【文献】
Zhongguo Dongmai Yinghua Zazhi,1999年,Vol.7,No.4,p315−318
(58)【調査した分野】(Int.Cl.,DB名)
異常な脂質代謝に関与するアポリポタンパク質Bに関連した疾患または状態を有する動物の処置に使用するための組成物であって、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
異常なコレステロール代謝に関与するアポリポタンパク質Bに関連した疾患または状態を有する動物の処置に使用するための組成物であって、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物の処置に使用するための組成物であって、該状態はアテローム性動脈硬化症であり、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物の処置に使用するための組成物であって、該状態は高脂血症であり、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物の処置に使用するための組成物であって、該状態は糖尿病であり、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物の処置に使用するための組成物であって、該状態は肥満であり、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物の処置に使用するための組成物であって、該疾患は心血管疾患であり、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物におけるグルコースレベルの低下に使用するための組成物であって、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物における血清中コレステロールレベルの低下に使用するための組成物であって、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物におけるリポタンパク質レベルの低下に使用するための組成物であって、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
アポリポタンパク質Bに関連した疾患または状態を有する動物における血清中トリグリセリドレベルの低下に使用するための組成物であって、該組成物は、ヒトアポリポタンパク質Bをコードする核酸分子に対して標的化された、12〜30核酸塩基長のアンチセンスオリゴヌクレオチドを含み、該アンチセンスオリゴヌクレオチドは、ヒトアポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、該ヒトアポリポタンパク質Bをコードする核酸分子の発現を阻害し、該核酸分子のヌクレオチド配列は配列番号3に示されるものであり、該アンチセンスオリゴヌクレオチドは、配列番号43、53または57に示されるヌクレオチド配列からなる、組成物。
【発明の開示】
【発明が解決しようとする課題】
【0023】
しかし、Lp(a)アフェレーシスを除いて、これらの調査ストラテジーは、治療プロトコルとしては試験されていない。その結果、アポリポタンパク質Bの機能を有効に阻害し得るさらなる薬剤についての必要性が長期にわたって感じられたままである。
【0024】
アンチセンス技術は、特定の遺伝子産物の発現を低減する有効な手段として出現しており、それゆえ、アポリポタンパク質Bの発現調節に関連する多数の治療適用、診断適用および研究適用において独特に有用であると証明され得る。
【課題を解決するための手段】
【0025】
本発明は、アポリポタンパク質Bの選択的アイソフォームであるApoB−48の阻害を含め、アポリポタンパク質Bの発現を調節するための、組成物および方法を提供する。
【0026】
(発明の要旨)
本発明は、アポリポタンパク質Bをコードする核酸を標的化して、アポリポタンパク質Bの発現を調節する化合物(特に、アンチセンスオリゴヌクレオチド)に関する。本発明の化合物を含む、薬学的組成物および他の組成物もまた提供される。細胞または組織と、1以上の本発明のアンチセンス化合物または組成物とを接触させる工程を包含する、この細胞中または組織中のアポリポタンパク質Bの発現を調節する方法がさらに提供される。治療有効量または予防有効量の1以上の本発明のアンチセンス化合物または組成物を投与することによる、アポリポタンパク質Bの発現に関連する疾患もしくは状態を有する疑いがあるか、またはこのような疾患もしくは状態になる傾向がある疑いがある動物(特に、ヒト)を処置する方法がさらに提供される。したがって、本発明は以下を提供する。
(1)アポリポタンパク質Bをコードする核酸分子に対して標的化された、8〜50核酸塩基長の化合物であって、該化合物は、アポリポタンパク質Bをコードする核酸分子に特異的にハイブリダイズし、そして該アポリポタンパク質Bをコードする核酸分子の発現を阻害する、化合物。
(2)アンチセンスオリゴヌクレオチドである、項目1に記載の化合物。
(3)前記アンチセンスオリゴヌクレオチドが、配列番号17、配列番号18、配列番号19、配列番号20、配列番号21、配列番号23、配列番号24、配列番号25、配列番号27、配列番号28、配列番号30、配列番号31、配列番号32、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41、配列番号42、配列番号43、配列番号45、配列番号46、配列番号48、配列番号49、配列番号50、配列番号51、配列番号52、配列番号53、配列番号55、配列番号56、配列番号57、配列番号58、配列番号59、配列番号61、配列番号62、配列番号63、配列番号66、配列番号67、配列番号69、配列番号71、配列番号73、配列番号74、配列番号75、配列番号76、配列番号78、配列番号79、配列番号81、配列番号82、配列番号83、配列番号84、配列番号86、配列番号87、配列番号88、配列番号90、配列番号93、配列番号96、配列番号101、配列番号101、配列番号102、配列番号103、配列番号105、配列番号109、配列番号111、配列番号111、配列番号114、配列番号115、配列番号116、配列番号117、配列番号118、配列番号119、配列番号120、配列番号121または配列番号122を含む配列を有する、項目2に記載の化合物。
(4)前記アンチセンスオリゴヌクレオチドが、少なくとも1つの改変されたヌクレオシド間結合を含む、項目2に記載の化合物。
(5)前記改変されたヌクレオシド間結合が、ホスホロチオエート結合である、項目4に記載の化合物。
(6)前記アンチセンスオリゴヌクレオチドが、少なくとも1つの改変された糖部分を含む、項目2に記載の化合物。
(7)前記改変された糖部分が、2’−O−メトキシエチル糖部分である、項目6に記載の化合物。
(8)前記アンチセンスオリゴヌクレオチドが、少なくとも1つの改変された核酸塩基を含む、項目2に記載の化合物。
(9)前記改変された核酸塩基が、5−メチルシトシンである、項目8に記載の化合物。
(10)前記アンチセンスオリゴヌクレオチドが、キメラオリゴヌクレオチドである、項目2に記載の化合物。
(11)アポリポタンパク質Bをコードする核酸分子上の少なくとも8核酸塩基の活性部位部分と特異的にハイブリダイズする、8〜50核酸塩基長の化合物。
(12)項目1に記載の化合物と、薬学的に受容可能なキャリアまたは薬学的に受容可能な賦形剤とを含む、組成物。
(13)コロイド分散系をさらに含む、項目12に記載の組成物。
(14)前記化合物が、アンチセンスオリゴヌクレオチドである、項目12に記載の組成物。
(15)細胞または組織においてアポリポタンパク質Bの発現を阻害する方法であって、該方法は、該細胞または組織を、アポリポタンパク質Bの発現が阻害されるように項目1に記載の化合物と接触させる工程を包含する、方法。
(16)アポリポタンパク質Bに関連する疾患または状態を有する動物を処置する方法であって、該方法は、治療的有効量または予防的有効量の項目1に記載の化合物を、アポリポタンパク質Bの発現が阻害されるように該動物に投与する工程を包含する、方法。
(17)前記状態が、異常な脂質代謝に関与する、項目16に記載の方法。
(18)前記状態が、異常なコレステロール代謝に関与する、項目16に記載の方法。
(19)前記状態が、アテローム性動脈硬化症である、項目16に記載の方法。
(20)アポリポタンパク質Bをコードする核酸分子に標的化された項目1に記載の化合物であって、該化合物は、アポリポタンパク質Bをコードする核酸分子の長い形態であるApoB−100に特異的にハイブリダイズし、そして該ApoB−100の発現を阻害する、化合物。
(21)前記状態が、異常な代謝状態である、項目16に記載の方法。
(22)前記異常な代謝状態が、高脂血症である、項目21に記載の方法。
(23)前記疾患が、糖尿病である、項目16に記載の方法。
(24)前記糖尿病が、2型糖尿病である、項目23に記載の方法。
(25)前記状態が、肥満である、項目16に記載の方法。
(26)前記状態が、アテローム性動脈硬化症である、項目16に記載の方法。
(27)前記疾患が、心血管疾患である、項目16に記載の方法。
(28)動物においてグルコースレベルを調節する方法であって、該方法は、項目1に記載の化合物を、該動物に投与する工程を包含する、方法。
(29)前記動物が、ヒトである、項目28に記載の方法。
(30)前記グルコースレベルが、血漿中グルコースレベルである、項目28に記載の方法。
(31)前記グルコースレベルが、血清中グルコースレベルである、項目2
8に記載の方法。
(32)前記動物が、糖尿病に罹患している動物である、項目28に記載の方法。
(33)
動物においてアポリポタンパク質Bに関連する疾患または状態の発症を予防または遅延する方法であって、該方法は、治療有効量または予防有効量の項目1に記載の化合物を、該動物に投与する工程を包含する、方法。
(34)前記動物が、ヒトである、項目33に記載の方法。
(35)前記状態が、異常な代謝状態である、項目33に記載の方法。
(36)前記異常な代謝状態が、高脂血症である、項目35に記載の方法。
(37)前記疾患が、糖尿病である、項目33に記載の方法。
(38)前記糖尿病が、2型糖尿病である、項目37に記載の方法。
(39)前記状態が、肥満である、項目33に記載の方法。
(40)前記状態が、アテローム性動脈硬化症である、項目33に記載の方法。
(41)前記状態が、異常な脂質代謝に関与する、項目33に記載の方法。
(42)前記状態が、異常なコレステロール代謝に関与する、項目33に記載の方法。
(43)動物におけるグルコースレベルの増加の発生を予防または遅延する方法であって、該方法は、治療有効量または予防有効量の項目1に記載の化合物を該動物に投与する工程を包含する、方法。
(44)前記動物が、ヒトである、項目43に記載の方法。
(45)前記グルコースレベルが、血清中グルコースレベルである、項目43に記載の方法。
(46)前記グルコースレベルが、血漿中グルコースレベルである、項目43に記載の方法。
(47)動物において血清中コレステロールレベルを調節する方法であって、該方法は、治療有効量または予防有効量の項目1に記載の化合物を該動物に投与する工程を包含する、方法。
(48)前記動物が、ヒトである、項目47に記載の方法。
(49)動物においてリポタンパク質レベルを調節する方法であって、該方法は、治療有効量または予防有効量の項目1に記載の化合物を該動物に投与する工程を包含する、方法。
(50)前記動物が、ヒトである、項目49に記載の方法。
(51)前記リポタンパク質が、VLDLである、項目49に記載の方法。
(52)前記リポタンパク質が、HDLである、項目49に記載の方法。
(53)前記リポタンパク質が、LDLである、項目49に記載の方法。
(54)動物において血清中トリグリセリドレベルを調節する方法であって、該方法は、治療有効
量または予防有効量の項目1に記載の化合物を該動物に投与する工程を包含する、方法。
(55)前記動物が、ヒトである、項目54に記載の方法。
(56)項目1に記載の化合物であって、該化合物は、アポリポタンパク質Bの選択的スプライシングされた形態をコードする核酸分子に特異的にハイブリダイズし、そして該核酸分子の発現を阻害する、化合物。
【0027】
(発明の詳細な説明)
