r1が、第1,第2の振動系14,16で構成された多自由度振動系の電気的な反共振周波数:f
a2よりも高周波数に設定されている(f
r1>f
a2)ことで、広い周波数域の振動入力に対する発電が実現されている。以下に、
図5に示された第2の振動系16の電気的な特性を考慮した等価回路を用いて説明する。
【0065】
図5の等価回路は、発電素子38(圧電素子)を配設された第2の振動系16の圧電特性である機械−電気変換特性を示す回路であって、直列的に配置された等価直列インダクタンス:L
1 と等価直列静電容量:C
1 と等価直列抵抗:R
1 と、それらL
1 ,C
1 ,R
1 に対して並列に配置された並列静電容量:C
0 とによって、発電素子38の機械的な振動を電気的な回路として表すものである。
【0066】
L
1 ,C
1 ,R
1 は、振動モードに応じてそれぞれ一意的に決まる定数である。一方、C
0 は、発電素子38が誘電体として機能することによる静電容量であって、発電素子38の大きさや誘電率等により規定される定数である。
【0067】
第2の振動系16の電気的な特性を考慮した等価回路が、このようなL
1 ,C
1 ,R
1 ,C
0 で構成されることから、第2の振動系16のインピーダンスは、入力振動の周波数に対して、
図6に示すグラフのようになっており、直列共振周波数:f
r2で極小値となると共に、電気的な反共振周波数(並列共振周波数):f
a2で極大値となる。なお、直列共振周波数は、第2の振動系16の機械的な共振周波数:f
r2と実質的に同じとなる。また、直列共振周波数:f
r2は、厳密には、C
0 の影響で第2の振動系16のインピーダンスが極小値となる周波数とは僅かに異なるが、ここでは実質的に同じとみなす。同様に、並列共振周波数:f
a2は、第2の振動系16のインピーダンスが極大値となる周波数とは僅かに異なるが、ここでは実質的に同じとみなす。
【0068】
図6のグラフからも明らかなように、発電素子38を配設された第2の振動系16では、直列共振周波数:f
r2において大きな発電量が得られる一方、並列共振周波数:f
a2において発電量が小さくなり、f
a2より高周波数域においても発電量は比較的に小さい状態が続くことになる。
【0069】
なお、第2の振動系16の等価回路において、直列共振周波数:f
r2と並列共振周波数(反共振周波数):f
a2は、以下の[数4]と[数5]によって定義される。
【0072】
一方、本実施形態では、発電装置10の振動系を2自由度としたことにより、発電装置10の振動系の機械的な2次固有振動数:Ω
1 を同振動系の機械的な反共振周波数よりも高周波数に設定することで、広い周波数域に亘って発電量の低下が抑えられる。このことから、一般に、第1の振動系14の機械的な固有振動数:f
r1を等価回路の並列共振周波数:f
a2よりも高周波数に設定することで、発電効率の低下を広帯域に亘って防ぐことができる。
【0073】
更にまた、より好適には、第1の振動系14単体の機械的な共振周波数:f
r1が、第2の振動系16単体の機械的な共振周波数:f
r2の√2倍以下(f
r1≦√2*f
r2)とされることにより、広い周波数域の振動入力に対して第1のマス部材20と第2のマス部材32の相対変位量が大きく確保される。それ故、広い周波数域の振動入力に対して、発電素子38による高効率な発電が実現される。要するに、第1の振動系14単体の機械的な共振周波数:f
r1は、好適には、f
a2<f
r1≦√2*f
r2の範囲に設定される。
【0074】
なお、本発明者が実験等で検討したところ、f
r1≦√2*f
r2とすることによって、第1の振動系14における振動と、第2の振動系16における振動とを相互に伝達させて連成的な振動状態とすることができる。即ち、例えば入力振動の周波数が変化するような場合において、第1の振動系14および第2の振動系16が相互に完全に独立して振動すると一方が振動停止するような状況でも、当該一方の振動系に対して他方の振動系が影響を及ぼすことで、ある程度の振動状態を維持することも可能となる。これにより、双方の振動が及ぼされて、双方の振動系14,16における振動状態が補完的に維持され得ることから、各振動系14,16における振動状態の発現ひいては目的とする発電状態の発現とその維持が、一層効率的に達成され得ることとなる。なお、第1,第2の振動系14,16において、各共振周波数がf
r1≦√2*f
r2を満たすように設定されることで、振動の連成による振動状態の補完的な維持が実現されることは、例えば特許4862286号公報を一助として理解することができる。
【0075】
次に、
図7及び
図8には、それぞれ、本発明の別の実施形態としての発電装置50及び52が示されている。なお、これらの発電装置50,52において、前記実施形態と同様な構造とされた部材や部位については、それぞれ前記実施形態と同一の符号を図中に付することにより、それらの詳細な説明を省略する。
