(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
患部の位置や形状の変動を把握(特定)する方法として、患部近傍をX線撮影することにより、患部の位置や形状をモニタリングする方法がある。なお、前記X線撮影は、例えば、放射線治療装置本体に治療用放射線の照射方向とは異なる方向に搭載されるOn Board Imager(OBI)や、放射線治療装置本体とは独立して設置されるkV−X線透視装置、あるいは治療用放射線を併用するMV−X線透視装置などにより行なわれる。
【0006】
しかしながら、一般的に、X線撮影された画像(いわゆる透視画像)では、解像度やコントラストが不足するほか、Computed Tomography(CT)などにより取得される断層像に比して、患部組織とその周辺組織との境界が不明瞭である。
このため、従来の方法では、患部位置を容易に把握すべく、患部近傍に金属製(例えば金など)のマーカを予め刺入しておき、当該マーカを含んだ患部近傍のX線撮影を行なう。そして、X線撮影により取得される透視画像上に表れる金属性マーカの位置を計測することにより、患部位置の変動を推定する。これは、金属性マーカが透視画像上でも十分なコントラストを有するからである。
【0007】
しかしながら、患部近傍に金属製マーカを刺入する場合、患者に健康上のリスクが発生することがある。例えば、患部が肺腫瘍などであり、肺腫瘍の近傍に金属製マーカが刺入される場合、患者全体の約30%に肺気腫や気胸などが発生することがある。
また、上記リスクの観点から、米国などでは患部近傍への金属製マーカの刺入は認められていない。そのため、患部の位置変動を計測することが困難である。結果、患部に対する放射線の照射精度が低下し、十分な治療効果が期待できなかったり、正常組織への誤照射により副作用が発生したりすることがある。
【0008】
本発明は、以上のような課題に鑑みたもので、患部などの対象部分の位置,形状及び大きさなどを高精度に計測(推定)することを目的とする。
また、金属性マーカを刺入することなく安全かつ低負担で、患部などの対象部分の位置,形状及び大きさなどを高精度に計測(推定)することも目的の一つである。
さらに、放射線治療において、患部への正確な放射線照射を可能とすることも目的の一つである。
【0009】
なお、前記目的に限らず、後述する実施形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも他の目的の一つとして位置付けることができる。
【課題を解決するための手段】
【0010】
(1)第1の案として、対象部分と前記対象部分とは異なる背景部分との透過的な重ね合わせにより表現される透視画像を処理する信号処理装置または画像処理装置であって、複数の時刻について、前記対象部分を含む前記透視画像を取得する透視画像取得部と、前記複数の時刻のうちのある時刻tにおける前記対象部分に起因する前記透視画像の成分
である第1の成分を、前記時刻tにおける前記透視画像と、前記時刻tにおける前記背景部分に起因する前記透視画像の成分である第2の成分と、に基づいて推定し、前記推定した第1の成分に基づいて、前記対象部分の移動量を推定し、前記推定した移動量と、前記取得された透視画像と、に基づいて、前記時刻tにおける前記推定した第1の成分と、前記時刻tにおける前記推定した第2の成分と、を更新する処理部と、を備え、前記透視画像のそれぞれにおける、前記対象部分が前記背景部分に重ね合わせられた部分は、当該部分における前記第1の成分と、当該部分における前記第2の成分と、の和である、信号処理装置または画像処理装置を用いることができる。
【0011】
ここで、透視画像の空間次元は特に限定されるものではなく、1次元、2次元、3次元のいずれであってもよい。また、対象部分とは、透視画像内において検出対象となるもの、または、透視画像に対応する現実空間等において対象部分に対応するものをいう。さらに、背景部分は、対象部分に含まれない部分をいう。また、対象部分は、一又は二以上を選ぶことが可能であり、二以上を選ぶ場合において、対象部分は、透視画像内において重ね合わさっていてもよいし、離れて存在していてもよい。なお、対象部分と背景部分とには本質的な違いはなく、一または複数の対象部分を背景部分とみなす(つまり、複数の背景部分が存在すると考える)ことも可能である。
【0012】
また、対象部分と背景部分との透過的な重ね合わせとは、対象部分と背景部分の一部又は全部とが、互いになんらかの重みをもって重ね合わされることをいう。透過的な重ね合わせが行なわれる場合、ある時刻tの透視画像だけからは、対象部分と背景部分とを分離することはできない。そこで、計算部では、ある時刻tにおいて、対象部分に起因する成分と背景部分に起因する成分の一方または両方とを、複数の時刻(時刻tを含んでもよい)における対象部分及び背景部分の分布情報と関連づけ、複数の時刻(関連づけた複数の時刻と同じであっても、違っていてもよい。)の透視画像との整合性を評価する。ここで、関連づけは、透過的な重ね合わせの特性(例えば、物理的特性や統計的特性などとして認識される)に基づいて定式化し演算することができる。時刻tの状態と関連付けられる複数の時刻の範囲は、任意に設定可能である。しかし、対象部分及び背景部分の動きが、時間的に連続であるとみなせる場合において、対象部分と背景部分とを(利用目的に応じた)ある程度の精度で分離しようと思えば、時刻tの状態からの変化が比較的小さいとみなせる時間的範囲(これを時刻tの近傍と呼ぶ)において前記複数の時刻を設定するのがよい。一例として、時刻t及び時刻tと隣接する前または後ろの時刻の透視画像を利用する態様をあげることができる。整合性の評価は、例えば、適当に定義された誤差の大きさ定量的に計算し、適当な値と比較することにより行なうことができる。
【0013】
そして、更新部では、前記計算部の評価結果に基づいて整合性を高めるように、言い換えれば分離の妥当性を高めるように、分布情報の更新を行なう。
なお、分布情報は、透視画像内における対象部分あるいは背景部分の分布を表す情報である。分布情報は、例えば、空間的な位置情報や、各位置における輝度情報などによって表すことができる。透視画像をデジタル処理する場合、位置情報は、例えば、処理対象として着目する各領域(一画素からなってもよいし複数画素からなってもよい)における存在情報とすることができるし、輝度情報は、各領域を代表する輝度値の情報とすることができる。位置情報は、線形として扱われる場合には、例えば各領域の画素位置についての係数をもつ係数行列として表現することができる。もちろん位置情報を非線形として扱うことも可能であり、例えば、対象部分が拡大あるいは縮小を行なうような場合には、非線形の関数として表現することも有効と考えられる。
【0014】