本発明は、アポリポタンパク質Bをコードする核酸分子の機能を調節する際に、最終的には、産生されるアポリポタンパク質Bの量を調節するために、オリゴマー化合物(特に、アンチセンスオリゴヌクレオチド)を用いる。これは、アポリポタンパク質Bをコードする1以上の核酸に特異的にハイブリダイズするアンチセンス化合物を提供することによって達成される。本明細書中で使用される場合、用語「標的核酸」および「アポリポタンパク質Bをコードする核酸」は、アポリポタンパク質BをコードするDNA、このようなDNAから転写されたRNA(プレ−mRNAおよびmRNAを包含する)、およびこのようなRNAから誘導されたcDNAもまた包含する。オリゴマー化合物の、その標的核酸との特異的ハイブリダイゼーションは、その核酸の正常な機能を妨害する。標的核酸に特異的にハイブリダイズする化合物による標的核酸の機能のこの調節は、一般に、「アンチセンス」といわれる。妨害されるべきDNAの機能としては、複製および転写が挙げられる。妨害されるべきRNAの機能としては、生命維持に必要な全ての機能(例えば、タンパク質翻訳部位へのRNAのトランスロケーション、RNAからのタンパク質の翻訳、1以上のmRNA種を生じるRNAスプライシング、およびRNAに関与し得るかまたはRNAによって促進され得る触媒活性など)が挙げられる。標的核酸機能のこのような妨
害の全体的効果は、アポリポタンパク質Bの発現調節である。本発明に関連しては、「調節」とは、遺伝子発現の増大(刺激)または減少(阻害)のいずれかを意味する。本発明に関連しては、阻害は、遺伝子発現の好ましい調節形態であり、そしてmRNAが好ましい標的である。
【0028】
アンチセンスに関して特定の核酸を標的とすることが好ましい。アンチセンス化合物を特定の核酸に対して「標的化」することは、本発明に関連しては、複数工程のプロセスである。このプロセスは通常、その機能が調節されるべき核酸配列の同定に始まる。これは、例えば、その発現が特定の障害状態もしくは疾患状態と関連している細胞性遺伝子(またはこの遺伝子から転写されるmRNA)または感染性因子由来の核酸分子であり得る。本発明では、この標的は、アポリポタンパク質Bをコードする核酸分子である。この標的化プロセスはまた、所望の効果(例えば、このタンパク質の検出またはこのタンパク質の発現の調節)をもたらすように、この遺伝子内での、アンチセンス相互作用が生じる部位の決定を包含する。本発明に関連しては、好ましい遺伝子内部位は、その遺伝子のオープンリーディングフレーム(ORF)の翻訳開始コドンまたは翻訳終結コドンを包含する領域である。当該分野で公知であるように、翻訳開始コドンは代表的には5’−AUG(転写されたmRNA分子において;対応するDNA分子においては5’−ATG)であるので、翻訳開始コドンはまた、「AUGコドン」、「開始コドン」または「AUG開始コドン」ともいわれる。少数の遺伝子は、RNA配列5’−GUG、5’−UUGまたは5’−CUGを有する翻訳開始コドンを有し、そして5’−AUA、5’−ACGおよび5’−CUGがインビボで機能することが示されている。従って、用語「翻訳開始コドン」および「開始コドン」は、各例における開始アミノ酸は代表的には、メチオニン(真核生物において)またはホルミルメチオニン(原核生物において)とはいえ、多くのコドン配列を包含し得る。真核生物遺伝子および原核生物遺伝子が、2以上の代替的開始コドンを有し得、これらのうちの任意のものが、特定の細胞型もしくは組織において、または特定のセットの条件下で、翻訳開始に関して優先的に利用され得ることもまた当該分野で公知である。本発明に関しては、「開始コドン」および「翻訳開始コドン」とは、このようなコドンの配列にかかわらず、アポリポタンパク質Bをコードする遺伝子から転写されたmRNA分子の翻訳を開始するためにインビボで用いられるコドンをいう。
【0029】
遺伝子の翻訳終結コドン(または「停止コドン」)が、3つの配列(すなわち、5’−UAA、5’−UAGおよび5’−UGA(対応するDNA配列は、それぞれ、5’−TAA、5’−TAGおよび5’−TGAである)のうちの1つを有し得ることもまた、当該分野で公知である。用語「開始コドン領域」および「翻訳開始コドン領域」とは、このようなmRNAまたは遺伝子のうちの、翻訳開始コドンからいずれかの方向(すなわち、5’または3’)にある約25〜約50連続したヌクレオチドを含む部分をいう。同様に、用語「停止コドン領域」および「翻訳終結コドン領域」とは、このようなmRNAまたは遺伝子のうちの、翻訳終結コドンからいずれかの方向(すなわち、5’または3’)にある約25〜約50連続したヌクレオチドを含む部分をいう。
【0030】
オープンリーディングフレーム(ORF)または「コード領域」は、翻訳開始コドンと翻訳終結コドンとの間の領域をいうことが当該分野で公知であり、効果的に標的化され得る領域でもある。他の標的領域としては、5’非翻訳領域(5’UTR)(これは、mRNAのうちの翻訳開始コドンから5’方向にある部分をいうことが当該分野で公知であり、従って、mRNAの5’キャップ部位と翻訳開始コドンとの間のヌクレオチドまたは遺伝子上の対応するヌクレオチドを包含する)および3’非翻訳領域(3’UTR)(これは、mRNAのうちの翻訳終結コドンから3’方向にある部分をいうことが当該分野で公知であり、従って、mRNAの翻訳終結コドンと3’末端との間のヌクレオチドまたは遺伝子上の対応するヌクレオチドを包含する)が挙げられる。mRNAの5’キャップは、5’−5’三リン酸結合を介してmRNAの最も5’側の残基に連結されたN7−メチル
化グアノシン残基を包含する。mRNAの5’キャップ領域は、5’キャップ構造自体ならびにキャップに隣接する最初の50ヌクレオチドを包含すると考えられる。5’キャップ領域はまた、好ましい標的領域であり得る。
【0031】
いくつかの真核生物mRNA転写産物は、直接的に翻訳されるが、多くのものは、転写産物から翻訳前に切り出される、「イントロン」として公知の1以上の領域を含む。残りの(それゆえ翻訳された)領域は、「エキソン」として公知であり、そして一緒にスプライシングされて、連続したmRNA配列を形成する。mRNAスプライス部位、すなわち、イントロン−エキソン連結部はまた、好ましい標的領域であり得、そして異常なスプライシングが疾患に関与する状況または特定のmRNAスプライス産物の過剰発現が疾患に関与する状況で特に有用である。再編成または欠失に起因した異常な融合連結部もまた、好ましい標的である。イントロンもまた、例えば、DNAまたはプレ−mRNAに対して標的化されるアンチセンス化合物についての効果的な(それゆえ、好ましい)標的領域であり得ることが見出されている。
【0032】
一旦、1以上の標的部位が同定されたら、その標的に対して充分に相補的である、すなわち、充分によく、そして充分な特異性を有してハイブリダイズし、所望の効果を与えるオリゴヌクレオチドが選択される。
【0033】
本発明に関しては、「ハイブリダイゼーション」とは、相補的ヌクレオシド塩基間または相補的ヌクレオチド塩基間での水素結合(これは、Watson−Crick水素結合、Hoogsteen水素結合または逆Hoogsteen水素結合であり得る)を意味する。例えば、アデニンおよびチミンは、水素結合の形成を介して対合する、相補的核酸塩基である。「相補的」とは、本明細書中で使用される場合、2つのヌクレオチド間で正確に対合する能力をいう。例えば、オリゴヌクレオチドの特定の位置のヌクレオチドは、DNA分子またはRNA分子の同じ位置でヌクレオチドと水素結合し得る場合、このオリゴヌクレオチドとDNAまたはRNAとは、その位置で互いに相補的であると考えられる。このオリゴヌクレオチドとこのDNAまたはRNAとは、各分子における充分な数の対応する位置が、互いに水素結合し得るヌクレオチドによって占められている場合、互いに相補的である。従って、「特異的にハイブリダイズし得る」および「相補的」は、安定かつ特異的な結合がこのオリゴヌクレオチドとこのDNA標的またはRNA標的との間で生じるような充分な程度の相補性または正確な対合を示すために用いられる用語である。アンチセンス化合物の配列は、特異的にハイブリダイズ可能であるために、その標的核酸の配列に対して100%相補的である必要はないことが当該分野で理解される。アンチセンス化合物は、この標的DNA分子または標的RNA分子に対するこの化合物の結合が、この標的DNAまたはこのRNAの正常な機能を妨害して有用性の喪失を引き起こし、そして特異的結合が所望される条件下で(すなわち、インビボアッセイまたは治療処置の場合は生理学的条件下で、そしてインビトロアッセイの場合はアッセイが実施される条件下で)非標的配列に対するこのアンチセンス化合物の非特異的結合を回避するに充分な程度の相補性が存在する場合、特異的にハイブリダイズし得る。
【0034】
標的にハイブリダイズしてその標的の発現を阻害する、本発明のアンチセンスおよび他の化合物は、実験によって同定され、そしてこれらの化合物の配列は、本明細書中以下で、本発明の好ましい実施形態として同定される。これらの好ましい配列が相補的である標的部位は、本明細書中以下で、「活性部位」といわれ、それゆえ、標的化のために好ましい部位である。それゆえ、本発明の別の実施形態は、これらの活性部位にハイブリダイズする化合物を包含する。
【0035】
アンチセンス化合物は通常、研究試薬および診断剤として用いられる。例えば、アンチセンスオリゴヌクレオチド(これは、遺伝子発現を鋭敏な特異性で阻害し得る)はしばし
ば、特定の遺伝子の機能を解明するために当業者によって用いられる。アンチセンス化合物はまた、例えば、生物学的経路の種々のメンバーの機能を識別するために用いられる。それゆえ、アンチセンス調節は、研究用途のために利用されている。
【0036】
キットおよび診断における使用に関して、本発明のアンチセンス化合物は、単独で、または他のアンチセンス化合物もしくは治療剤との組合せのいずれかで、細胞内および組織内で発現される遺伝子の構成要素の一部または全体の発現パターンを解明するために、示差的分析および/またはコンビナトリアル分析においてツールとして用いられ得る。
【0037】
1以上のアンチセンス化合物で処理された細胞内または組織内での発現パターンは、アンチセンス化合物で処理されていない、コントロールの細胞または組織と比較され、そして生じたパターンは、例えば、調べられる遺伝子の、疾患との関連、シグナル伝達経路、細胞局在、発現レベル、サイズ、構造または機能に関連するので、示差的レベルの遺伝子発現について分析される。これらの分析は、刺激された細胞または刺激されていない細胞において、そして発現パターンに影響を及ぼす他の化合物の存在下または非存在下で実施され得る。
【0038】
当該分野で公知の遺伝子発現分析方法の例としては、以下が挙げられる:DNAアレイまたはマイクロアレイ(BrazmaおよびVilo,FEBS Lett.,2000,480,17−24;Celisら,FEBS Lett.,2000,480,2−16)、SAGE(遺伝子発現の連続分析)(Maddenら,Drug Discov.Today,2000,5,415−425)、READS(消化したcDNAの制限酵素増幅)(PrasharおよびWeissman,Methods Enzymol.,1999,303,258−72)、TOGA(総遺伝子発現分析)(Sutcliffeら,Proc.Natl.Acad.Sci.U.S.A.,2000,97,1976−81)、タンパク質アレイおよびプロテオミクス(Celisら,FEBS Lett.,2000,480,2−16;Jungblutら,Electrophoresis,1999,20,2100−10)、発現配列タグ(EST)の配列決定(Celisら,FEBS Lett.,2000,480,2−16;Larssonら,J.Biotechnol.,2000,80,143−57)、差引きRNAフィンガープリント(SuRF)(Fuchsら,Anal.Biochem.,2000,286,91−98;Larsonら,Cytometry,2000,41,203−208)、差引きクローニング、ディファレンシャルディスプレイ(DD)(JurecicおよびBelmont,Curr.Opin.Microbiol.,2000,3,316−21)、比較ゲノムハイブリダイゼーション(Carulliら,J.Cell Biochem.Suppl.,1998,31,286−96)、FISH(蛍光インサイチュハイブリダイゼーション)技術(GoingおよびGusterson,Eur.J.Cancer,1999,35,1895−904)および質量分析法(To,Comb.Chem.High Throughput Screen,2000,3,235−41において概説される)。
【0039】
アンチセンスの特異性および感度はまた、治療的用途に関して、当業者によって利用される。アンチセンスオリゴヌクレオチドは、動物およびヒトの疾患状態の処置において治療部分として用いられている。アンチセンスオリゴヌクレオチド薬物(リボザイムを含む)は、ヒトに対して安全かつ有効に投与されており、そして多数の臨床試験が現在行われている。従って、オリゴヌクレオチドが、細胞、組織および動物(特に、ヒト)の処置に関する処置レジメにおいて有用であるように構成され得る有用な治療様式であり得ることが確立されている。
【0040】
本発明に関しては、用語「オリゴヌクレオチド」とは、リボ核酸(RNA)もしくはデ