【0076】
すなわち、
図7に示された発電装置50は、第1のマス部材54が中空構造とされており、第1のマス部材54において、外部空間に対して略遮断された収容空所56が設けられている。このような中空構造の第1のマス部材54は、例えば、底壁58と周壁60を備えた略有底筒形状の下部マス62に対して、略平板形状の上部マス64を重ね合わせて下部マス62の上部開口を覆蓋するように固着せしめることによって実現される。
【0077】
そして、この第1のマス部材54の収容空所56に収容された状態で、前記実施形態と略同様な構造とされた第2の振動系16が設けられている。なお、収容空所56は、第2のばね部材としての板ばね34の弾性変形に伴う第2のマス部材32の変位を許容するのに十分な大きさとされている。また、収容空所56には、第2のマス部材32の変位方向の両側壁部において、それぞれストッパゴム46が設けられており、第2のマス部材32の変位量が緩衝的に制限されるようになっている。
【0078】
このような構造とされた発電装置50では、第1の振動系14における第1のマス部材54の重心位置と、第2の振動系16における第2のマス部材32の重心位置とを、高さ方向で近接して設定することが可能になる。しかも、これら第1のマス部材54と第2のマス部材32が、振動入力基準面となる第1のばね部材としての連結ゴム弾性体22のボデー12への固着面である支持面からの高さを小さくして位置決めすることが可能になる。
【0079】
それ故、振動入力時における第1のマス部材54や第2のマス部材32の揺動が抑えられて、目的とする主たる振動入力方向となる上下方向への振動変位が一層安定して生ぜしめられる結果、連結ゴム弾性体22や板ばね34の弾性変形量が大きくされて振動エネルギーの電気エネルギーへの変換効率の更なる向上が図られ得るのである。
【0080】
しかも、第2の振動系16の配設領域が、第1のマス部材54によって外部空間から遮断されることから、別途にカバー構造等を必要とすることなく、第2の振動系16の配設領域において簡単な構造をもって防塵性能や防水性能を付与することも可能になる。
【0081】
加えて、第1のマス部材54を中空構造としたことにより、容積が大きい外周部分で大きなマス重量を確保しつつ、収容空所56へ第2の振動系16を収容させて、前記実施形態のように第1のマス部材54から上方への大きな突出を回避することが可能になる。その結果、第1のマス部材54の質量を十分に確保しつつ、防振装置全体の特に高さ方向のサイズを小さく抑えることが可能になる。
【0082】
また、
図8に示された発電装置52は、
図7に示された発電装置50と同様に、中空構造とされた第1のマス部材54の収容空所56に収容された状態で、第2の振動系16が設けられている。一方、第1のマス部材54は、その周壁60の外周面上に設けられた第1のばね部材66によって、振動部材たるボデー12に対して弾性連結されている。
【0083】
すなわち、ボデー12に対してボルト等で固着される取付部材68が、第1のマス部材54の外周側に離隔した縦壁構造をもって形成されており、第1のマス部材54の外周面が、取付部材68に対して、主たる振動入力方向に略直交する方向で対向位置せしめられている。そして、これら第1のマス部材54の外周面と取付部材68との対向面間にゴム弾性体からなる第1のばね部材66が配設されることにより、第1のマス部材54が取付部材68によって弾性支持されている。
【0084】
なお、第1のばね部材66は、第1のマス部材54の全周に亘って設けられていても良いが、周上で適数箇所に位置して設けられていても良い。
【0085】
このような構造とされた発電装置52では、ボデー12からの振動により第1の振動系14における第1のばね部材66が主たる振動入力方向で主に剪断変形せしめられることから、低動ばねチューニングすることが可能になり、特性チューニングの自由度の向上が図られ得る。なお、本実施形態の発電装置52においても、第1のマス部材54の底壁58と取付部材68の底壁との対向面間に、補助的に圧縮ゴムを介在させて特性チューニングすることも可能である。
【0086】
以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、発電装置の振動系としては、3つ以上のマス部材をそれぞればね部材を介して直列的に弾性連結して、3自由度以上の多自由度振動系とすることもできる。これによれば、より一層広い周波数域の振動入力に対して、高い発電効率を得ることができる。なお、3自由度以上の多自由度振動系を採用する場合には、互いに弾性連結された2つのマス部材を選択して、それらマス部材の間にのみ発電素子を設けても良いが、隣接配置されて相互に弾性連結された複数組のマス部材間に、それぞれ発電素子を設けることでもできる。