対象部分と背景部分とは、統計的な解析を行なって分離されてもよい。例えば、対象部分及び背景部分の位置、形状、輝度のうち少なくとも一つの要素に対して、対象部分と背景部分との統計的独立性の有無・度合いなどを計算することにより、分離の妥当性を評価することができる。このような解析の例としては、独立成分分析を挙げることができる。
(2)また、第2の案として、L(Lは自然数)個の対象部分と前記対象部分以外の背景部分との透過的な重ね合わせにより表現される透視画像を処理する信号処理装置または画像処理装置であって、ある時刻tにおいて、前記対象部分に関し透視画像を取得する透視画像取得部と、上記透視画像取得部で取得された上記透視画像のM×N(M,Nは自然数)個の領域に着目し、前記時刻tと前記時刻tよりも過去のK(Kは自然数)個の時刻t
1,t
2,…,t
Kとにおいて取得した(K+1)個の透視画像の(K+1)×M×N個の前記着目する領域が有する輝度値からなる(K+1)時刻分の観測ベクトルb(t,t
1,t
2,…,t
K)を生成する観測ベクトル生成部と、前記着目する領域中の前記L個の対象部分それぞれに起因する輝度値からなる変数ベクトル(以下、対象変数ベクトルI
a1,I
a2,…,I
aLという)と前記着目する領域中の前記背景部分が有する輝度値からなる変数ベクトル(以下、背景変数ベクトルI
bという)とを、前記観測ベクトルbと前記時刻tよりも過去のある時刻t
pにおける透視画像の前記着目する領域に関するL個の変数ベクトルI
a1(t
p),I
a2(t
p),…,I
aL(t
p)とからなる対象変数ベクトルI
a(t
p)及び背景変数ベクトルI
b(t
p)を用いてそれぞれ更新する変数ベクトル更新部と、上記観測ベクトルbと、前記変数ベクトル更新部により更新された前記対象変数ベクトルI
a及び背景変数ベクトルI
bからなる変数ベクトルIと、前記変数ベクトルIを用いて推定された前記時刻tにおける前記L個の対象部分及び背景部分の位置と前記K個の過去の時刻t
1,t
2,…,t
Kにおいて同様に推定されたそれぞれの時刻における前記L個の対象部分及び背景部分の位置とに関する(K+1)MN×(L+1)MNの係数行列Aとから、fを決定論的、もしくは確率論的な関数として、式
【0015】
【数1】
【0016】
により定義される評価値PIの評価を高めるように前記変数ベクトルIを計算する変数ベクトル計算部と、をそなえ、上記透視画像取得部での前記透視画像の取得、上記観測ベクトル生成部での前記観測ベクトルbの生成、上記変数ベクトル更新部での前記変数ベクトルIの更新、及び、上記変数ベクトル計算部での前記変数ベクトルIの計算を、時刻をずらしながら行なうように構成された、信号処理装置または画像処理装置を用いることができる。
【0017】
(3)さらに、第3の案として、対象部分と前記対象部分とは異なる背景部分との透過的な重ね合わせにより表現される透視画像を処理するコンピュータに
機能を実現させるための信号処理プログラムであって、
前記機能は、複数の時刻について、前記対象部分を含む前記透視画像を取得する透視画像取得機能と、前記複数の時刻のうちのある時刻tにおける前記対象部分に起因する前記透視画像の成分
である第1の成分を、前記時刻tにおける前記透視画像と、前記時刻tにおける前記背景部分に起因する前記透視画像の成分である第2の成分と、に基づいて推定し、前記推定した第1の成分に基づいて、前記対象部分の移動量を推定し、前記推定した移動量と、前記取得された透視画像と、に基づいて、前記時刻tにおける前記推定した第1の成分と、前記時刻tにおける前記推定した第2の成分と、を更新する処理機能と、を含み、前記透視画像のそれぞれにおける、前記対象部分が前記背景部分に重ね合わせられた部分は、当該部分における前記第1の成分と、当該部分における前記第2の成分と、の和である、信号処理プログラムを用いることができる。
【0018】
(4)また、第4の案として、上記プログラムを記録したコンピュータ読み取り可能な記録媒体を用いることができる。
(5)さらに、第5の案として、上記の各処理を行なうステップを有する信号処理方法を用いることができる。
【発明の効果】
【0019】
上記本発明によれば、患部などの対象部分の位置,形状及び大きさなどを高精度に計測(推定)することが可能となる。
また、金属性マーカを刺入することなく安全かつ低負担で、患部などの対象部分の位置,形状及び大きさなどを高精度に計測(推定)することが可能となる。
さらに、放射線治療において、患部への正確な放射線照射を可能とすることが可能となる。
【発明を実施するための形態】
【0021】
以下、図面を参照して本発明の実施形態を説明する。ただし、以下に示す実施形態は、あくまでも例示に過ぎず、以下に示す実施形態で明示しない種々の変形や技術の適用を排除する意図はない。即ち、本実施形態は、その趣旨を逸脱しない範囲で種々変形(各実施形態を組み合わせる等)して実施することができる。
〔1〕一実施形態
(1.1)放射線治療装置の構成例
図1に放射線治療装置を例示する。この
図1に示す放射線治療装置は、例示的に、制御部1と、放射線照射装置90と、計測用放射線照射部305と、センサ部306とをそなえ、例えば、ベッド230上に位置する患者の患部260に対して治療用の放射線を照射することができる。
【0022】
このとき、患部260の位置,形状及び大きさなどが、患者の呼吸運動などにより時間的に変動する場合がある。
そこで、本例では、計測用放射線照射部305により透視画像撮影用の放射線(たとえば、X線など)を患部260周辺に照射し、患部260を通過した透視画像撮影用の放射線をセンサ部306により検知することにより、患部260周辺の放射線透視画像(以下、単に透視画像ともいう)を撮影し、制御部1へ入力する。そして、制御部1が、上記透視画像における患部260などの対象部分の位置,形状及び大きさなどの時間的な変動を計測(推定)する。また、制御部1は、当該計測結果に基づき、放射線照射装置90から照射される治療用の放射線の照射位置及び範囲を制御してもよい。このとき、放射線照射装置90から照射される治療用放射線を計測用放射線の代替えとして、患部260を通過した放射線によりElectronic Portal Imaging Device (EPID)などを用いて患部260の透視画像を撮影・計測(推定)してもよい。あるいは両者を融合して撮影・計測(推定)してもよい。さらに、制御部1はベッド230を制御して患部260と放射線の照射位置とを合わせてもよい。
【0023】
また、撮影方向の異なる透視画像を複数融合することにより、単一撮影面の2次元だけでなく3次元の位置、形状及び大きさとそれらの時間的変動(4次元)を同時に計測(推定)することが可能となる。このとき、複数の透視画像は同種の透視画像装置によって撮影されてもよいし、異種の装置によって撮影されてもよい。さらに、あらかじめ患部260の動きを撮影した4D−CTデータと透視画像データとを融合することによって、動きのある3次元計測を行なってもよい。
【0024】