オキシリボ核酸(DNA)またはそれらの模倣物のオリゴマーまたはポリマーをいう。この用語は、天然に存在する核酸塩基、糖および共有結合性ヌクレオシド間(骨格)結合から構成されるオリゴヌクレオチド、ならびに同様に機能する、天然に存在しない部分を有するオリゴヌクレオチドを包含する。このような改変または置換されたオリゴヌクレオチドはしばしば、ネイティブな形態よりも好ましい。なぜなら、所望の特性(例えば、増強された細胞取り込み、増強された核酸標的親和性およびヌクレアーゼの存在下での増大した安定性など)があるからである。
【0041】
アンチセンスオリゴヌクレオチドは、好ましい形態のアンチセンス化合物であるが、本発明は、以下で記載されるようなオリゴヌクレオチド模倣物を包含するがこれらに限定されない、他のオリゴマーアンチセンス化合物を包含する。本発明によるアンチセンス化合物は好ましくは、約8〜約50個の核酸塩基(すなわち、約8〜約50個連結されたヌクレオシド)を含む。特に好ましいアンチセンス化合物はアンチセンスオリゴヌクレオチドであり、さらにより好ましくは、約12〜約30個の核酸塩基を含むアンチセンスオリゴヌクレオチドである。アンチセンス化合物としては、標的核酸にハイブリダイズしてその発現を調節する、リボザイム、外部ガイド配列(EGS)オリゴヌクレオチド(オリゴザイム(oligozyme)、および他の短い触媒性RNAまたは触媒性オリゴヌクレオチドが挙げられる。
【0042】
当該分野で公知のように、ヌクレオシドは、塩基と糖との組合せである。ヌクレオシドの塩基部分は、通常、複素環式塩基である。2つの最も一般的なクラスのこのような複素環式塩基は、プリンおよびピリミジンである。ヌクレオチドは、ヌクレオシドの糖部分に共有結合したリン酸基をさらに含むヌクレオシドである。ペントフラノシル糖を含むヌクレオシドに関して、リン酸基は、糖の2’ヒドロキシル部分、3’ヒドロキシル部分または5’ヒドロキシル部分のいずれかへと連結され得る。オリゴヌクレオチドを形成する際に、リン酸基は、隣のヌクレオシドを別のヌクレオシドへと共有結合的に連結して、直鎖状のポリマー化合物を形成する。次いで、この直鎖状ポリマー構造体のそれぞれの末端は、さらに連結されて、環状構造体を形成し得る。しかし、開いた直鎖状構造体が一般的に好ましい。このオリゴヌクレオチド構造においては、リン酸基は通常、オリゴヌクレオチドのヌクレオシド間骨格を形成するといわれる。RNAおよびDNAの正常な結合または骨格は、3’−5’ホスホジエステル結合である。
【0043】
本発明において有用な好ましいアンチセンス化合物の特定の例としては、改変された骨格または天然に存在しないヌクレオシド間結合を含むオリゴヌクレオチドが挙げられる。本明細書中で定義する場合、改変された骨格を有するオリゴヌクレオチドとしては、リン原子をその骨格中に保持するオリゴヌクレオチドおよびリン原子をその骨格中に有さないオリゴヌクレオチドが挙げられる。本明細書の目的に関して、そしてときどき当該分野で参照されるように、リン原子をそれらのヌクレオシド間骨格に有さない、改変されたオリゴヌクレオチドもまた、オリゴヌクレオシドであるとみなされ得る。
【0044】
好ましい改変されたオリゴヌクレオチド骨格としては、例えば、正常な3’−5’結合を有する、ホスホロチオエート、キラルホスホロチオエート、ホスホロジチオエート、ホスホトリエステル、アミノアルキルホスホトリエステル、メチルホスホネートおよび他のアルキルホスホネート(3’−アルキレンホスホネート、5’−アルキレンホスホネートおよびキラルホスホネートを含む)、ホスフィネート、ホスホロアミデート(3’−アミノホスホロアミデートおよび3’−アミノアルキルホスホロアミデートを含む)、チオノホスホロアミデート、チオノアルキルホスホネート、チオノアルキルホスホトリエステル、セレノホスフェートならびにボラノホスフェート;これらの2’−5’連結アナログ;ならびに1以上のヌクレオチド間結合が、3’−3’結合、5’−5’結合または2’−2’結合である、逆の極性を有するオリゴヌクレオチド骨格が挙げられる。逆の極性を有
する好ましいオリゴヌクレオチドは、最も3’側のヌクレオチド間結合での単一の3’−3’結合を含む、すなわち、無塩基性(核酸塩基が失われているかまたはその代わりにヒドロキシル基を有する)であり得る単一の逆ヌクレオシド残基を含む。種々の塩、混合塩および遊離酸の形態もまた含まれる。
【0045】
上記のリン含有結合の調製を教示する代表的な米国特許としては、以下が挙げられるがこれらに限定されない:米国特許第3,687,808号;同第4,469,863号;同第4,476,301号;同第5,023,243号;同第5,177,196号;同第5,188,897号;同第5,264,423号;同第5,276,019号;同第5,278,302号;同第5,286,717号;同第5,321,131号;同第5,399,676号;同第5,405,939号;同第5,453,496号;同第5,455,233号;同第5,466,677号;同第5,476,925号;同第5,519,126号;同第5,536,821号;同第5,541,306号;同第5,550,111号;同第5,563,253号;同第5,571,799号;同第5,587,361号;同第5,194,599号;同第5,565,555号;同第5,527,899号;同第5,721,218号;同第5,672,697号および同第5,625,050号。これらのうちの特定のものは、本願と共有に係っており、そしてこれらのうちの各々は、本明細書中に参考として援用される。
【0046】
リン原子を含まない、好ましい改変されたオリゴヌクレオチド骨格は、短鎖アルキルヌクレオシド間結合もしくは短鎖シクロアルキルヌクレオシド間結合、混合へテロ原子およびアルキルヌクレオシド間結合もしくはシクロアルキルヌクレオシド間結合、または1以上の短鎖へテロ原子ヌクレオシド間結合もしくは短鎖複素環式ヌクレオシド間結合によって形成される骨格を有する。これらとしては、以下が挙げられる:モルホリノ結合を有する骨格(ヌクレオシドの糖部分から部分的に形成される);シロキサン骨格;スルフィド骨格、スルホキシド骨格およびスルホン骨格;ホルムアセチル骨格およびチオホルムアセチル骨格;メチレンホルムアセチル骨格およびチオホルムアセチル骨格;リボアセチル骨格;アルケン含有骨格;スルファメート骨格;メチレンイミノ骨格およびメチレンヒドラジノ骨格;スルホネート骨格およびスルホンアミド骨格;アミド骨格;ならびに混合したN構成要素部分、O構成要素部分、S構成要素部分およびCH
2構成要素部分を有する他の骨格。
【0047】
上記のオリゴヌクレオシドの調製を教示する代表的米国特許としては、以下の米国特許が挙げられるがこれらに限定されない:第5,034,506号;第5,166,315号;第5,185,444号;第5,214,134号;第5,216,141号;第5,235,033号;第5,264,562号;第5,264,564号;第5,405,938号;第5,434,257号;第5,466,677号;第5,470,967号;第5,489,677号;第5,541,307号;第5,561,225号;第5,596,086号;第5,602,240号;第5,610,289号;第5,602,240号;第5,608,046号;第5,610,289号;第5,618,704号;第5,623,070号;第5,663,312号;第5,633,360号;第5,677,437号;第5,792,608号;第5,646,269号および第5,677,439号。これらのうちの特定のものは、本願と共有に係っており、そしてこれらの各々は、本明細書中に参考として援用される。
【0048】
他の好ましいオリゴヌクレオチド模倣物において、ヌクレオチド単位の糖およびヌクレオシド間結合の両方(すなわち、骨格)が、新規の基で置き換えられる。塩基単位は、適切な核酸標的化合物とのハイブリダイゼーションのために維持される。1つのそのようなオリゴマー化合物(優れたハイブリダイゼーション特性を有することが示されているオリゴヌクレオチド模倣物)は、ペプチド核酸(PNA)といわれる。PNA化合物では、オ
リゴヌクレオチドの糖骨格は、アミド含有骨格、特にアミノエチルグリシン骨格で置き換えられる。この核酸塩基は、維持され、そして骨格のアミド部分のアザ窒素原子に直接的または間接的に結合する。PNA化合物の調製を教示する代表的な米国特許としては、米国特許第5,539,082号;米国特許第5,714,331号;および米国特許第5,719,262号が挙げられるが、これらに限定されず、これらの各々は、本明細書中で参考として援用される。PNA化合物のさらなる教示は、Nielsenら、Science,1991,254,1497〜1500に見出され得る。
【0049】
本発明の最も好ましい実施形態は、ホスホロチオエート骨格を有するオリゴヌクレオチドおよびヘテロ原子骨格(特に上記で参照した米国特許第5,489,677号の−CH
2−NH−O−CH
2−、−CH
2−N(CH
3)−O−CH
2−[メチレン(メチルイミノ)またはMMI骨格として公知]、−CH
2−O−N(CH
3)−CH
2−、−CH
2−N(CH
3)−N(CH
3)−CH
2−ならびに−O−N(CH
3)−CH
2−CH
2−[ここでネイティブホスホジエステル骨格は、−O−P−O−CH
2−と表される]、ならびに上記で参照した米国特許第5,602,240号のアミド骨格)を有するオリゴヌクレオシドである。上記で参照した米国特許第5,034,560号のモルホリノ骨格構造を有するオリゴヌクレオチドもまた好ましい。
【0050】
改変されたオリゴヌクレオチドはまた、1つ以上の置換された糖部分を含み得る。好ましいオリゴヌクレオチドは、2’位に以下のうち1つを含む:OH;F;O−アルキル、S−アルキル、もしくはN−アルキル;O−アルケニル、S−アルケニル、もしくはN−アルケニル;O−アルキニル、S−アルキニルもしくはN−アルキニル;またはO−アルキル−O−アルキル(ここで、アルキル、アルケニル、およびアルキニルは、置換または非置換の、C
1〜C
10アルキルまたはC
2〜C
10アルケニルおよびC
2〜C
10アルキニルであり得る)。特に好ましくは、O[(CH
2)
nO]
mCH
3、O(CH
2)
nOCH
3、O(CH
2)
nNH
2、O(CH
2)
nCH
3、O(CH
2)
nONH
2およびO(CH
2)
nON[(CH
2)
nCH
3)]
2であり、ここでnおよびmは、1〜約10である。他の好ましいオリゴヌクレオチドは、2’位に以下のうちの1つを含む:C
1〜C
10の低級アルキル、置換された低級アルキル、置換された低級アルケニル、置換された低級アルキニル、置換された低級アルカリール、置換された低級アラルキル、置換された低級O−アルカリールもしくは置換された低級O−アラルキル、SH、SCH
3、OCN、Cl、Br、CN、CF
3、OCF
3、SOCH
3、SO
2CH
3、ONO
2、NO
2、N
3、NH
2、ヘテロシクロアルキル、ヘテロシクロアルカリール、アミノアルキルアミノ、ポリアルキルアミノ、置換されたシリル、RNA切断基、レポーター基、インターカレーター、オリゴヌクレオチドの薬物動態学的特性を改善するための基、またはオリゴヌクレオチドの薬力学的特性を改善するための基、および同様の性質を有する他の置換基。好ましい改変としては、2’−メトキシエトキシ(2’−O−(2−メトキシエチル)または2’−MOEとしても公知の2’−O−CH
2CH
2OCH
3)(Martinら,Helv.Chim.Acta,1995,78,486−504)(すなわち、アルコキシアルコキシ基)が挙げられる。さらに好ましい改変としては、2’−ジメチルアミノオキシエトキシ(すなわち、本明細書後述でも記載したような、2’−DMAOEとしても公知の、O(CH
2)
2ON(CH
3)
2基)、および2’−ジメチルアミノエトキシエトキシ(当該分野で、2’−O−ジメチルアミノエトキシエチルまたは2’−DMAEOEとしても公知)(すなわち、本明細書後述の実施例にも記載される、2’−O−CH
2−O−CH
2−N(CH
2)
2)が挙げられる。
【0051】
さらに好ましい改変としては、ロックされた核酸(Locked Nucleic Acids)(LNA)が挙げられ、ここで2’−ヒドロキシル基は、糖環の3’または4’の炭素原子と連結しており、それにより二環式糖部分が形成されている。この結合は、好ましくは、2’酸素原子と4’炭素原子とを架橋するメチレン(−CH
2−)
n基であ
り、ここでnは、1または2である。LNAおよびその調製は、WO98/39352およびWO99/14226に記載される。
【0052】
他の好ましい改変としては、2’−メトキシ(2’−O−CH
3)、2’−アミノプロポキシ(2’−OCH
2CH
2CH
2NH
2)、2’−アリル(2’−CH
2−CH=CH
2)、2’−O−アリル(2’−O−CH
2−CH=CH
