【実施例】
【0026】
実施例1、比較例1
図1に示した障壁層103およびテクスチャ制御層104を有する垂直磁気記録媒体を実施例1として使用した。バッファ層102としての約100nmのNi
62Ta
38、障壁層103としての約1nmのNi
86Cr
6W
8層、テクスチャ制御層104としての約1nmのMgO層、ヒート・シンク層105としての約30nmのCr層、下層106としての約12nmのMgO層、平均組成(Fe
45Pt
45Ag
10)
85(SiO
2)
15の約10nmの磁気記録層107、および保護層108としての約3nmのC層を基板101の上に順次形成した。製膜は、DCスパッタリングまたはRFスパッタリングにより行った。その後に、約1nmの潤滑材料109をC層に塗布した。
【0027】
図7に示したテクスチャ制御層104を有しない垂直記録媒体を比較例1として使用した。バッファ層102としての約100nmのNi
62Ta
38、障壁層103としての約1nmのNi
86Cr
6W
8層、ヒート・シンク層105としての約30nmのCr層、下層106としての約12nmのMgO層、平均組成(Fe
45Pt
45Ag
10)
85(SiO
2)
15の約10nmの磁気記録層107、および保護層108としての約3nmのC層を基板101の上に順次形成した。製膜は、DCスパッタリングまたはRFスパッタリングにより行った。その後に、約1nmの潤滑材料109をC層に塗布した。その他の点では、比較層1は、実施例1と同じであった。
【0028】
図8に示した障壁層103なしの垂直磁気記録媒体を比較例2として使用した。バッファ層102としての約100nmのNi
62Ta
38、テクスチャ制御層104としての約1nmのMgO層、ヒート・シンク層105としての約30nmのCr層、下層106としての約12nmのMgO層、平均組成(Fe
45Pt
45Ag
10)
85(SiO
2)
15の約10nmの磁気記録層107、および保護層108としての約3nmのC層を基板101の上に順次形成した。製膜は、DCスパッタリングまたはRFスパッタリングにより行った。その後に、約1nmの潤滑材料109をC層に塗布した。その他の点では、比較層2は、実施例1と同じであった。
【0029】
図2は、実施例および比較例の媒体の結晶配向の測定結果を示す。X線回折装置を使用して結晶配向を評価した。垂直軸は、各結晶面の回折ピーク強度を示し、また、水平軸は角度(2θ)を示す。この場合、回折ピーク強度が高いほど、結晶化度は良い。
【0030】
比較例1と比較されたこれらの結果から、実施例1において、Cr(200)のピークがヒート・シンク層で得られ、また、MgO(200)配向がCrの上に形成された下層から得られたことが分かる。その結果、磁気記録層においてもFePt(001)、(002)ピークが得られ、その結果、L10規則FePt合金が形成されたことが分かる。また、実施例1において、Cr回折ピークは、FePtおよびMgOの回折ピークに比べて大であり、その主な理由は、膜が厚く、かつ、結晶粒径が大きいことである。他方、比較例1においては、Cr(110)ピークは得られたが、Cr(200)ピークは得られなかった。換言すると、ヒート・シンクおよび下層の配向を制御することは可能ではなく、したがってFePtはL10規則を形成しなかった。
【0031】
図3A〜3Dは、原子間力顕微鏡(AFM)により測定した実施例1および比較例2の表面粗さの結果を示す。
【0032】
大きな突起または同様なものは、
図3Aに示すように実施例1の媒体の表面上に見られなかった。また、
図3Bにおけるヒストグラムの幅は狭い。換言すると、平坦な表面が得られた。他方、
図3Cに見られるように比較例2の媒体の表面上には多数の突起が観察された。
図3Dにおけるヒストグラムの底辺も大粗度側に広がっている。したがって、表面上に突起が形成され、その結果として媒体の浮上特性が劣化している。
【0033】