なお、以下に説明する例では、基本的にX線シミュレータにより取得される透視画像を用いて患部260の位置,形状及び大きさなどの計測を行なった。なお、X線シミュレータでは、毎秒2フレームの透視画像を撮影することができるが、例えば、On Board Imager(OBI)では、毎秒15フレームの透視画像を撮影することができ、より高精度な計測を行なうことができる。
【0025】
(1.2)信号処理装置の一例
ここで、制御部1は、
図2に示すように、例えば、信号処理部2と、放射線照射制御部3とをそなえる。
信号処理部(信号処理装置)2は、計測用放射線照射部305及びセンサ部306により撮影された透視画像に基づいて、時間的に変動する患部260の位置などを計測(推定)する。
【0026】
このため、信号処理部2は、例えば、透視画像取得部4と、観測ベクトル生成部5と、変数ベクトル更新部6と、変数ベクトル計算部7と、推定部8とをそなえる。なお、透視画像取得部4,観測ベクトル生成部5,変数ベクトル更新部6,変数ベクトル計算部7及び推定部8の各動作については、後記(1.6)にて詳述するが、ここでは各部の動作概要について説明する。
【0027】
透視画像取得部4は、計測用放射線照射部305及びセンサ部306により撮影された透視画像を取得する。前記透視画像は、ある時刻tを含む複数の時刻において取得され、透視画像には、位置,形状及び大きさなどの測定(推定)対象である対象部分が一般にL(Lは自然数)個含まれる。つまり、透視画像は、L個の対象部分と当該対象部分以外の背景部分(ただし、対象と背景との間に本質的な違いはないので、(L+1)個の対象と考えても良いし、いくつかの対象を背景と考えて複数の背景として扱っても良い)との透過的な重ね合わせにより表現されているといえる。
【0028】
また、観測ベクトル生成部5は、透視画像取得部4により取得された時刻tにおける透視画像のM×N(M,Nは自然数)個の画素(アナログ画像においてはデジタル化した画素)もしくは複数画素の何らかの代表値からなるある領域に着目して透視画像を記憶し、当該MN個の着目する領域が有する輝度値(以下、濃度ともいう)と、その時刻tよりも過去のK(Kは自然数)個の時刻t
1,t
2,…,t
Kにおいて前記と同様に取得・記憶したK個の透視画像の、あわせて(K+1)MN個の着目する領域からなる観測ベクトルb(t,t
1,t
2,…,t
K)を生成する。なお、透視画像の記憶は上記透視画像取得部4で行なってもよい。
【0029】
変数ベクトル更新部(更新部)6は、観測ベクトル生成部5により生成された領域中のL個の対象部分それぞれに起因する輝度値からなる変数ベクトルI
a1,I
a2,…,I
aLと前記生成された領域中の背景部分が有する輝度値からなる変数ベクトルI
bとを、前記観測ベクトルbと前記時刻tよりも過去のある時刻t
pにおける透視画像の前記着目する領域に関するL個の変数ベクトルI
a1(t
p),I
a2(t
p),…,I
aL(t
p)とからなる対象変数ベクトルI
a(t
p)及び背景変数ベクトルI
b(t
p)を用いてそれぞれ更新する。
【0030】
また、変数ベクトル計算部(計算部)7は、前記観測ベクトル生成部5により生成された上記観測ベクトルbと、前記変数ベクトル更新部6により更新された前記対象変数ベクトルI
a及び背景変数ベクトルI
bからなる変数ベクトルIと、前記変数ベクトルIを用いて推定された前記時刻tにおける前記L個の対象部分及び背景部分の位置と前記K個の過去の時刻t
1,t
2,…,t
Kにおいて同様に推定されたそれぞれの時刻における前記L個の対象部分及び背景部分の位置とに関する(K+1)MN×(L+1)MNの係数行列(関数)Aとから、fを決定論的、もしくは確率論的な関数として、式
【0032】
により定義される評価値PIを、たとえば最適にするなどの適切な値にするように前記変数ベクトルIを計算する。
推定部8は、前記変数ベクトル更新部6によりある初期値が設定された対象変数ベクトルI
aと前記変数ベクトル更新部6により更新された対象変数ベクトルI
aとに基づいて、前記対象部分の時間的な位置変動を推定してもよいし、あるいは、前記変数ベクトル更新部6により更新される前の対象変数ベクトルI
aと前記変数ベクトル更新部6により更新された後の対象変数ベクトルI
aとに基づいて、前記対象部分の時間的な位置変動を推定してもよい。また、更新された対象変数ベクトルI
aに基づいて、対象の形状及び大きさなどを推定してもよい。
【0033】
そして、上記の信号処理部2は、上記透視画像取得部4での透視画像の取得、上記観測ベクトル生成部5での前記観測ベクトルbの生成、上記変数ベクトル更新部6での前記変数ベクトルIの更新、及び、上記変数ベクトル計算部7での前記変数ベクトルIの計算を、時刻をずらしながら行なうように構成される。
信号処理部2により計測された患部260などの対象部分の位置,形状及び大きさなどの情報は、放射線照射制御部3へ出力される。
【0034】
放射線照射制御部3は、信号処理部2からの前記情報に基づいて、放射線照射装置90から照射される治療用の放射線の照射位置及び照射範囲、あるいはベッド230の位置などを制御する。
(1.3)一般的な位置推定手法の検証
まず、上記のような透視画像について、
図3に示すように、一般的な位置推定方法として知られるオプティカルフロー抽出を試みた。これは、異なる時間において撮影された透視画像の各フレーム(動画像フレームともいう)間における対象部分(例えば、患部260など)Tの各画素について移動量ベクトル(u,v)を抽出するものである。なお、以下では簡単のため対象部分の個数を1(L=1)として説明する。
【0035】
図3は、時刻t(>0)における対象部分Tと、離散的な次の時刻(t+1)における対象部分Tとについて、上記移動量ベクトル(u,v)を求める例である。ここで、次の時刻(t+1)はtよりも未来の任意の時刻でも良いが、以下では簡単のため単に(t+1)とする。
まず、オプティカルフロー抽出法の一例として、一般的なブロックマッチング(BM)法を用いる例について説明する。なお、BM法をはじめ、勾配法などの一般的なオプティカルフロー抽出法では、対象部分の各画素の対応する輝度値が、対象部分の移動によっても変化しない(一定である)ことを前提条件としている。
【0036】
BM法は、ある時刻tで撮影されたフレーム(前フレームともいう)において対象部分のある注目点を含むある大きさの領域をテンプレートのブロックとして、時刻(t+1)で撮影された次のフレーム(次フレームともいう)のある決められた範囲(画像すべてでも良い)を全探索することにより、前フレームのテンプレートブロックとの間で差分などの評価関数を最適化する次フレームのブロックの注目点とブロック内の相対位置が同じ点を対応点とすることで、フレーム間での対象部分を構成する各点の移動変位を抽出する手法である。
【0037】
具体的には、例えば、