2)および2’−フルオロ(2’−F)が挙げられる。2’−改変は、アラビノ(上)位またはリボ(下)位においてであり得る。好ましい2’−アラビノ改変は、2’−Fである。同様の改変もまた、オリゴヌクレオチド上の他の位置(特に、3’末端ヌクレオチド上または2’−5’結合オリゴヌクレオチド中の糖の3’位および5’末端ヌクレオチドの5’位)でなされ得る。オリゴヌクレオチドはまた、糖模倣物(例えば、ペントフラノシル糖の代わりのシクロブチル部分)を有し得る。このような改変された糖構造体の調製を教示する代表的な米国特許としては、以下が挙げられるがこれらに限定されない:米国特許第4,981,957号;同第5,118,800号;同第5,319,080号;同第5,359,044号;同第5,393,878号;同第5,446,137号;同第5,466,786号;同第5,514,785号;同第5,519,134号;同第5,567,811号;同第5,576,427号;同第5,591,722号;同第5,597,909号;同第5,610,300号;同第5,627,053号;同第5,639,873号;同第5,646,265号;同第5,658,873号;同第5,670,633号;同第5,792,747号;および同第5,700,920号。これらのうちの特定のものは、本願と共有に係っており、そしてこれらのうちの各々は、その全文が、本明細書中に参考として援用される。
【0053】
オリゴヌクレオチドはまた、核酸塩基(しばしば、当該分野において単に「塩基」といわれる)の改変または置換を含み得る。本明細書中で用いられる場合、「非改変」または「天然」の核酸塩基は、プリン塩基である、アデニン(A)およびグアニン(G)、ならびにピリミジン塩基である、チミン(T)、シトシン(C)およびウラシル(U)を包含する。改変核酸塩基としては、例えば、以下の他の合成核酸塩基および天然核酸塩基が挙げられる:5−メチルシトシン(5−me−C)、5−ヒドロキシメチルシトシン、キサンチン、ヒポキサンチン、2−アミノアデニン、アデニンおよびグアニンの6−メチル誘導体および他のアルキル誘導体、アデニンおよびグアニンの2−プロピル誘導体および他のアルキル誘導体、2−チオウラシル、2−チオチミンおよび2−チオシトシン、5−ハロウラシルおよび5−ハロシトシン、5−プロピニル(−C≡C−CH
3)ウラシルおよび5−プロピニル(−C≡C−CH
3))シトシン、ならびにピリミジン塩基の他のアルキニル誘導体、6−アゾウラシル、6−アゾシトシンおよび6−アゾチミン、5−ウラシル(プソイドウラシル)、4−チオウラシル、8−ハロアデニン、8−ハログアニン、8−アミノアデニン、8−アミノグアニン、8−チオールアデニン、8−チオールグアニン、8−チオアルキルアデニン、8−チオアルキルグアニン、8−ヒドロキシルアデニン、8−ヒドロキシルグアニン、ならびに他の8−置換アデニンおよび8−置換グアニン、5−ハロ(特に、5−ブロモ)ウラシル、5−ハロ(特に、5−ブロモ)シトシン、5−トリフルオロメチルウラシル、5−トリフルオロメチルシトシン、ならびに他の5−置換ウラシルおよび5−置換シトシン、7−メチルグアニンおよび7−メチルアデニン、2−F−アデニン、2−アミノ−アデニン、8−アザグアニンおよび8−アザアデニン、7−デアザグアニンおよび7−デアザアデニンならびに3−デアザグアニンおよび3−デアザアデニン。さらなる改変核酸塩基としては、三環式ピリミジン(例えば、フェノキサジンシチジン(1H−ピリミド[5,4−b][1,4]ベンゾキサジン−2(3H)−オン)、フェノチアジンシチジン(1H−ピリミド[5,4−b][1,4]ベンゾチアジン−2(3H)−オン)、G−クランプ(例えば、置換されたフェノキサジンシチジン(例えば、9−(2−アミノエトキシ)−H−ピリミド[5,4−b][1,4]ベンゾキサジン−2(3H)−オン))、カルバゾールシチジン(2H−ピリミド[4,5−b]イン
ドール−2−オン)、ピリドインドールシチジン(H−ピリド[3’,2’:4,5]ピロロ[2,3−d]ピリミジン−2−オン)が挙げられる。改変核酸塩基はまた、プリン塩基またはピリミジン塩基が、他の複素環に置き換えられている核酸塩基(例えば、7−デアザ−アデニン、7−デアザグアノシン、2−アミノピリジンおよび2−ピリドン)を包含し得る。さらなる核酸塩基としては、米国特許第3,687,808号に開示される核酸塩基、The Concise Encyclopedia Of Polymer
Science And Engineering,858−859頁,Kroschwitz,J.I.編,John Wiley & Sons,1990に開示される核酸塩基、Englischら,Angewandte Chemie,国際版,1991,30,613により開示される核酸塩基、およびSanghvi,Y.S.,第15章,Antisense Research and Applications,289−302頁,Crooke,S.T.およびLebleu,B.編,CRC Press,1993により開示される核酸塩基が挙げられる。これらの核酸塩基のうちの特定のものは、本発明のオリゴマー化合物の結合親和性を増強するために特に有用である。これらとしては、5−置換ピリミジン、6−アザピリミジン、ならびにN−2置換プリン、N−6置換プリンおよびO−6置換プリンが挙げられ、これには2−アミノプロピルアデニン、5−プロピニルウラシルおよび5−プロピニルシトシンが含まれる。5−メチルシトシン置換は、核酸二重鎖の安定性を0.6〜1.2℃上昇させることが示されており(Sanghvi,Y.S.,Crooke,S.T.およびLebleu,B.編,Antisense Research and Applications,CRC Press,Boca Raton,1993,276−278頁)、そしてこれらは現在好ましい塩基置換であり、2’−O−メトキシエチル糖改変と合わせた場合、なおさら特に好ましい。
【0054】
上記の改変核酸塩基ならびに他の改変核酸塩基の特定のものの調製を教示する代表的な米国特許としては、上記の米国特許第3,687,808号、ならびに以下の米国特許が挙げられるがこれらに限定されない:米国特許第4,845,205号;同第5,130,302号;同第5,134,066号;同第5,175,273号;同第5,367,066号;同第5,432,272号;同第5,457,187号;同第5,459,255号;同第5,484,908号;同第5,502,177号;同第5,525,711号;同第5,552,540号;同第5,587,469号;同第5,594,121号、同第5,596,091号;同第5,614,617号;同第5,645,985号;同第5,830,653号;同第5,763,588号;同第6,005,096号;および同第5,681,941号(これらのうちの特定のものは、本願と共有に係っており、そしてこれらのうちの各々は、本明細書中に参考として援用される)、ならびに米国特許第5,750,692号(これは、本願と共有に係っており、そしてまた本明細書中に参考として援用される)。
【0055】
本発明のオリゴヌクレオチドの別の改変は、オリゴヌクレオチドの活性、細胞分布または細胞取込みを増強する1つ以上の部分または結合体をオリゴヌクレオチドに対して化学的に連結することを含む。本発明の化合物は、官能基(例えば、一級ヒドロキシル基または二級ヒドロキシル基)と共有結合した結合基を包含し得る。本発明の結合基としては、インターカレーター、レポーター分子、ポリアミン、ポリアミド、ポリエチレングリコール、ポリエーテル、オリゴマーの薬力学的特性を増強する基、およびオリゴマーの薬物動態学的特性を増強する基が挙げられる。代表的な結合基としては、コレステロール、脂質、リン脂質、ビオチン、フェナジン、葉酸、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、および染料が挙げられる。本発明に関連して、薬力学的特性を増強する基としては、オリゴマー取込みを改善する基、分解に対するオリゴマーの耐性を増強する基、および/またはRNAとの配列特異的ハイブリダイゼーションを強化する基が挙げられる。本発明に関連して、薬物動態学的性質を増強する基
としては、オリゴマーの取込み、分布、代謝または排出を改善する基が挙げられる。代表的な結合基は、1992年10月23日に出願され、その開示の全体が参考として本明細書中に援用される、国際特許出願PCT/US92/09196において開示される。結合部分としては、以下が挙げられるが、これらに限定されない:脂質部分(例えば、コレステロール部分)(Letsingerら,Proc.Natl.Acad.Sci.USA,1989,86,6553−6556)、コール酸(Manoharanら,Bioorg.Med.Chem.Let.,1994,4,1053−1060)、チオエーテル(例えば、ヘキシル−S−トリチルチオール)(Manoharanら,Ann.N.Y.Acad.Sci.,1992,660,306−309;Manoharanら,Bioorg.Med.Chem.Let.,1993,3,2765−2770)、チオコレステロール(Oberhauserら,Nucl.Acids Res.,1992,20,533−538)、脂肪族鎖(例えば、ドデカンジオール残基またはウンデシル残基)(Saison−Behmoarasら,EMBO J.,1991,10,1111−1118;Kabanovら,FEBS Lett.,1990,259,327−330;Svinarchukら,Biochimie,1993,75,49−54)、リン脂質(例えば、ジ−ヘキサデシル−rac−グリセロールまたはトリエチルアンモニウム1,2−ジ−O−ヘキサデシル−rac−グリセロ−3−H−ホスホネート)(Manoharanら,Tetrahedron Lett.,1995,36,3651−3654;Sheaら,Nucl.Acids Res.,1990,18,3777−3783)、ポリアミンまたはポリエチレングリコール鎖(Manoharanら,Nucleosides & Nucleotides,1995,14,969−973)、またはアダマンタン酢酸(Manoharanら,Tetrahedron
Lett.,1995,36,3651−3654)、パルミチル部分(Mishraら,Biochim.Biophys.Acta,1995,1264,229−237)、またはオクタデシルアミンもしくはヘキシルアミノ−カルボニル−オキシコレステロール部分(Crookeら,J.Pharmacol.Exp.Ther.,1996,277,923−937)。本発明のオリゴヌクレオチドはまた、活性薬物物質(例えば、アスピリン、ワルファリン、フェニルブタゾン、イブプロフェン、スプロフェン、フェンブフェン、ケトプロフェン、(S)−(+)−プラノプロフェン、カルプロフェン、ダンシルサルコシン、2,3,5−トリヨード安息香酸、フルフェナム酸、フォリン酸、ベンゾチアジアジド、クロロチアジド、ジアゼピン、インドメチシン、バルビツレート、セファロスポリン、サルファ剤、抗糖尿病剤、抗細菌剤または抗生物質)に対して結合体化され得る。オリゴヌクレオチド−薬物結合体およびそれらの調製は、その全体が参考として本明細書中に援用される、米国特許出願第09/334,130号(1999年6月15日に出願)に記載される。
【0056】
そのようなオリゴヌクレオチド結合体の調製を教示する、代表的な米国特許としては、以下が挙げられるがこれらに限定されない:米国特許第4,828,979号;同第4,948,882号;同第5,218,105号;同第5,525,465号;同第5,541,313号;同第5,545,730号;同第5,552,538号;同第5,578,717号,同第5,580,731号;同第5,580,731号;同第5,591,584号;同第5,109,124号;同第5,118,802号;同第5,138,045号;同第5,414,077号;同第5,486,603号;同第5,512,439号;同第5,578,718号;同第5,608,046号;同第4,587,044号;同第4,605,735号;同第4,667,025号;同第4,762,779号;同第4,789,737号;同第4,824,941号;同第4,835,263号;同第4,876,335号;同第4,904,582号;同第4,958,013号;同第5,082,830号;同第5,112,963号;同第5,214,136号;同第5,082,830号;同第5,112,963号;同第5,214,136号;同第5,245,022号;同第5,254,469号;同第5,258,506号;同第5
,262,536号;同第5,272,250号;同第5,292,873号;同第5,317,098号;同第5,371,241号,同第5,391,723号;同第5,416,203号,同第5,451,463号;同第5,510,475号;同第5,512,667号;同第5,514,785号;同第5,565,552号;同第5,567,810号;同第5,574,142号;同第5,585,481号;同第5,587,371号;同第5,595,726号;同第5,597,696号;同第5,599,923号;同第5,599,928号および同第5,688,941号。これらのうちの特定のものは、本願と共有に係っており、そしてこれらのうちの各々は、本明細書中に参考として援用される。
【0057】