図4A〜Fは、障壁層103の厚さを実施例1から変えた場合に走査型電子顕微鏡(SEM)を使用して行った媒体の表面突起の観察の結果を示している。障壁層103なしの
図4Aでは多数の突起が観察されたが、障壁層103が0.5nmである
図4Bでは突起の個数は低減している。障壁層103が0.7nm以上である場合、突起の個数は、さらに低減され、1.0nm(
図4D)および1.2nm(
図4E)において、この個数は最低となった。障壁層103が1.5nm(
図4F)を超えたとき、突起の個数は増加した。
【0034】
図5は、単位面積あたりの突起の個数(突起)、Cr(200)ピークの積分強度、およびNi(111)ピークの積分強度を示す。これらの結果から、障壁層が0.5nm以上かつ、2nm以下である場合、突起の個数は減少し、かつ、Cr(200)配向が得られることが分かる。障壁層が0.7以上かつ1.5nm以下である場合、突起の個数はさらに減少し、かつ、Cr(200)配向は適切であることが分かる。
【0035】
図6は、テクスチャ制御層104の厚さを実施例1の媒体から変更した場合にX線回折装置(XRD)により測定した各層の配向の結果を示す。テクスチャ制御層104が存在しない場合、Crヒート・シンクおよびその上に形成されるMgO下層の配向は得られず、したがってFePt(001)の回折ピークは見られなかったが、傾けて形成された結晶面のFePt(111)回折ピークは観察された。テクスチャ制御層が0.5nmである場合、MgO下層の配向は、わずかに改善される。テクスチャ制御層104が1.0nm以上である場合、Cr層およびMgO層の回折ピークは改善され、かつ、L10規則を示す(001)回折ピークが下層の上に形成されるFePt中に観察される。したがって、テクスチャ制御層104が0.5nm以上かつ4nm以下である場合、良好な特性が示され、また、それが1.0nm以上かつ2nm以下である場合、この特性は特に良い。
【0036】
実施例2〜13
障壁層103またはテクスチャ制御層104の材料を実施例1から変えた場合について調査した。表1は、実施例2〜13の結果を要約している。
【0037】
表中の表面突起の個数は、SEMにより観察された単位面積あたりの突起の個数である。ここで、突起個数の少ない媒体は、突起個数の多い媒体に比べて、より良い浮上特性を有している。L1
0規則指標は、(001)回折ピークと(002)回折ピークの積分強度比、I
001/I
002である。ここでより大きいL1
0規則指標を有する媒体は、望ましい高い秩序化率を有している。
【0038】
これらの結果から、実施例2〜8において、実施例1と同様にCr(200)回折ピークがCrヒート・シンク層から得られ、また、MgO(200)回折ピークがCrの上に形成されたMgO下層から観察されることが分かった。その結果としてFePt(001)、(002)回折ピークが磁気記録層中に得られ、したがってL10規則FePt合金が形成されたことが分かる。このように、実施例2〜13において、(001)回折ピークと(002)回折ピークの積分強度比、I
001/I
002は1.3以上であり、非常に良い結晶配向が得られ、また、表面突起の個数は9以下であり、良好な浮上特性を示した。
【0039】
これらのうち、実施例2〜8において、(001)回折ピークと(002)回折ピークの積分強度比、I
001/I
002は1.4以上であり、したがって特に良い結晶配向が得られ、かつ、表面突起数は5以下であり、特に良好な浮上特性を示した。
【0040】
上記において示したように、障壁層の材料の主成分として、Ni−Cr−Wの代わりに、Cr、Co、Fe、またはNiのいずれかを主成分として含み、かつ、これらの元素の残りおよび/またはW、Mo、Ruのいずれかを添加成分として含む障壁層として合金材料を使用した場合に、同じ良好な特性が得られた。
【0041】
また、テクスチャ制御層として、MgOの代わりに、酸化物Ta−O、SiO
2、Si−O、またはTi−Oを使用した場合にも、同じ良好な特性が得られた。その他の酸化物材料も使用することができる。