図4に示すように、まず、時刻tに撮影されたフレーム(前フレーム)において、対象部分を含むM×N(
図4に示す例では、M=N=3)のあるテンプレートブロックに対して、時刻(t+1)に撮影されたフレーム(次フレーム)における各ブロックのうち、前フレームにおけるあるブロックと差分評価関数等を最小とするブロックを探索し、当該ブロック間で移動量ベクトル(u,v)を算出する。
【0038】
上記算出は、例えば、以下のような計算により行なわれる。
例えば、時刻tに撮影されたフレームにおける対象部分の位置(m,n)におけるある画素の輝度値をI(m,n,t)とし、時刻(t+1)に撮影されたフレームにおける抽出対象の位置(m,n)における前記画素の輝度値をI(m,n,t+1)とした場合、前フレームにおけるある画素の輝度値I(m,n,t)と、次フレームにおいて当該画素の位置から移動量ベクトル(u,v)だけ移動した画素の輝度値I(m+u,n+v,t+1)との最小二乗誤差Mean Square Error(MSE)は次式(a)で定義される。
【0040】
ここで{m,n}は、上記M×Nのブロック内に存在するすべての画素位置の集合である。BM法では、たとえばこのMSEを最小にするフロー(U,V)が、次式(b)により、各ブロックに対してそれぞれ演算される。
【0042】
実際にBM法を用いて患部260の位置を計測(推定)したところ、患部260の実際の位置と推定した位置との差(推定誤差)は、
図5に示すように、約1.2[mm]〜約2.4[mm]となった。ただしこの方法は、対象部分の輪郭が明瞭な特定の一部分を用いるなど、高コントラスト部分を用いることで精度の向上が期待できるため、対象の患部260の腫瘍部分のうち、目視によりコントラストが高い輪郭部分を注目点として手動設定した。また、ブロックサイズは正方のN×Nとした。なお、
図5中、横軸はブロックサイズ(N)の大きさを表す。
【0043】
このように、患部260の位置推定にBM法を用いた場合、上記のような精度向上の工夫をしたにも拘らず、臨床上要求される精度(例えば、推定誤差が1[mm]以内)を達成できない。
(1.4)一般的な位置推定手法の問題点
上記のように、BM法では、所望の推定精度(誤差が1[mm]以内)を達成できないが、この原因としては、主に次の2つが考えられる。
【0044】
第1に、透視画像は非常に不明瞭であり、同じ対象であってもノイズなどによりフレーム間で輝度値が異なる可能性があるということ。
第2に、透視画像において、患部260の輝度値は、患部260などの対象部分そのものの輝度値と背景部分の輝度値との積算値により表されるため、上記オプティカルフロー抽出法の前提条件(即ち、対象部分の輝度値が対象部分の移動によっても変化しない)が成り立たない。この条件は、位相限定相関法などのオプティカルフロー抽出以外の他の一般的な方法でも前提としているため、当該条件の不成立は、精度低下を招く、より本質的な原因となっている。
【0045】
そこで、上記の各問題を解決する方法について以下に述べる。
(1.5)テンプレートマッチング
BM法では、
図6に例示するように、前フレームと次フレームとの間で対象部分の差分などの評価値を算出するため、前フレーム及び次フレームのうち少なくとも一方の透視画像が不明瞭であったり、同一対象部分であってもノイズなどによりフレーム間で輝度値が異なる場合、評価値の算出精度が低下し、位置推定精度が低下する。
【0046】
そこで、BM法ではなく、例えば、テンプレートマッチング(TM:Template Matching)法を用いることができる。
TM法は、
図7に例示するように、対象部分のテンプレートを予め取得しておき、当該テンプレートと最も相関の高い範囲を、各時刻におけるフレームにおいてそれぞれ探索する方法である。なお、TM法に用いるテンプレートは、例えば、ある時刻におけるフレーム中、所定値以上の輝度値を有する範囲をテンプレートとして定めることで取得することができる。または、他の計測装置(CTやMRI(magnetic resonance imaging)など)により計測された患部260の位置,形状及び大きさなどに基づいて、テンプレートを定めてもよい。
【0047】
TM法では、たとえばテンプレートが有する輝度値I
temp(m,n)と、時刻tのフレームにおける対象部分の輝度値I(m+u,n+v,t)との最小二乗誤差(MSE)を次式(c)により定義する。
【0049】
そして、TM法では、たとえば上記の式(c)におけるMSEを最小にするフロー(U,V)を、次式(d)により算出する。
【0051】
このように、TM法では、ノイズの影響を受けない対象部分のテンプレートと各フレームにおける対象部分との評価値に基づき、対象部分の位置を計測(推定)するので、その推定結果が、比較対象両者がノイズの影響を受ける可能性のあるBM法に比して、透視画像の不明瞭さに影響されにくい。
【0052】
また、BM法では、対象部分の細部にわたる濃度分布が評価値に影響するが、TM法においては、例えば、濃度分布一定のテンプレートを用いることにより、対象部分の細部の相違にはあまり影響されない効果が期待できる。
この他、ノイズの影響を低減するため、式(c)にノイズ項を付加して統計的な処理を行なうことも有効である。
【0053】
(1.6)濃度分布の分離
また、
図8(A)に示すように、透視画像においては、患部260などの対象部分の見かけ上の輝度値は、対象部分本来の輝度値と、患部260の周辺臓器などの背景部分の輝度値との積算値で定まる。
そのため、たとえ対象部分の一部分に着目しても、当該一部分に重なる背景部分の輝度値が時間的に異なっていれば、当該一部分の見かけ上の輝度値は時間的に一定とならない。従って、一般的には、透視画像において、前述した従来のオプティカルフロー法の前提条件が成立しない。
【0054】
一方、
図8(B)に示すように、透視画像でない通常の画像(反射画像という)において、対象部分の輝度値は、背景部分の輝度値に応じて変化しない。つまり、反射画像において対象部分の一部分に着目した場合、当該一部分に重なる背景部分の輝度値が時間的に異なっていても、当該一部分の見かけ上の輝度値は一定である。従って、一般的に、反射画像においては、前述した従来のオプティカルフロー法の前提条件が成立する。
【0055】
そこで、本例では、
図9に例示するように、透視画像における見かけ上の(観測された)輝度値I(m,n,t)を、時間的に移動する対象部分本来の輝度値I
a(m,n,t)と、対象とは別の動きをする背景部分の輝度値I
b(m,n,t)とに分離する。なお、以下では引き続き簡単のため対象部分の個数を1(L=1)とし、背景の移動変位を0(つまり、静止している)として、単にI
b(m,n)と記す。
【0056】
透視画像から分離された対象部分の輝度値に関しては、オプティカルフロー法の前提条件が成立するので(本例では、この前提条件が成り立つような分離を行なう)、透視画像において観測された輝度値I(m,n,t)ではなく、時間的に移動する対象部分本来の輝度値I