所定の化合物内の全ての位置に対して、一様に改変する必要はなく、実際、単一の化合物において、またはオリゴヌクレオチド内の単一のヌクレオシドにおいてすら、1を超える上述の改変が組み込まれ得る。本発明はまた、キメラの化合物であるアンチセンス化合物を包含する。本発明に関連して、「キメラの」アンチセンス化合物または「キメラ」は、2以上の化学的に異なる領域を含み、これらの領域の各々が、少なくとも1つのモノマー単位(すならち、オリゴヌクレオチド化合物の場合、ヌクレオチド)で構成される、アンチセンス化合物(特に、オリゴヌクレオチド)である。これらのオリゴヌクレオチドは、代表的に、ヌクレアーゼ分解に対する増強した耐性、増大した細胞取込み、そして/または標的核酸に対する増大した結合親和性をオリゴヌクレオチドに対して与えるようにオリゴヌクレオチドが改変されている、少なくとも1つの領域を含む。オリゴヌクレオチドのさらなる領域は、RNA:DNAハイブリッドまたはRNA:RNAハイブリッドを切断し得る酵素に対する基質として役立ち得る。例として、RNaseHは、RNA:DNA二重鎖のRNA鎖を切断する細胞性エンドヌクレアーゼである。それゆえ、RNaseHの活性化は、RNA標的の切断を生じ、それにより、遺伝子発現のオリゴヌクレオチド阻害効率を大いに高める。結果として、キメラオリゴヌクレオチドを用いた場合、同じ標的領域にハイブリダイズするホロチオエートデオキシオリゴヌクレオチドと比較して、より短いオリゴヌクレオチドを用いて、匹敵する結果がしばしば得られ得る。RNA標的の切断は、ゲル電気泳動、および必要に応じて、当該分野で公知である関連した核酸ハイブリダイゼーション技術により慣用的に検出され得る。
【0058】
本発明のキメラアンチセンス化合物は、上記のような2つ以上のオリゴヌクレオチド、改変されたオリゴヌクレオチド、オリゴヌクレオシドおよび/またはオリゴヌクレオチド模倣物の複合構造体とし形成され得る。このような化合物はまた、当該分野において、ハイブリッドまたはギャップマー(gapmer)といわれている。このようなハイブリッド構造体の調製を教示する代表的な米国特許としては、以下が挙げられるが、これらに限定されない:米国特許第5,013,830号;同第5,149,797号;同第5,220,007号;同第5,256,775号;同第5,366,878号;同第5,403,711号;同第5,491,133号;同第5,565,350号;同第5,623,065号;同第5,652,355号;同第5,652,356号;および同第5,700,922号。これらのうちの特定のものは、本願と共有に係っており、そしてこれらのうちの各々は、その全体が本明細書中に参考として援用される。
【0059】
本発明に従って使用されるアンチセンス化合物は、周知の固相合成技術を通して、好都合にかつ慣用的に作製され得る。そのような合成のための装置は、いくつかの販売者(例えば、Applied Biosystems(Foster City,CA)が挙げられる)によって販売される。当該分野において公知のそのような合成のための任意の他の手段が、追加的にまたは代替的に用いられ得る。オリゴヌクレオチド(例えば、ホスホロチオエートおよびアルキル化誘導体)の調製のために同様の技術を使用することは周知である。
【0060】
本発明のアンチセンス化合物は、インビトロで合成され、生物学的起源のアンチセンス組成物もアンチセンス分子のインビボでの合成を指示するように設計した遺伝的ベクター構築物も含まない。
【0061】
本発明の化合物はまた、取込み、分布および/または吸収の補助のために、他の分子、分子構造体、または化合物の混合物と(例えば、リポソーム、レセプター標的化分子、経口処方物、直腸処方物、局所的処方物または他の処方物として)混合され得るか、カプセル化され得るか、結合体化され得るか、さもなければ、会合され得る。そのような取込み、分布および/または吸収を補助する処方物の調製を教示する代表的な米国特許としては、以下が挙げられるがこれらに限定されない:米国特許第5,108,921号;同第5,354,844号;同第5,416,016号;同第5,459,127号;同第5,521,291号;同第5,543,158号;同第5,547,932号;同第5,583,020号;同第5,591,721号;同第4,426,330号;同第4,534,899号;同第5,013,556号;同第5,108,921号;同第5,213,804号;同第5,227,170号;同第5,264,221号;同第5,356,633号;同第5,395,619号;同第5,416,016号;同第5,417,978号;同第5,462,854号;同第5,469,854号;同第5,512,295号;同第5,527,528号;同第5,534,259号;同第5,543,152号;同第5,556,948号;同第5,580,575号;および同第5,595,756号。これらは各々、本明細書中に参考として援用される。
【0062】
本発明のアンチセンス化合物は、任意の薬学的に受容可能な塩、エステル、もしくはそのようなエステルの塩、またはヒトを含む動物へと投与されたら、生物学的に活性な代謝産物またはその残基を(直接的または間接的に)供給し得る、任意の他の化合物を含む。従って、例えば、この開示はまた、本発明の化合物のプロドラッグおよび本発明の化合物の薬学的に受容可能な塩、そのようなプロドラッグの薬学的に受容可能な塩、ならびに他の生体等価物に関する。
【0063】
用語「プロドラッグ」は、内在性酵素もしくは他の化学物質および/または状態の作用によって、体内もしくはその細胞内で活性形態(すなわち、薬物)に転換される、不活性形態で調製される治療薬剤を示す。特に、本発明のオリゴヌクレオチドのプロドッグ版は、Gosselinらに対するWO 93/24510(1993年12月9日公開)またはImbachらに対するWO 94/26764および米国特許第5,770,713号に開示される方法に従って、SATE[(S−アセチル−2−チオエチル)ホスフェート]誘導体として調製される。
【0064】
用語「薬学的に受容可能な塩」とは、本発明の化合物の、生理学的および薬学的に受容可能な塩(すなわち、親化合物の所望の生物学的活性を保持し、その上さらに所望しない毒物学的影響を与えない塩)をいう。
【0065】
薬学的に受容可能な塩基付加塩は、金属またはアミン(例えば、アルカリ金属およびアルカリ土類金属または有機アミン)を用いて形成される。カチオンとして用いられる金属の例は、ナトリウム、カリウム、マグネシウム、カルシウムなどである。適切なアミンの例は、N,N’−ジベンジルエチレンジアミン、クロロプロカイン、コリン、ジエタノールアミン、ジシクロヘキシルアミン、エチレンジアミン、N−メチルグルカミン、およびプロカインである(例えば、Bergeら,「Pharmaceutical Salts」、J.of Pharma Sci.,1977,66,1−19を参照のこと)。上記酸性化合物の塩基付加塩は、遊離酸形態と十分量の所望の塩基とを接触させて従来の様式でその塩を生成することにより、調製される。この遊離酸形態は、塩形態と酸とを接触させ、そして従来の様式で遊離酸を単離することによって、再生され得る。この遊離酸
形態は、極性溶媒中での溶解度のような特定の物理的特性がいくらかそれらの各々の塩形態とは異なるが、他の点ではこれらの塩は、本発明の目的のためにはそれらの各々の遊離酸と等価である。本明細書中に使用される場合、「薬学的付加塩」は、本発明の組成物の成分の一つの酸形態の薬学的に受容可能な塩を包含する。これらとしては、アミンの有機酸塩または無機酸塩が挙げられる。好ましい酸性塩は、塩酸塩、酢酸塩、サリチル酸塩、硝酸塩およびリン酸塩である。他の適切な薬学的に受容可能な塩は、当業者に周知であり、そして以下を包含する:種々の無機酸および有機酸の塩基性塩(例えば、無機酸(例えば、塩酸、臭化水素酸、硫酸またはリン酸)との塩基性塩;有機カルボン酸、スルホン酸、スルホ酸もしくはホスホ酸、またはN−置換スルファミン酸(例えば、酢酸、プロピオン酸、グリコール酸、コハク酸、マレイン酸、ヒドロキシマレイン酸、メチルマレイン酸、フマル酸、リンゴ酸、酒石酸、乳酸、シュウ酸、グルコン酸、グルカル酸、グルクロン酸、クエン酸、安息香酸、ケイ皮酸、マンデル酸、サリチル酸、4−アミノサリチル酸、2−フェノキシ安息香酸、2−アセトキシ安息香酸、エムボン酸(embonic acid)、ニコチン酸またはイソニコチン酸)との塩基性塩;およびアミノ酸(例えば、天然におけるタンパク質合成に関与する20種のαアミノ酸(例えば、グルタミン酸またはアスパラギン酸))との塩基性塩、ならびにまた、フェニル酢酸、メタンスルホン酸、エタンスルホン酸、2−ヒドロキシエタンスルホン酸、エタン−1,2−ジスルホン酸、ベンゼンスルホン酸、4−メチルベンゼンスルホン酸、ナフタレン−2−スルホン酸、ナフタレン−1,5−ジスルホン酸、2−ホスホグリセレートもしくは3−ホスホグリセレート、グルコース−6−ホスフェート、N−シクロヘキシルスルファミン酸(シクラメートの形成を伴う)との塩基性塩、または他の酸性有機化合物(例えば、アスコルビン酸)との塩基性塩)。化合物の薬学的に受容可能な塩はまた、薬学的に受容可能なカチオンを用いて調製され得る。適切な薬学的に受容可能なカチオンは、当業者に周知であり、アルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオンおよび四級アンモニウムカチオンを包含する。炭酸塩または炭酸水素塩もまた可能である。
【0066】
オリゴヌクレオチドに関して、薬学的に受容可能な塩の好ましい例としては、以下が挙げられるが、これらに限定されない:(a)ナトリウム、カリウム、アンモニウム、マグネシウム、カルシウム、ポリアミン(例えば、スペルミンおよびスペルミジン)などのようなカチオンで形成される塩;(b)例えば、塩酸、臭化水素酸、硫酸、リン酸、硝酸などのような無機酸で形成される酸付加塩;(c)例えば、酢酸、シュウ酸、酒石酸、コハク酸、マレイン酸、フマル酸、グルコン酸、クエン酸、リンゴ酸、アスコルビン酸、安息香酸、タンニン酸、パルミチン酸、アルギン酸、ポリグルタミン酸、ナフタレンスルホン酸、メタンスルホン酸、p−トルエンスルホン酸、ナフタレンジスルホン酸、ポリガラクツロン酸などのような有機酸で形成される塩;ならびに(d)塩素、臭素、およびヨウ素のような元素のアニオンから形成される塩。
【0067】
本発明のアンチセンス化合物は、診断、治療、予防のために、ならびに研究試薬およびキットとして利用され得る。治療について、アポリポタンパク質Bの発現を調節することによって処置され得る疾患または障害を有することが疑われる動物(好ましくは、ヒト)が、本発明によるアンチセンス化合物を投与することによって処置される。本発明の化合物は、適切な、薬学的に受容可能な希釈剤またはキャリアに有効量のアンチセンス化合物を添加することによって、薬学的組成物において利用され得る。本発明のアンチセンス化合物および方法の使用もまた、例えば、感染、炎症または腫瘍形成を予防または遅延させるために、予防的に有用であり得る。
【0068】
本発明のアンチセンス化合物は、研究および診断に有用である。なぜなら、これらの化合物は、アポリポタンパク質Bをコードする核酸にハイブリダイズし、サンドウィッチアッセイおよびその他のアッセイが、この事実を活用するように容易に構築されることを可能にするからである。本発明のアンチセンスオリゴヌクレオチドの、アポリポタンパク質
Bをコードする核酸とのハイブリダイゼーションは、当該分野で公知の手段によって検出され得る。このような手段としては、オリゴヌクレオチドへの酵素の結合体化、オリゴヌクレオチドの放射性標識化または任意の他の適切な検出手段が挙げられ得る。サンプル中のアポリポタンパク質Bのレベルを検出するための、このような検出手段を使用するキットがまた、調製され得る。
【0069】
本発明はまた、本発明のアンチセンス化合物を含有する薬学的組成物および薬学的処方物を含む。本発明の薬学的組成物は、局所処置または全身処置のいずれが望まれているか、および処置される領域に依存して、多くの経路で投与され得る。投与は、局部(眼への投与、ならびに膣送達および直腸送達を含む粘膜への投与を含む)、肺(例えば、パウダーまたはエアロゾルの吸入(inhalation)または吸入(insufflation)(噴霧器によるものを含む);気管支内、鼻腔内、上皮および経皮、経口または非経口であり得る。非経口投与としては、静脈内、動脈内、皮下、腹腔内もしくは筋肉内への注射または注入;あるいは頭蓋内(例えば、くも膜下腔内投与または脳室内投与)が挙げられる。少なくとも1つの2’−O−メトキシエチル改変を有するオリゴヌクレオチドは、経口投与に特に有用であると考えられている。
【0070】