【0042】
比較例3〜9
実施例1の障壁層103および/またはテクスチャ制御層104の材料を他の材料に変更した場合について調査した。表2は、比較例3〜9の結果を要約している。
【0043】
比較例3および4におけるように、実施例において使用されなかった材料を障壁層において使用した場合、表面突起の個数は非常に多く、また、浮上特性は非常に悪い。したがって、(001)回折ピークと(002)回折ピークの積分強度比、I
001/I
002は大きいが、得られた特性は実用に不十分である。
【0044】
比較例5〜7におけるように、実施例において使用されなかった材料をテクスチャ制御層において使用した場合、(001)回折ピークと(002)回折ピークの積分強度比、I
001/I
002は0に近く、したがって配向はかなり劣化した。上記から、表面突起の個数は極めて多く、浮上特性は極めて悪く、かつ、L10規則は不十分であり、したがって得られた特性は実用目的には不十分であることが分かる。
【0045】
比較例8および9では、障壁層およびテクスチャ制御層の材料が不適切であり、したがって表面突起の個数は極端に多く、かつ、浮上特性は非常に悪い。(001)回折ピークと(002)回折ピークの積分強度比、I
001/I
002は0に近く、したがって得られた特性は実用目的には不十分であった。
【0046】
【表1】
【0047】
【表2】
【0048】
実施例および比較例について記述しなかった層構成、製造方法、材料、評価方法等は、他の実施例の場合と同じである。
【0049】
図9A〜Dは、本発明実施形態による磁気記録装置を示す。
図9Aは平面略図であり、
図9BはA−A’における断面図であり、
図9Cはヘッドの略図であり、
図9Dは側方から見たヘッドの主要部品の略図である。この装置は、垂直磁気記録媒体1501、垂直磁気記録媒体1501を駆動する駆動装置1502、磁気ヘッド・フライング・スライダ1503、磁気ヘッド駆動手段1504、および磁気記録・再生信号処理手段1505を含む。磁気ヘッドは、磁気ヘッド・スライダ上に形成される個別記録・再生型磁気ヘッドである。記録ヘッドは、磁界形成手段1507および近接場光を利用するエネルギー照射手段1506を含む。また、磁気ヘッドは、記録されたビットを再生するために再生電流を検出する検出手段1508を含む。近接場光は、サスペンション1201上に形成される光伝導路1202経由で近接場光を利用するエネルギー照射手段1506に供給される。位置決めの精度を改善するために、フライング・スライダ1503は、たわみ部1203を経由してサスペンションに取り付けられる。
【0050】
次に、記録中の熱特性および磁気特性について調査した。光源の波長は780nmであり、
図1に示した構造を有する垂直磁気記録媒体1501を使用した。
【0051】
また、実施例1において示した媒体を上述の磁気記録装置に組み込み、ヘッドが4nmの浮上高さで安定して浮上することを確認した後に、近接場光を利用するエネルギー照射手段を搭載しているヘッドを使用して記録を行った。記録された信号を再生した。線密度方向に約25nmおよびトラック幅方向に約50nmの磁区を形成することができた。そして記録および再生を繰り返したときにおいても、安定した浮上特性および記録および再生特性が得られた。
【0052】
この実施例において記述しなかった層構成、製造方法、材料、評価方法等は、その他の実施例の場合と同じである。
【0053】
上記において主題の例示実施形態について記述した。種々の実施形態について構造的特徴および/または方法論的行為に特有の用語で記述したが、当然のことながら添付請求項は必ずしも上述した特定の特徴または行為に限定されない。むしろ、上述した特定の特徴および行為は、請求項およびその等価物を実現する例示形態として開示される。さらに本出願において記述される例および実施形態は、単独または相互の種々の組み合わせにより実現することができる。