a(m,n,t)について、TM法などにより位置推定を行なうことにより、反射画像と同様に対象部分の位置を高精度に計測(推定)することが可能となる。また、推定された位置情報を用いて、I
aの分離精度を高める事が可能なため、各処理を繰り返すことにより対象部分の位置だけでなく、形状及び大きさなどを高精度に計測(推定)することが可能である。
【0057】
以下に、本例の分離方法について、
図10〜
図12を用いて説明する。
まず、
図10に例示するように、例えば、時刻tにおける透視画像のある領域(注目領域(ROI:Region of Interest)ともいう)の輝度値ベクトル(以下、観測ベクトルともいう)I(m,n,t)は、対象部分の輝度値ベクトルI
a(m,n,t)と、背景部分の輝度値ベクトルI
b(m,n)とにより、次式(e)のように表すことができる。
【0059】
なお、上記の式(e)において、I
amn,(m,n)={(2,2),(2,3),(3,2),(3,3)}は、透視画像のROI中の各ブロックの位置座標(m,n)における対象部分本来の輝度値を示した変数ベクトルである。また、I
bmn,(m,n)={(2,2),(2,3),(3,2),(3,3)}は、透視画像のROI中の各ブロックの位置座標(m,n)における背景部分の輝度値を示した変数ベクトルである。
【0060】
この
図10から分かるように、上記式(e)で表される方程式の解は、
【0062】
であるが、式(e)で表される方程式は未知変数の数に対して独立な方程式の数が不足している不定であり、対象部分の変数ベクトルI
a(I
a22〜I
a33)及び背景部分の変数ベクトルI
bの分布(I
b22〜I
b33)は一意に定まらない。これは、1枚の透視画像からその濃度を構成している要素部分を一般には分離できないことを意味している。
【0063】
そこで、
図11に例示するように、時刻tにおいて取得された観測フレームと別の時刻(簡単のため引き続き(t+1)とする)において取得された観測フレームを時間的に統合して、各ROIの観測ベクトルIを、対象部分の変数ベクトルI
aと、背景部分の変数ベクトルI
bとにより、次式(f)のように表す。
【0065】
上記の式(f)において、左辺左側の行列は係数行列(関数)Aであり、例えば、異なる時刻t,(t+1)における対象部分の位置により決定される行列である。また、左辺右側の行列は、時刻tにおけるROIの対象部分及び背景部分の濃度を示す変数ベクトルIである。また、右辺の行列は、異なる時刻t,(t+1)において取得された透視画像のROIにおいて観測される輝度値を示す観測ベクトルbである。なお、本例では、透視画像を4×4の16画素もしくは複数画素の何らかの代表値16個から構成されるものとし、ROIを2×2の4(M=2, N=2よりMN=4)画素で規定しているので、2時刻分をまとめた係数行列は、K=1, L=1より(K+1)MN=8, (L+1)MN=8だから8×8の行列となり、変数ベクトルIは8×1の行列となっているに過ぎず、透視画像の画素(もしくは代表値)数やROIの画素(もしくは代表値)数、ならびに対象部分の個数、統合する過去の時刻数に応じて各行列のサイズはそれぞれ変化する。
【0066】
ここで、係数行列Aがフルランクであれば、当該係数行列Aで関連付けられる変数ベクトルIは一意に求まる。
しかし、実際には、異なる時刻t、時刻(t+1)間において、対象部分がどのように移動したのかは不明である、即ち、係数行列A(特に、係数行列Aの5,6,7,8行目のそれぞれ1,2,3,4列目を抽出した4×4の部分行列{a
ij}, i=5,6,7,8, j=1,2,3,4, ただし、a
ijは行列Aのi行j列目の要素である。なお、背景は静止しているものとしているが、背景も移動する場合はj=1,…,8である。)が不明であるため、本例では、係数行列Aを推定する。
【0067】
また、係数行列Aで関連付けられる変数ベクトルIの各要素は、例えば、既述のテンプレート作成方法により作成したテンプレートが有する輝度値を初期値として設定することができるが、あくまで仮定した値であるから一般に実際の値とは異なる。
そこで、本例では、上記の係数行列A及び変数ベクトルIを、ある初期値から開始して相互の推定値を用いた更新を繰り返すことで推定精度を高める。
【0068】
図12は本例の動作について示したフローチャートの一例である。
この
図12に例示するように、まず、信号処理部2は、初期設定として、時刻パラメータtに「0」を代入し、透視画像における注目領域(ROI)を設定する。そして、変数ベクトル更新部6が、変数ベクトルI
aの初期値として、例えば、対象部分のテンプレートの輝度値ベクトルI
atemplateを設定する(ステップA1)。
【0069】
ここで、ROIは、患部260などの対象部分を含むように設定されるのが望ましい。例えば、対象部分を別に撮影したCTやMRI画像などと対象部分の移動範囲の概略とを元に、常に対象部分が含まれるような領域を自動で、あるいは目視による手動で、またはあらかじめ取得したある時刻の透視画像において、所定値以上の輝度値を有する部分(範囲)を対象部分であると仮定することにより、当該部分が動く範囲を見積もってそれを含む領域をROIとして設定することができる。
【0070】
また、テンプレートの輝度値ベクトルI
atemplateについては、変数ベクトル更新部6が、例えば、対象部分を別に撮影したCTやMRI画像などを元に自動で、あるいは目視による手動で対象部分の輪郭を大まかに抽出、またはある時刻に取得された透視画像において、所定値以上の輝度値を有する部分(範囲)を対象部分であると仮定することにより、当該部分を対象部分のテンプレートとして設定することができる。さらに、抽出部分の輝度値を適当な一定値とすることで、あるいは当該テンプレートが有する明るさに関する情報に基づいて、I
atemplateを算出することができる。
【0071】
次に、透視画像取得部4が、時刻tにおいて、対象部分に関し透視画像を取得する。即ち、透視画像取得部4及び観測ベクトル生成部5により、時刻tにおいて取得された透視画像について、ステップA1で設定されたROIにおける輝度値ベクトルI(t)が取得される(ステップA2)。
そして、変数ベクトル更新部6が、次のステップA3〜A8に基づいて、対象部分の移動量ベクトル(u,v)を推定するために用いられる、変数ベクトルIの推定値である
【0073】
の更新処理を行なう(
図12中の破線部分を参照)。なお、
図12中、各変数に付されたハット記号は、当該変数が推定値であることを示すものである。また、行列
tAは行列Aの転置行列を表す。なお、以下の説明では、表示上の制約から、ハット記号の代わりにダッシュ記号「′」を用いることがある。
当該更新処理においては、まず、変数ベクトル更新部6により、時刻パラメータtが、t=0を満たすかどうかが判定される(ステップA3)。