局所投与のための薬学的組成物および薬学的処方物としては、経皮パッチ、軟膏、ローション、クリーム、ゲル、ドロップ、坐薬、スプレー、液体およびパウダーが挙げられ得る。従来の薬学的キャリア、水性のベース、パウダーベースまたは油ベース、増粘剤などもまた必要であるか、または望まれ得る。被覆コンドーム、手袋などもまた、有用であり得る。好ましい局所処方物としては、本発明のオリゴヌクレオチドが、局所送達剤(例えば、脂質、リポソーム、脂肪酸、脂肪酸エステル、ステロイド、キレート剤および界面活性剤)とともに混合物中にある局所処方物が挙げられる。好ましい脂質およびリポソームとしては、中性(例えば、ジオレオイルホスファチジルDOPEエタノールアミン、ジミリストイルホスファチジルコリンDMPC、ジステアロイルホスファチジルコリン)、ネガティブ(例えば、ジミリストイルホスファチジルグリセロールDMPG)およびカチオン性(例えば、ジオレオイルテトラメチルアミノプロリルDOTAPおよびジオレオイルホスファチジルエタノールアミンDOTMA)が挙げられる。本発明のオリゴヌクレオチドは、リポソーム内にカプセル化され得るか、またはリポソーム(特に、カチオン性リポソーム)に複合体を形成し得る。あるいは、オリゴヌクレオチドは、脂質(特に、カチオン性脂質)に複合体化され得る。好ましい脂肪酸および脂肪酸エステルとしては、以下が挙げられるが、これらに限定されない:アラキドン酸、オレイン酸、エイコサン酸、ラウリン酸、カプリル酸、カプリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、リノール酸、リノレン酸、ジカプレート、トリカプレート、モノオレイン、ジラウリン、グリセリル1−モノカプレート、1−ドデシルアザシクロヘプタン−2−オン、アシルカルニチン、アシルコリン、またはC
1−10アルキルエステル(例えば、イソプロピルミリステート IPM)、モノグリセリド、ジグリセリドあるいは薬学的に受容可能なそれらの塩。局所処方物は、米国特許出願09/315,298(1999年5月20日に出願され、全体が本明細書中に参考として援用される)に詳細に記載される。
【0071】
経口投与のための組成物および処方物としては、パウダーまたは顆粒、マイクロ粒子、ナノ粒子、水または非水性媒体中の懸濁液または溶液、カプセル、ゲルカプセル、小袋(sachet)、錠剤またはミニ錠剤(minitablet)が挙げられる。増粘剤、香料添加剤、希釈剤、乳化剤、分散補助剤または結合剤は、望ましくあり得る。好ましい経口処方物は、本発明のオリゴヌクレオチドが、1つ以上の浸透増強剤、界面活性剤およびキレート剤と併用して投与される経口処方物である。好ましい界面活性剤としては、脂肪酸および/またはそのエステルもしくは塩、胆汁酸および/またはその塩が挙げられる。好ましい胆汁酸/塩としては、ケノデオキシコール酸(CDCA)およびウルソデオキシケノデオキシコール酸(UDCA)、コール酸、デヒドロコール酸、デオキシコール酸
、グルコール酸(glucholic acid)、グリコール酸(glycholic
acid)、グリコデオキシコール酸、タウロコール酸、タウロデオキシコール酸、タウロ−24,25−ジヒドロ−フシジン酸ナトリウム、グリコジヒドロフシジン酸ナトリウムが挙げられる。好ましい脂肪酸としては、アラキドン酸、ウンデカン酸、オレイン酸、ラウリン酸、カプリル酸、カプリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、リノール酸、リノレン酸、ジカプレート、トリカプレート、モノオレイン、ジラウリン、グリセリル1−モノカプレート、1−ドデシルアザシクロヘプタン−2−オン、アシルカルニチン、アシルコリン、モノグリセリド、ジグリセリドあるいは薬学的に受容可能なそれらの塩(例えば、ナトリウム)が挙げられる。浸透増強剤の組合せ(例えば、胆汁酸/塩と組み合わせた脂肪酸/塩)もまた好ましい。特に好ましい組合せは、ラウリン酸、カプリン酸およびUDCAのナトリウム塩である。さらなる浸透増強剤としては、ポリオキシエチレン−9−ラウリルエーテル、ポリオキシエチレン−20−セチルエーテルが挙げられる。本発明のオリゴヌクレオチドは、スプレーされる乾燥粒子を含む顆粒形態またはミクロ粒子またはナノ粒子を形成するように複合体化された顆粒形態で、経口で送達され得る。オリゴヌクレオチド複合体化剤としては、ポリ−アミノ酸;ポリイミン;ポリアクリレート;ポリアルキルアクリレート、ポリオキセタン(polyoxethanes)、ポリアルキルシアノアクリレート;カチオン化ゼラチン、アルブミン、デンプン、アクリレート、ポリエチレングリコール(PEG)およびデンプン;ポリアルキルシアノアクリレート;DEAE−誘導体化ポリイミン、プルラン(pollulan)、セルロースおよびデンプンが挙げられる。特に好ましい複合体化剤としては、キトサン、N−トリメチルキトサン、ポリ−L−リジン、ポリヒスチジン、ポリオルニチン、ポリスペルミン、プロタミン、ポリビニルピリジン、ポリチオジエチルアミノメチルエチレンP(TDAE)、ポリアミノスチレン(例えば、p−アミノ)、ポリ(メチルシアノアクリレート)、ポリ(エチルシアノアクリレート)、ポリ(ブチルシアノアクリレート)、ポリ(イソブチルシアノアクリレート)、ポリ(イソヘキシルシアノアクリレート)、DEAE−メタクリレート、DEAE−ヘキシルアクリレート、DEAE−アクリルアミド、DEAE−アルブミンおよびDEAE−デキストラン、ポリメチルアクリレート、ポリヘキシルアクリレート、ポリ(D,L−乳酸)、ポリ(DL−乳酸−co−グリコール酸(PLGA)、アルギナート、およびポリエチレングリコール(PEG)が挙げられる。オリゴヌクレオチドのための経口処方物およびそれらの調製は、米国特許出願08/886,829(1997年7月1日出願)、09/108,673(1998年7月1日出願)、09/256,515(1999年2月23日出願)、09/082,624(1998年5月21日出願)および09/315,298(1999年5月20日出願)(各々は、その全体が本明細書中に参考として援用される)に詳細に記載される。
【0072】
非経口投与、くも膜下腔内投与または脳室内投与のための組成物および処方物としては、滅菌水溶液(これはまた、緩衝剤、希釈剤および他の適切な添加物(例えば、浸透増強剤、キャリア化合物および他の薬学的に受容可能なキャリアまたは賦形剤が挙げられるがこれらに限定されない)を含み得る)が挙げられ得る。
【0073】
本発明の薬学的組成物としては、溶液、エマルジョン、およびリポソーム含有処方物が挙げられるが、これらに限定されない。これらの組成物は、種々の成分(前もって成形された(preformed)液体、自己乳化固体および自己乳化半固体が挙げられるが、これらに限定されない)から作製され得る。
【0074】
本発明の薬学的処方物(単位投薬形態で便利に与えられ得る)は、製薬業界で周知の従来の技術に従って調製され得る。このような技術としては、活性成分を薬学的キャリアまたは賦形剤と結合させる工程が挙げられる。一般的に、この処方物は、活性成分を液体キャリアまたは細かく分割された固体キャリアまたは両方と均一かつ密接に結合させることおよび次いで、必要に応じて、この製品を成形することによって調製される。
【0075】
本発明の組成物は、多くの可能な投薬形態(例えば、錠剤、カプセル、ゲルカプセル、液体シロップ、軟性ゲル、坐薬および浣腸が挙げられるがこれらに限定されない)のいずれかに処方され得る。本発明の組成物はまた、水性媒体、非水性媒体または混合媒体中の懸濁液として処方され得る。水性懸濁液は、懸濁液の粘性を増やす物質(例えば、カルボキシメチルセルロースナトリウム、ソルビトールおよび/またはデキストランを含む)をさらに含み得る。この懸濁液はまた、安定剤を含み得る。
【0076】
本発明の1つの実施形態において、薬学的組成物は、泡として処方され、そして使用され得る。薬学的泡としては、エマルジョン、マイクロエマルジョン、クリーム、ゼリーおよびリポソームのような処方物が挙げられるが、これらに限定されない。これらの処方物は、性質において基本的に類似しているが、最終産物の成分および濃度において異なる。このような組成物および処方物の調製は、薬学および処方の分野における、当業者に一般的に公知であり、そして本発明の組成物の処方に適用され得る。
【0077】
(エマルジョン)
本発明の組成物は、エマルジョンとして調製および処方され得る。エマルジョンは、代表的には、通常直径0.1μmを越える液滴の形態で別の液体中に分散される、ある液体の不均一系である。(Idson、Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,1巻、199頁;Rosoff,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,1巻、245頁;Block、Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,2巻、335頁;Higuchiら、Remington’s Pharmaceutical Sciences,Mack Publishing Co.,Easton,PA,1985,301頁)。エマルジョンは、しばしば、互いで完全に混合および分散された2つの不混和性の液体相で構成される二相系である。一般的に、エマルジョンは、油中水(w/o)または水中油(o/w)種のいずれかであり得る。水相が、大量の油相に細かく分割され、そして微細な液滴として分散される場合、生じた組成物は、油中水(w/o)エマルジョンと呼ばれる。あるいは、油相が、大量の水相に細かく分割され、そして微細な液滴として分散される場合、生じた組成物は、水中油(o/w)エマルジョンと呼ばれる。エマルジョンは、分散された相および活性薬物(これは、水相、油相中で、またはそれ自体が別の相としてのいずれかで、溶液として存在し得る)に加えて、さらなる成分を含み得る。乳化剤、安定剤、色素、および抗酸化剤のような薬学的賦形剤もまた、必要に応じて、エマルジョン中に存在し得る。薬学的エマルジョンはまた、(例えば、油中水中油(o/w/o)エマルジョンおよび例えば、水中油中水(w/o/w)エマルジョンの場合のような)2つより多くの相で構成される複合エマルジョンであり得る。このような複雑な処方物は、しばしば単純な2成分のエマルジョンが成さない特定の利点を提供する。o/wエマルジョンの個々の油滴が、小さい水滴を囲む複合エマルジョンは、w/o/wエマルジョンを構成する。同様に、油の連続中に安定化された水の小球中に囲まれた油滴の系は、o/w/oエマルジョンを提供する。
【0078】
エマルジョンは、熱力学的安定性がほとんどまたは全くないことによって特徴付けられる。しばしば、エマルジョンの分散された相または不連続相は、外側の相または連続相にうまく分散され、そして乳化剤の手段または処方物の粘性により、この形態で維持される。エマルジョン型の軟膏基剤およびクリームの場合、エマルジョンの相のいずれかは、半固体または固体であり得る。エマルジョンを安定化する他の手段は、エマルジョンのいず
れかの相に組み込まれ得る乳化剤の使用を必要とする。乳化剤は、4つのカテゴリーに広く分類され得る:合成界面活性剤、天然に存在する乳化剤、吸着基剤、および細かく分散された固体(Idson、Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel
Dekker,Inc.,New York,N.Y.,1巻、199頁)。
【0079】
合成の界面活性剤(surfactant)(界面活性剤(surface active agent)としても知られる)は、エマルジョンの処方物における広い適用性を有が見出されており、そして文献中で概説されている(Rieger,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編)、1988,Marcel Dekker,Inc.,New York,N.Y.,1巻、285頁;Idson,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編)、Marcel Dekker,Inc.,New York,N.Y.,1988,1巻、199頁)。界面活性剤は、代表的には両親媒性であり、親水性の部分および疎水性の部分を含む。界面活性剤の疎水性の性質に対する親水性の性質の割合は、親水/親油バランス(HLB)と呼ばれ、処方物の調製において、界面活性剤を分類および選択する際の価値のある道具である。界面活性剤は、親水基の性質:非イオン性、アニオン性、カチオン性、および両親媒性に基づいて異なるクラスに分類され得る(Rieger,Pharmaceutical Dosage Forms,Lieberman RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,1巻、285頁)。
【0080】
乳化処方物において使用される天然に存在する乳化剤としては、ラノリン、蜜蝋、ホスファチド、レシチンあよびアカシアが挙げられる。吸着基剤は、吸着基剤が水を吸い上げて、無水ラノリンおよび親水性ワセリンのような、吸着基剤の半固体の粘度をなお維持するw/oエマルジョンを形成し得るように、親水性の性質を有する。細かく分割された固体はまた、特に界面活性剤との併用において、および粘稠性の調製物における良い乳化剤として使用されている。これらとしては、極性の無機固体(例えば、重金属水酸化物、非膨張性の粘土(例えば、ベントナイト、アタパルガイト、ヘクトライト、カオリン、モンモリロナイト、コロイド状のケイ酸アルミニウムおよびコロイド状のケイ酸マグネシウムアルミニウム)、顔料および非極性固体(例えば、カーボンまたはグリセリルトリステアレート)が挙げられる。