【0087】
また、例えば、第1のマス部材に対して2つ以上の第2のマス部材を並列的に且つ互いに独立した2つ以上の第2のばね部材を介してそれぞれ弾性連結することで、発電装置の多自由度振動系を構成することもできる。これによれば、第2の振動系が複数構成されることから、それら第2の振動系単体の機械的な固有振動数を互いに異ならせて、より広い周波数域の振動入力に対する有効な発電を実現したり、第2の振動系単体の機械的な固有振動数を互いに同じにすることで、特定周波数域の振動入力に対する発電効率の向上を図ったりすることも可能である。
【0088】
また、発電素子としては、圧電素子や電歪素子、磁歪素子等の発電素子が何れも採用可能である他、エレクトレットや交差磁束の時間変化を使った電磁方式等を用いた発電構造を採用することもできる。このことからも理解されるように、第2の振動系を構成する第2のマス部材および第2のばね部材の具体的な構造は限定されるものではなく、例えば、第2のばね部材としてコイルスプリングやゴム弾性体、棒ばね等を用いることもできる。同様に、第1のマス部材および第1のばね部材の具体的な構造も特に限定されず、例えば、第1のばね部材としてコイルスプリングや板ばね、棒ばね等の金属ばねを用いても良い。
【0089】
また、前記実施形態の発電装置10では、第1のマス部材20のボデー12に対する質量比を調節することで、第1の振動系14がボデー12の振動に対する制振作用を及ぼすようになっていたが、発電装置に制振装置としての機能を持たせることは、本発明において必須ではない。要するに、第1のマス部材の質量を振動部材の等価マス質量の10%よりも小さくしても良く、発電装置とは別にダイナミックダンパ等の制振装置を配設することもできる。
【0090】
また、振動部材は、発電に足るだけの振動入力があれば、特に限定されるものではないが、本発明に係る発電装置は、振動部材において、互いに異なる振動周波数域で複数種類の振動の振動レベルが最大になる場合に、特に好適に採用される。具体的には、例えば、洗濯物の量等で振動周波数が変化する洗濯機や、冷凍機の作動状態等に応じて振動周波数が変化する冷蔵庫、走行状態や路面の凹凸等に応じて振動周波数が変化する自動車等において、筐体やボデー等が発電装置を装着する振動部材となり得る。
【0091】
なお、前記実施形態では、第2の振動系16を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r2が、第1の振動系14を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r1よりも低周波数に設定されていた(f
r2<f
r1)。それと共に、第2のマス部材32の質量:m
2 は、第1のマス部材20,54の質量:m
1 との間で、m
1 *X>m
2 *Qを満たすように設定されていた(X,Qはそれぞれ、第1の振動系14および第2の振動系16の共振応答倍率)。しかし、本発明に係る発電装置は、これらの態様に限定されない。
【0092】
すなわち、第2の振動系16を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r2が第1の振動系14を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r1よりも高周波数に設定されている(f
r2>f
r1)場合であっても、第1のマス部材20,54の質量:m
1 と第1の振動系14の共振応答倍率:Xとの積が第2のマス部材32の質量:m
2 と第2の振動系16の共振応答倍率:Qとの積に近い(m
1 *X≒m
2 *Q)場合には、第1の振動系14と第2の振動系16との相互作用により発電量が増加され得る。従って、本発明に係る発電装置では、第2の振動系16を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r2が、第1の振動系14を1自由度振動系として取り扱う場合の機械的な固有振動数:f
r1に対して、異なって(f
r1≠f
r2)いればよい。
【0093】
さらに、前記
図7,8に示した振動発電装置50,52では、下部マス62が略有底筒形状とされると共に上部マス64が略平板形状とされており、下部マス62の上部開口部に対して上部マス64を上方から覆蓋せしめることで収容空所56が形成されて、かかる収容空所56内に第2の振動系16が収容されていたが、かかる態様に限定されない。即ち、例えば、下部マスが略平板形状とされると共に上部マスが逆向きの略有底筒形状とされていてもよいし、第1のマス部材が、側方に開口する筒形状の部材と、この側方開口部を覆蓋する部材とから構成されていてもよい。