【0074】
ここで、t=0を満たすと判断された場合(ステップA3のYesルート)、変数ベクトル更新部6は、変数ベクトルI
b′の初期化を行なう(ステップA4)。ステップA4でのI
b′の初期化は、例えば、観測ベクトル生成部5により生成された、時刻t=0における観測ベクトルI(0)から、上記テンプレートの輝度値ベクトルI
atemplateを減算し、当該減算結果がI
b′(0)に設定されることで行なってもよい。
【0075】
また、観測ベクトル生成部5は、時刻t=0における観測ベクトルI(0)をb(0)とする(ステップA5)。
一方、t=0を満たさないと判断された場合(ステップA3のNoルート)、観測ベクトル生成部5は、例えば、上記取得された透視画像のROIをM×N個の画素(もしくは代表値)領域とし、当該MN個のROIが有する輝度値と、時刻(t−1)において前記と同様に取得済の透視画像のROIのMN個の画素(もしくは代表値)の輝度値に基づいてあわせて2MN個の画素(もしくは代表値)の観測ベクトルb(t,t-1)を生成する(ステップA6)。なお、輝度値については、例えば、観測ベクトル生成部5が、透視画像のROIにおいて、各ブロックでの単位面積あたりの明るさを測定し、当該測定結果に基づいて算出するようにしてもよい。そして、変数ベクトル更新部6は、I
b′の更新を行なう(ステップA7)。ステップA7でのI
b′の更新は、例えば、変数ベクトル計算部7により前の時刻で計算された変数ベクトルI
b′の値が、次の時刻における変数ベクトルI
b′に設定されることで行なわれる。
【0076】
次に、変数ベクトル更新部6は、変数ベクトルI
a′の更新を行なう(ステップA8)。ステップA8でのI
a′の更新は、例えば、観測ベクトル生成部5により生成された、時刻tにおける観測ベクトルI(t)から、ステップA4またはA7において初期化または更新された変数ベクトルI
b′を減算し、当該減算結果がI
a′に設定されることで行なわれる。
【0077】
そして、推定部8が、例えば、ステップA1において設定されたI
atemplateとステップA8において更新された変数ベクトルI
a′との間でTM法や勾配法を適用することにより、対象部分の移動量ベクトルの推定値(u´(t),v´(t))を算出(推定)する(ステップA9)。このとき、対象部分を、対象部分を構成するすべての点が同じ移動量をもつ剛体と仮定することにより、推定処理を高速化してもよいし、すべての点もしくは一部の点が他の点とは異なる移動量をもつ非剛体として厳密に推定してもよい。以下では簡単のため、対象を剛体と仮定して説明する。なお、推定部8は、例えば、ステップA8において更新される前の変数ベクトルI
a′とステップA8において更新された後の変数ベクトルI
a′との間でBM法や勾配法を適用することにより、対象部分の移動量ベクトルの推定値(u´(t),v´(t))を算出(推定)してもよいし、I
atemplateもしくはステップA8において更新された後の変数ベクトルI
a’との位相限定相関法やパーティクルフィルタを用いた方法などで算出(推定)してもよい。
【0078】
次に、変数ベクトル計算部7が、推定部8により推定された移動量ベクトルの推定値(u´(t),v´(t))に基づいて、係数行列Aを推定・更新する。即ち、変数ベクトル計算部7(関数更新部)は、初期値が設定された変数ベクトルI
aと更新された変数ベクトルI
aとに基づいて、係数行列(関数)Aを推定・更新する機能を有する。あるいは、変数ベクトル計算部7は、更新される前の変数ベクトルI
aと前記更新された後の変数ベクトルI
aとに基づいて、係数行列Aを推定・更新する機能を有する。
【0079】
また、t=0でない場合は変数ベクトル計算部7が、たとえば次式(g)により定義される誤差eの各要素の2乗を最小にするような、I(t)を計算により求める(ステップA10)。
【0081】
ここで、行列Aの真値が求まり、かつフルランクであれば、誤差e=0を満足する連立方程式の厳密解Iを行列Aの逆行列を計算することで容易に求める事ができる。しかし、上述のように実際には行列Aは推定値であり、仮にフルランクになった場合の厳密解が求まったとしても、それが分離したいI
a及びI
bに一致する保証はない。そこで、本例では厳密に解を求めるのではなく、最適化手法などを用いて分離濃度を推定する。
【0082】
誤差eの2乗の最小化方法には、例えば、最急降下法や共役勾配法、Newton法などの最適化法をはじめ、人工神経回路網やファジィ理論、進化的計算理論などのいわゆる計算知能的手法も用いることができる。また、誤差関数に統計的なノイズ項を付加して、確率的な最適化法を用いることもできる。これはノイズの多い不明瞭な画像では有効な方法である。さらに、本例で対象とする腫瘍部分に起因する画像は、対象だけが存在し対象部分以外の輝度が0であるものが多いため、推定されたI’
aに対し、輝度値がある値よりも小さな画素の値を閾値処理などによりノイズ除去してもよい。これにより特に最適化の過程での推定誤差の蓄積軽減効果が期待できる。
【0083】
例えば、最急降下法を用いることにより誤差eの各要素の2乗を最小にするようなI(t)を求める場合、以下の式(h)が用いられる。
【0085】
上記の式(h)において、b(t,t-1)=
t[
tI(t-1),
tI(t)]=b(I)であり、ηは変更割合を表すある正の係数である。
即ち、変数ベクトル計算部7は、前記推定した係数行列Aに基づいて最適化法を用いることにより、誤差eのような何らかの評価指標を適切にするような、変数ベクトルIを計算するのである。
【0086】
そして、信号処理部2は、時刻tの値をインクリメントし(ステップA11)、ステップA2〜ステップA11の処理を繰り返し実行する。
即ち、本例の信号処理部2は、透視画像取得部4での前記透視画像の取得、観測ベクトル生成部5での前記観測ベクトルbの生成、変数ベクトル更新部6での前記変数ベクトルI
a及びI
bの更新、及び、変数ベクトル計算部7での前記変数ベクトルI
a及びI
bの計算を、時刻をずらしながら行なうように構成される。
【0087】
従って、変数ベクトル更新部6は、変数ベクトル計算部7により計算された変数ベクトルI
a及びI
bを用いて、変数ベクトルI
a及びI
bをそれぞれ更新するのである。
上述したように、本例の信号処理方法によれば、透視画像から対象部分と背景部分とを分離することができ、分離された対象部分について位置推定を行なうことにより、対象部分の位置を高精度に測定(推定)することが可能となる。また、分離により対象部分の形状や大きさなどを高精度に測定(推定)することも可能となる。
【0088】
(1.7)実験例
はじめに正解の分離濃度が分かっているファントムデータを用いた実験結果について説明する。ファントムデータとは、ROIのサイズが100×100の対象腫瘍がない