【0081】
多種の非乳化物質もまた、エマルジョン処方物中に含まれ、エマルジョンの性質に寄与する。これらとしては、脂肪、油、蝋、脂肪酸、脂肪アルコール、脂肪酸エステル、湿潤剤、親水性コロイド、保存剤および抗酸化剤が挙げられる(Block,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,1巻、335頁;Idson,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,1巻、199頁)。
【0082】
親水性コロイドまたはヒドロコロイドとしては、天然に存在するゴムおよび合成ポリマー(例えば、多糖(例えば、アカシア、寒天、アルギン酸、カラギナン、グアールゴム、カラヤゴム、およびトラガカント))、セルロース誘導体(例えば、カルボキシメチルセルロースおよびカルボキシプロピルセルロース)、ならびに合成ポリマー(例えば、カルボマー、セルロースエーテル、およびカルボキシビニルポリマー)が挙げられる。これらは、水中で分散または膨潤し、コロイド状溶液を形成し、これは分散相の液滴の周りに強
い界面フィルムを形成することおよび外部の相の粘性を増すことによってエマルジョンを安定化する。
【0083】
エマルジョンは、しばしば微生物の増殖を容易に支え得る多くの成分(例えば、炭水化物、タンパク質、ステロールおよびホスファチド)を含むので、これらの処方物は、しばしば保存剤を取り入れる。エマルジョン処方物中に含まれる一般的に使用される保存剤としては、メチルパラベン、プロピルパラベン、4級アンモニウム塩、塩化ベンザルコニウム、p−ヒドロキシ安息香酸のエステルおよびホウ酸が挙げられる。抗酸化剤がまた、処方物の変質を抑制するためにエマルジョン処方物に一般的に添加される。使用される抗酸化剤はフリーラジカルスカベンジャー(例えば、トコフェロール、アルキルギャレット、ブチル化ヒドロキシアニソール、ブチル化ヒドロキシトルエン、または還元剤(例えば、アスコルビン酸およびメタ重亜硫酸ナトリウム)、および抗酸化共力剤(例えば、クエン酸、酒石酸、およびレシチン))であり得る。
【0084】
皮膚科学的経路、経口経路および非経口経路を介したエマルジョン処方物の適用およびそれらの製造方法は、文献に概説されている(Idson,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,1巻、199頁)。経口送達のためのエマルジョン処方物は、処方の容易さ、吸収の有効性およびバイオアベイラビリティーの見地の理由で、非常に広く使用されている。(Rosoff,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,1巻,245頁;Idson,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New
York,N.Y.,1巻,199頁)。o/wエマルジョンとして一般的に経口で投与されている物質中には、鉱油ベースの下剤、油溶性ビタミンおよび高脂肪栄養調製物がある。
【0085】
本発明の1つの実施形態において、オリゴヌクレオチドおよび核酸の組成物は、マイクロエマルジョンとして処方される。マイクロエマルジョンは、単一で光学的に等方性であり、熱力学的に安定な液体溶液である、水、油および両親媒性物質の系として定義され得る(Rosoff,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,第1巻,245頁)。代表的には、マイクロエマルジョンは、界面活性剤水溶液中の油をまず分散し、次いで十分量の第4の成分(一般的には中間の鎖長のアルコール)を透明な系を形成するように添加することによって調製される系である。従って、マイクロエマルジョンは、熱力学的に安定で等方的に透明な、2つの混合できない液体の分散物としてもまた記載され、これらの液体は、表面活性分子の界面フィルムによって安定化される(LeungおよびShah:Controlled Release of Drugs:Polymers and Aggregate Systems,Rosoff,M.編,1989,VCH Publishers,New York,185頁−215頁)。マイクロエマルジョンは、3〜5の成分の組み合わせによって一般に調製され、これらの成分としては、油、水、界面活性剤、補助界面活性剤および電解質が挙げられる。マイクロエマルジョンが油中水(w/o)型であるかまたは水中油(o/w)型であるかは、使用される油および界面活性剤の特徴ならびに界面活性剤分子の極性頭部および炭化水素尾部の構造および幾何学的パッキングに依存する(Schott,Remington’s Pharmaceutical Sciences,Mack Publishing Co.,Easton,PA.,1985,271頁)。
【0086】
状態図を使用した現象論的アプローチは、広範に研究されており、そして当業者に、どのようにマイクロエマルジョンを処方するかという包括的な知見を与えてきた(Rosoff,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,第1巻,245頁;Block,Pharmaceutical Dosage Forms,Lieberman,RiegerおよびBanker(編),1988,Marcel Dekker,Inc.,New York,N.Y.,第1巻,335頁)。従来のエマルジョンと比較すると、マイクロエマルジョンは、自発的に形成される、熱力学的に安定な小滴の処方物中に、水不溶性薬物を溶解するという利点を提供する。
【0087】
マイクロエマルジョンの調製物において使用される界面活性剤としては、単独でまたは補助界面活性剤との組み合わせての、イオン性界面活性剤、非イオン性界面活性剤、Brij96、ポリオキシエチレンオレイルエーテル、脂肪酸ポリグリセロールエステル、モノラウリン酸テトラグリセロール(ML310)、モノオレイン酸テトラグリセロール(MO310)、モノオレイン酸ヘキサグリセロール(PO310)、ペンタオレイン酸ヘキサグリセロール(PO500)、モノカプリン酸デカグリセロール(MCA750)、モノオレイン酸デカグリセロール(MO750)、デカグリセロールセスキオレアート(sequioleate)(SO750)、デカオレイン酸デカグリセロール(DAO750)が挙げられるがこれらに限定されない。補助界面活性剤(通常、短鎖アルコール(例えば、エタノール、1−プロパノール、および1−ブタノール))は、界面活性剤分子間に生成された間隙空間に起因して、界面活性剤フィルムに浸透し、それ故に無秩序なフィルムを作製することによって界面の流動性を増加するように作用する。しかし、マイクロエマルジョンは、補助界面活性剤を使用せずに調製され得、無アルコールの自己乳化マイクロエマルジョン系は、当該分野で公知である。水相は、代表的に、水、薬物の水溶液、グリセロール、PEG300、PEG400、ポリグリセロール、プロピレングリコール、およびエチレングリコールの誘導体であり得るが、これらに限定されない。油相は、Captex 300、Captex 355、Capmul MCM、脂肪酸エステル、中鎖(C8〜C12)のモノグリセリド、ジグリセリド、およびトリグリセリド、ポリオキシエチレン化脂肪酸グリセリルエステル、脂肪アルコール、ポリグリコール化グリセリド、飽和ポリグリコール化C8〜C10グリセリド、植物油およびシリコーンオイルのような材料が挙げられ得るが、これらに限定されない。
【0088】
マイクロエマルジョンは、薬物可溶化および薬物の増大された吸収の観点から特に重要である。脂質ベースのマイクロエマルジョン(o/wおよびw/oの両方)は、ペプチドを含む、薬物の経口バイオアベイラビリティーを増大するために提案されている(Constantinidesら、Pharmaceutical Research、1994、11、1385−1390;Ritschel、Meth.Find.Exp.Clin.Pharmacol.、1993、13、205)。マイクロエマルジョンは、改善された格物可溶性、酵素的加水分解からの薬物の保護、膜流動性および透過性における界面活性剤で誘導された改変に起因する薬物吸収の可能な増大、調製の容易、固形投与量形態よりも経口投与が容易、改善された臨床的効目、および低減された毒性(Constantinidesら、Pharmaceutical Research、1994、11、1385;Hoら、J.Pharm.Sci.、1996、85、138−143)の利点を与える。しばしば、マイクロエマルジョンは、それらの成分が周囲温度で一緒にされるとき、自然に形成され得る。これは、熱不安定性の薬物、ペプチドまたはオリゴヌクレオチドを処方するとき特に有利であり得る。マイクロエマルジョンはまた、化粧品および薬学的適用の両方において活性成分の経皮送達に有効である。本発明のマイクロエマルジョン組成物および処方物は、胃腸管からのオリゴヌクレオチドおよび核酸の増大し
た全身吸収を容易にし、および胃腸管、膣、頬側口腔および投与のその他の領域内のオリゴヌクレオチドおよび核酸の局所細胞摂取を改善する。
【0089】
本発明のマイクロエマルジョンはまた、ソルビタンモノステアレート(Grill 3)、ラブラゾールおよび浸透促進剤のような添加成分および添加剤を含み得、処方物の性質を改善し、そして本発明のオリゴヌクレオチドおよび核酸の吸収を増大する。本発明のマイクロエマルジョンで用いられる浸透促進剤は、5つの広範なカテゴリー−界面活性剤、脂肪酸、胆汁酸塩、キレート剤、および非キレート非界面活性剤(Leeら、Critical Reviews in Therapeutic Drug Carrier
Systems、1991、92頁)の1つに属するとして分類され得る。これら分類の各々は上述されている。
【0090】
(リポソーム)
マイクロエマルジョンの他に、薬物の処方物のために研究され、かつ用いられている、多くの組織化された界面活性剤構造がある。これらは、単層、ミセル、二重層およびビヒクルを含む。リポソームのようなビヒクルは、薬物送達の観点からそれらが提供する、それらの特異性および持続期間のため、大きな興味を引き付ける。本発明で用いられるとき、用語「リポソーム」は、球状二重層または二重層中に配列された両親媒性脂質で構成されるビヒクルを意味する。
【0091】
リポソームは、親油性材料および水性の内側から形成された膜を有する、単層または多層のヒビクルである。水性部分は、送達されるべき組成物を含む。カチオン性リポソームは、細胞壁に融合し得る利点を所有する。非カチオン性リポソームは、細胞壁と効率的に融合することはできないが、インビボでマクロファージにより摂取される。
【0092】
インタクトな哺乳動物皮膚を横切るために、脂質ビヒクルは、適切な経皮グラディエントの影響下で、各々が50nmより小さい直径をもつ、一連の微細な穴を通過しなければならない。したがって、高度に変形可能であり、このような微細な穴を通過し得るリポソームを用いることが所望され得る。
【0093】
リポソームのさらなる利点は以下を含む;天然のリン脂質から得られたリポソームは、生体適合性かつ生分解性である;リポソームは、広範な範囲の水および脂質可溶性薬物を取り込み得る;リポソームは、それらの内部区画において、代謝および分解からカプセル化された薬物を保護し得る(Rosoff、Pharmaceutical Dosage Forms、Lieberman、RiegerおよびBanker(編)、1988、Marcel Dekker、Inc.、New York、N.Y.、第1巻、245頁)。リポソーム処方物の調製における重要な考慮は、脂質表面電荷、ビヒクルサイズおよびリポソームの水の容積である。
【0094】
リポソームは、作用の部位への活性成分の移入および送達に有用である。リポソーム膜は、生物学的膜に構造的に類似しているので、リポソームを組織に適用するとき、リポソームは、細胞膜と融合することを開始する。リポソームと細胞の融合が進行するにつれ、リポソーム内容物は、活性成分が作用し得る細胞中へと、空にされる。
【0095】
リポソーム処方物は、多くの薬物のための送達のモードとして、広範な調査の焦点である。局所投与には、リポソームがその他の処方物に対しいくつかの利点を提示するという証拠が増加している。このような利点は、投与された薬物の高全身吸収に関連する低減された副作用、所望の標的における投与された薬物の増加した蓄積、および、皮膚への疎水性および親水性両方の広範な薬物を投与するための能力を含む。
【0096】
いくつかの報告は、高分子量DNAを含む薬剤を皮膚に送達するためのリポソームの能力の詳細を記載している。鎮痛剤、抗体、ホルモンおよび高分子量DNAを含む化合物が皮膚に投与されている。適用の大部分は、上部表皮の標的化を生じた。