図13(B)のような透視画像を背景とし、当該背景に
図13(A)のような人工的に移動する腫瘍画像を積算した
図13(C)に示すような透視画像データである。
図14に時間発展に伴う上記ファントムデータのフレームの変化例を示す。
図14に示す例では、合計110フレームの中から適当に選択した12フレームの透視画像が、時系列順に、左上から右下に向かって配置されている。腫瘍はROIの中央付近を主に縦方向に移動しており、実際の肺腫瘍の動きを模擬したものとなっている。
【0089】
この
図14に示す各フレームについて、本例の信号処理方法を適用したところ、
図15及び
図16に示すように、正解とはかなり異なる初期値を手動で適当に設定した場合でも、時間の進展ともに対象部分と背景部分とを精度よく分離することができた。特に、
図15に示すように、目視で適当に手動設定した初期値から、時間発展に伴いほぼ
図13(A)に示す腫瘍画像を分離抽出できていることが分かる。初期値の誤差がROIサイズ10000個のうち300画素以上で、濃度差も1画素あたり20だったのに対し,最終フレームでは誤差は0画素で、1画素あたりの濃度差も平均約0.1以下まで減少させることに成功しており、高精度に分離できていることが示された。対象腫瘍の形状そのものは完全に分離できていることから、残りの誤差も対象腫瘍の形状内の濃度値の僅かな誤差のみである。この事は、
図16に示すように腫瘍を分離した背景画像が
図13(B)に一致していることからも確認できる。初期値設定と更新とを繰り返して得られた分離結果を正解画像と比較した例を
図17に示す。初期画像(B)では腫瘍部分の形状や大きさなどが正解画像(A)とは大きく異なり、背景画像にもその影響がはっきり見て取れるが、分離結果画像(C)では腫瘍の形状や大きさも正確に分離できている。また、濃度分布に多少の誤差が残っているが、本例の信号処理方法をさらに繰り返し適用することで、さらなる高精度な推定が可能であり、この程度の誤差であれば、背景画像にその影響を目視するのは困難である。
【0090】
また、このとき最終的に分離されたI
aについて、位置推定手法の一例としてTM法を用いて対象部分の位置計測を行なったところ、その推定誤差はほぼ0となり正確な位置推定結果が得られた。同じファントムデータに従来のBM法を適用したところ、背景画像の高コントラストな肋骨輪郭などに影響され、平均誤差は約3[mm]となってしまったことからも、本信号処理方法の有効性が確認できる。
【0091】
次に、実際の症例データを用いた実験結果について説明する。
図18に、ROIサイズ60×60の対象部分と背景部分とを分離する前の透視画像の一例を示す。
図18に示す例では、第1フレームから第12フレームまでの連続した透視画像が、時系列順に、左上から右下に向かって配置されている。
この
図18に示す各フレームについて、本例の信号処理方法を適用したところ、
図19及び
図20に示すように、対象部分と背景部分とを分離することができた。
【0092】
ここで、
図19に示す分離された対象部分について、位置推定手法の一例としてTM法を用いて対象部分の位置計測を行なったところ、その推定誤差は、0.61±0.18[mm]となった。また、対象部分の形状及び大きさについても高精度に測定することができた。ファントムデータが100フレーム分の更新だったのに対し、用いた症例データは12フレーム分しか使用できない制約があったため、ファントムデータに比べると精度はやや落ちるものの、臨床上十分な高精度計測が可能となっている。また、実際の臨床では治療照射前に1,2分程度の観測を行なうことで、100フレーム程度のデータを取得することが可能なため、症例データに対してもさらに高精度な分離と位置計測が可能である。
【0093】
これに対し、対象部分と背景部分とを分離することなく、
図18に示す透視画像について、位置推定手法の一例としてTM法を用いて対象部分の位置計測を行なったところ、その推定誤差は、0.81±0.04[mm]であった。BM法よりも精度が向上しており、TM法の効果が確認できる。ただし、この場合のTM法は、BM法と同様に対象部分の輪郭が明瞭であるなど、高コントラストであれば高精度が期待できるため、目視によりコントラストが高い輪郭部分を注目点として試行錯誤的に手動設定し、最も推定誤差が小さくなるROIサイズを採用した。目視による手動設定は細心の注意を要する煩雑な作業であるため、多忙な臨床現場で行なうことは設定者の負担も大きい。したがって、対象と背景とを分離することなく高精度な計測を行なうことは難しい。
【0094】
以上から、本例の信号処理方法のように、透視画像から対象部分と背景部分とを分離し、分離された対象部分について位置推定を行なうことにより、異なる時刻において取得された透視画像から対象部分の位置,形状及び大きさなどを高精度に計測(推定)することが可能となる。
また、本例の信号処理方法によれば、観測対象に金属性マーカを刺入することなく安全かつ低負担で、対象部分の位置,形状及び大きさなどを高精度に計測(推定)することができる。
【0095】
(1.8)変形例
本例では、
図21の丸付き数字1に例示するように、対象部分の少なくとも一部が、透視画像に設定されたROIの外へ移動した場合の信号処理方法の一例について説明する。
例えば、
図11に示す例では、時刻tにおいて、(m,n)=(2,2)及び(3,2)の位置にあった対象部分の一部が、時刻(t+1)において、(m,n)=(2,1)及び(3,1)の位置へ移動している。
【0096】
このような場合、ROIの他の部分(
図11に示す例では、時刻(t+1)の透視画像において、(m,n)=(2,3)及び(3,3)の部分)に対応する変数ベクトルIの各要素の係数は0となる。(ただし、上記の式(f)を連立方程式として定式化するため、I
a′を構成する変数は一定とする。)
上記の例では、時刻tにおける値を上付き表示でI
ij(t)=I
ijtのようにも表すと
【0100】
となるため、矛盾が生じる。
本例では、例えば、上記の矛盾を、
【0102】
とすることで回避することができる(
図21の丸付き数字2参照)。
しかしながら、このまま行列計算
【0108】
が更新されない。
その結果、当該拘束条件の下で、他の変数のみを計算することになり、
【0110】
が真値でなければ、他の変数は誤った値となる。
そこで、誤った拘束条件の影響を排除するため、前述の最急降下法などの最適化手法を用いることができる。
例えば、誤差eを次式(i)で定義し、当該誤差eについて最急降下法などの最適化手法を適用することにより、I´を計算することができる(
図21の丸付き数字3参照)。
【0112】
これにより、対象部分の一部がROIの外へ移動した場合であっても、より高精度に対象部分の濃度分布を算出することができる。結果、このような場合であっても、対象部分の位置,形状及び大きさなどをより高精度に計測(推定)することが可能となる。
(1.9)その他
また、上述した信号処理部2により推定された対象部分の位置に関する情報を用いて、前記対象部分に放射線を照射する放射線治療装置を実現することもできる。
【0113】
例えば、
図22に例示する放射線治療装置において、患者の患部260を前記対象部分として、放射線を発生する放射線発生部(パルスモジュレータ250,クライストロン100,冷却装置110,導波管120,真空ポンプ130,電子銃140,加速管150,偏向電磁石160及びターゲット170)と、前記放射線発生部から発生した前記放射線の照射範囲を所望の形状に形成するコリメータ部(MLC210)と、前記患部の時間的な位置変動を推定する信号処理装置(信号処理部2)と、前記信号処理装置により推定された前記患部の位置に関する情報を用いて、前記放射線の照射位置と照射範囲とを算出し、前記算出結果を基に前記コリメータ部を駆動制御する駆動制御部(制御部1)と、をそなえた、放射線治療装置が考えられる。
【0114】
これにより、放射線治療において、患部への正確かつ連続的な放射線照射が可能となる。
なお、上述した信号処理部2としての機能は、コンピュータ(CPU,情報処理装置,各種端末を含む)が所定のアプリケーションプログラム(信号処理プログラム)を実行することによって実現されてもよい。
即ち、上記プログラムは、対象部分と前記対象部分とは異なる背景部分との透過的な重ね合わせにより表現される透視画像中の前記対象部分の時間的な位置変動を推定する信号処理装置において、前記推定機能をコンピュータに実現させるための信号処理プログラムであって、前記信号処理プログラムが、ある時刻tにおいて、前記対象部分に関し透視画像を取得する透視画像取得機能と、上記透視画像取得機能により取得された上記の透視画像のM×N個の画素(アナログ画像においてはデジタル化した画素)もしくは複数画素の何らかの代表値からなるある領域に着目し、前記ある時刻tよりも過去のK(Kは自然数)個の時刻t
1,t
2,…,t
Kにおいて前記と同様に取得したK個の透視画像の、あわせて当該(K+1)MN個の前記着目する領域が有する輝度値からなる(K+1)時刻分の観測ベクトルb(t,t
1,t
2,…,t
K)を生成する観測ベクトル生成機能と、前記着目する領域中の前記L個の対象部分それぞれに起因する輝度値からなる変数ベクトルI
a1,I
a2,…,I
aLと前記着目する領域中の前記背景部分が有する輝度値からなる変数ベクトルI
bとを、前記観測ベクトルbと前記ある時刻tよりも過去のある時刻t
pにおける透視画像の前記着目する領域に関する変数ベクトルI
a1(t
p), I
a2(t
p),…, I
aL(t
p) からなる対象変数ベクトルI
a(t
p)及び背景変数ベクトルI
b(t
p)とを用いてそれぞれ更新する変数ベクトル更新機能と、上記観測ベクトルbと、前記変数ベクトル更新機能により更新された前記変数ベクトルI
a及びI
bからなる変数ベクトルIと、前記変数ベクトルIを用いて推定された前記時刻tにおける前記L個の対象部分及び背景部分の位置と前記K個の過去の時刻t
1,t
2,…,t
Kにおいて同様に推定されたそれぞれの時刻における前記L個の対象部分及び背景部分の位置とに関する(K+1)MN×(L+1)MNの係数行列Aとから、fを決定論的、もしくは確率論的な関数として、式
【数12】
【0115】
により定義される評価値PIを、たとえば最適にするなどの適切な値にするように前記変数ベクトルIを計算する変数ベクトル計算機能と、をそなえ、上記透視画像取得機能による前記透視画像の取得、上記観測ベクトル生成機能による前記観測ベクトルbの生成、上記変数ベクトル更新機能による前記変数ベクトルIの更新、及び、上記変数ベクトル計算機能による前記変数ベクトルIの計算を、時刻をずらしながら行なうように前記コンピュータを動作させる、信号処理プログラムの一例である。
【0116】
また、上記プログラムは、例えば、フレキシブルディスク,CD(CD−ROM,CD−R,CD−RWなど),DVD(DVD−ROM,DVD−RAM,DVD−R,DVD−RW,DVD+R,DVD+RWなど)等の一時的でない(non-transitory)コンピュータ読取可能な記録媒体に記録された形態で提供されうる。この場合、コンピュータはその記録媒体から信号処理プログラムを読み取って内部記憶装置または外部記憶装置に転送し格納して用いることができる。また、そのプログラムを、例えば、磁気ディスク,光ディスク,光磁気ディスク等の記憶装置(記録媒体)に記録しておき、その記憶装置から通信回線を介してコンピュータに提供するようにしてもよい。
【0117】
ここで、コンピュータとは、ハードウェアとOS(オペレーティングシステム)とを含む概念であり、OSの制御の下で動作するハードウェアを意味している。また、OSが不要でアプリケーションプログラム単独でハードウェアを動作させるような場合には、そのハードウェア自体がコンピュータに相当する。ハードウェアは、少なくとも、CPU等のマイクロプロセッサと、記録媒体に記録されたコンピュータプログラムを読み取るための手段とをそなえている。
【0118】
上記信号処理プログラムとしてのアプリケーションプログラムは、上述のようなコンピュータに、信号処理部2としての機能を実現させるプログラムコードを含んでいる。また、その機能の一部は、アプリケーションプログラムではなくOSによって実現されてもよい。
なお、本実施形態としての記録媒体としては、上述したフレキシブルディスク,CD,DVD,磁気ディスク,光ディスク,光磁気ディスクのほか、ICカード,ROMカートリッジ,磁気テープ,パンチカード,コンピュータの内部記憶装置(RAMやROMなどのメモリ),外部記憶装置等や、バーコードなどの符号が印刷された印刷物等の、コンピュータ読み取り可能な種々の媒体を利用することもできる。
【0119】
また、上述した放射線治療装置及び信号処理部2の各構成及び各処理は、必要に応じて取捨選択してもよいし、適宜組み合わせてもよい。
例えば、変形例では、対象部分がROIの外へ移動した場合の位置推定方法について説明したが、ROIの範囲を十分大きく設定して実際には推定しないダミー変数を用いるなどすることにより、当該事態を回避してもよい。ただし、ダミー変数を用いる場合、逆行列計算で解を計算することはできず、変形例で示した誤った拘束条件を修正しながら最適化手法を用いる方法などを用いる。
【0120】
また、本例の信号処理方法は、例えば、血管造影法により撮影される血管についての位置,形状及び大きさなどの推定や、透過性のある複数の微生物などが一部もしくは全部重なりあって運動している場合の顕微鏡映像における複数対象物のそれぞれの位置変動、形状及び大きさ変動などの推定の他、非破壊検査などに適用することも可能である。
さらに、本例の信号処理方法により推定した患部260などの対象部分の位置,形状及び大きさなどに関する情報を入力信号として、患部260の位置を予測してもよい。