【0097】
リポソームは、2つの広範なクラスに入る。カチオン性リポソームは、負に荷電したDNA分子と相互作用し、安定な複合体を形成する正に荷電したリポソームである。正に荷電したDNA/リポソーム複合体は、負に荷電した細胞表面に結合し、そしてエンドソーム中に内部移行する。エンドソーム内の酸性pHに起因して、リポソームは破裂し、それらの内容物を細胞の細胞質中に放出する(Wangら、Biochem.Biophys.Res.Commun.、1987、147、980−985)。
【0098】
pH感受性であるか、負に荷電したリポソームは、DNAとの複合体よりもむしろそれを包括する。DNAおよび脂質の両方は同様に荷電されるので、複合体形成よりもむしろ反発が起こる。それにもかかわらず、特定のDNAは、これらのリポソームの水のある内側の中に包括される。pH感受性リポソームを用いて、培養中の細胞単層にチミジンキナーゼ遺伝子をコードするDNAが送達されている。外来遺伝子の発現は、標的細胞中で検出された(Zhouら、Journal of Controlled Release、1992、19、269−274)。
【0099】
リポソーム組成物の1つの主要なタイプは、天然由来のホスファチジルコリン以外のリン脂質を含む。天然リポソーム組成物は、例えば、ジミリストイルホスファチジルコリン(DMPC)またはジパルミトイルホスファチジルコリン(DPPC)から形成され得る。一般に、アニオン性リポソーム組成物は、ジミリストイルホスファチジルグリセロールから形成され、その一方、アニオン性の紡錘形成性(fusogenic)リポソームは、主に、ジオレオイルホスファチジルエタノールアミン(DOPE)から形成される。別のタイプのリポソーム組成物は、ホスファチジルコリン(PC)(例えば、大豆PC、および卵PCなど)から形成される。別のタイプは、リン脂質および/またはホスファチジルコリンおよび/またはコレステロールの混合物から形成される。
【0100】
いくつかの研究は、リポソーム薬物処方物の皮膚への局所送達を評価した。モルモット皮膚へのインターフェロンを含むリポソームの適用は、皮膚ヘルペスただれの減少をもたらした。その一方、その他の手段によるインターフェロンの送達(例えば、溶液として、またはエマルジョンとして)は、有効でなかった(Weinerら、Journal of Drug Targeting、1992、2、405−410)。さらに、さらなる研究は、水系を用いるインターフェロンの投与へのリポソーム処方物の一部として投与されたインターフェロンの効目を試験し、そしてこのリポソーム組成物は、水投与より優れていたことを結論付けた(du Plessisら、Antiviral Resea
rch、1992、18、259−265)。
【0101】
非イオンリポソーム系もまた、非イオン性界面活性剤およびコレステロールを含む特定の系において、皮膚への薬物の送達におけるそれらの有用性を決定するために試験された。Novasome
TMI(グリセロールジラウレート/コレステロール/ポリオキシエチレン−10−ステアリルエーテル)およびNovasome
TMII(グリセロールジステアレート/コレステロール/ポリオキシエチレン−10−ステアリルエーテル)を含む、非イオン性リポソーム処方物を用いて、マウス皮膚の真皮中にシクロスポリンAが送達された。結果は、このような非イオン性リポソーム系が、皮膚の異なる層中へのシクロスポリンAの沈着を容易にすることで有効であったことを示した(Huら、S.T.P.Pharma.Sci.、1994、4、6、466)。
【0102】
リポソームはまた、「立体的に安定化された」リポソームを含み、この用語は、本明細
書で用いられるとき、リポソーム中に取り込まれたとき、このような特別な脂質を欠くリポソームに対して増加した循環寿命を生じる、1つ以上の特別な脂質を含むリポソームをいう。立体的に安定化されたリポソームの例は、リポソームのベシクル形成性脂質部分の一部分が、(A)モノシアロガングリオシドG
M1のような1つ以上のグリコリピドを含むか、または(B)ポリエチレングリコール(PEG)部分のような、1つ以上の親水性ポリマーで誘導体化されているものである。任意の特定の理論により拘束されることを望まないが、当該分野では、少なくとも、ガングリオシド、スフィンゴミエリン、またはPEG−誘導体化脂質を含む、立体的に安定化されたリポソームについては、これら立体的に安定化されたリポソームの増加した循環半減期は、細網内皮系(RES)の細胞中への低下した取込みに由来すると考えられている(Allenら、FEBS Letters、1987、223、42;Wuら、Cancer Research、1993、53、3765)。1つ以上のグリコリピドを含む種々のリポソームが当該分野で公知である。Papahadjopoulosら(Ann.N.Y.Acad.Sci.、1987、507、64)は、モノシアロガングリオシドG
M1、ガラクトセレブロシドサルフェートおよびホスファチジルイノシトールがリポソームの血液半減期を改良する能力を報告した。これらの知見は、Gabizonらにより(Proc.Natl.Acad.Sci.U.S.A.、1988、85、6949)詳細に説明された。両方ともAllenらによる、米国特許第4,837,028号およびWO 88/04924は、(1)スフィンゴミエリンおよび(2)ガングリオシドG
M1またはガラクトセレブロシドサルフェートエステルを含む、リポソームを開示している。米国特許第5,543,152号(Webbら)は、スフィンゴミエリンを含むリポソームを開示している。1,2−sn−ジミリストイルホスファチジルコリンを含むリポソームは、WO97/13499(Limら)に開示されている。
【0103】
1つ以上の親水性ポリマーで誘導体化された脂質を含む多くのリポソーム、およびその調製の方法は、当該分野で公知である。Sunamotoら(Bull.Chem.Soc.Jpn.、1980、53、2778)は、非イオン性界面活性剤、2C
1215Gを含み、PEG成分を含むリポソームを記載した。Illumら(FEBS Lett.、1984、167、79)は、ポリマー性グリコールでのポリスチレン粒子の親水性被覆が、有意に増加した血液半減期を生じることを記載した。ポリアルキレングリコール(例えば、PEG)のカルボン酸基の付着によって改変された合成リン脂質はSears(米国特許第4,426,330号および同第4,534,899号)によって記載されている。Klibanovら(FEBS Lett.、1990、268、235)は、PEGまたはPEGステアレートで誘導体化されたホスファチジルエタノールアミン(PE)を含むリポソームの血液循環半減期が有意に増加することを示す実験を記載した。Blumeら(Biochimica et Biophysica Acta、1990、1029、91)は、このような観察を、他のPEG−誘導体化リン脂質、例えば、ジステアロイルホスファチジルエタノールアミン(DSPE)とPEGとの組合せから形成される、DSPE−PEGに拡張した。Fisherによる欧州特許第EP 0445131B1およびWO90/04384には、それらの外表面上に共有結合したPEG成分を有するリポソームが記載されている。1〜20モル%のPEGで誘導体化されたPEを含むリポソーム組成物、およびその使用の方法は、Woodleら(米国特許第5,013,556号および同5,356,633号)およびMartinら(米国特許第5,213,804号および欧州特許第EP 0496813B1)によって記載されている。多くのその他の脂質−ポリマー複合体を含むリポソームが、WO91/05545および米国特許第5,225,212号(両方ともMartinらによる)およびWO94/20073(Zalipskyら)に記載されている。PEG−改変セラミドリピドを含むリポソームは、WO96/10391(Choiら)に記載されている。米国特許第5,540,935号(Miyazakiら)および同第5,556,948号(Tagawaら)は、それらの表面上で官能成分でさらに誘導体化され得るPEG含有リポソームを記
載している。
【0104】
核酸を含む限られた数のリポソームが当該分野で知られている。ThierryらによるWO96/40062は、リポソーム中に高分子量核酸をカプセル化するための方法を記載する。Tagawaらによる、米国特許第5,264,221は、タンパク質が結合したリポソームを開示し、そしてこのようなリポソームの内容物は、アンチセンスRNAを含み得ることを主張している。Rahmanらによる米国特許第5,665,710号は、リポソーム中にオリゴデオキシヌクレオチドをカプセル化する特定の方法を記載している。LoveらによるWO97/04787は、raf遺伝子を標的にするアンチセンスオリゴヌクレオチドを含むリポソームを開示している。
【0105】
トランスフェロソーム(Transferosome)は、なお別のタイプのリポソームであり、そして薬物送達ビヒクルの魅力的な候補である高度に変形可能な脂質凝集物である。トランスフェロソームは脂質小滴であり、それらがこの小滴より小さな穴を容易に通過し得るように高度に変形可能である脂質小滴として記載され得る。トランスフェロソームは、それらが用いられる環境に適合可能であり、例えば、それらは、自己適合性(皮膚中の穴の形状に適合可能)であり、自己修復性であり、フラグメント化なくしてそれらの標的に頻繁に到達し、そしてしばしば自己充填性である。トランスフェロソームを作製するために、標準的なリポソーム組成物に、通常界面活性剤である、表面エッジ活性化剤を添加することが可能である。トランスフェロソームは、皮膚に血清アルブミンを送達するために用いられている。血清アルブミンのトランスフェロソーム媒介送達は、血清アルブミンを含む溶液の皮下注入と同様に有効であることが示されている。
【0106】
界面活性剤は、エマルジョン(マイクロエマルジョンを含む)およびリポソームのような処方物において、広範な適用を見出している。天然および合成の両方の多くのタイプの界面活性剤の性質を分類かつランク分けする最も一般的な方法は、親水性/親油性バランス(HLB)の使用による。親水性基の性質(「頭部」としても知られる)は、処方物で用いられる異なる界面活性剤をカテゴリー分けするための最も有用な手段を提供する(Rieger、Pharmaceutical Dosage Forms、Marcel
Dekker、Inc.、New York、NY、1988、285頁)。
【0107】
界面活性剤分子がイオン化されていないとき、非イオン性界面活性剤として分類される。非イオン性界面活性剤は、薬学的製品および化粧品に広範な適用を見出し、そして広範な範囲のpH値に亘って使用可能である。一般に、それらのHLB値は、それらの構造に依存して、2〜約18の範囲である。非イオン性界面活性剤は、エチレングリコールエステル、プロピレングリコールエステル、グリセリルエステル、ポリグリセリルエステル、ソルビタンエステル、スクロースエステル、およびエトキシ化エステルのような非イオン性エステルを含む。脂肪アルコールエトキシレート、プロポキシル化アルコール、およびエトキシル化/プロポキシル化ブロックポリマーのような、非イオン性アルカノールアミドおよびエーテルもまた、このクラスに含まれる。ポリオキシエチレン界面活性剤は、非イオン性界面活性剤クラスの最も一般的なメンバーである。
【0108】
界面活性剤が水に溶解または分散されるとき、それが負電荷を保持する場合、この界面活性剤は、アニオン性として分類される。アニオン性界面活性剤は、石鹸、アシルラクチレート、アミノ酸のアシルアミドのようなカルボキシレート、アルキル硫酸およびエトキシル化アルキルサルフェートのような硫酸のエステル、アルキルベンゼンスルホネート、アシルイセチオネート、アシルタウレートおよびスルホサクシネートのようなスルホネート、およびホスフェートを含む。アニオン性界面活性剤クラスの最も重要なメンバーは、アルキルサルフェートおよび石鹸である。
【0109】
界面活性剤が水に溶解または分散されるとき、それが正電荷を保持する場合、この界面活性剤は、カチオン性として分類される。カチオン性界面活性剤は、第四級アンモニウム塩およびエトキシ化アミンを含む。この第四級アンモニウム塩は、このクラスで最も使用されるメンバーである。
【0110】
界面活性剤分子が、正または負電荷のいずれかを保持する能力を有する場合、この界面活性剤は両性として分類される。両性界面活性剤は、アクリル酸誘導体、置換アルキルアミド、N−アルキルベタインおよびホスファチドを含む。
【0111】
薬物製品、処方物における、およびエマルジョンにおける界面活性剤の使用が総説されている(Rieger、Pharmaceutical Dosage Forms、Marcel Dekker、Inc.、New York、NY、1988、285頁)。
【0112】
(透過エンハンサー)
1つの実施形態では、本発明は、種々の透過エンハンサーを採用し、動物の皮膚に、核酸、特にオリゴヌクレオチドの効率的な送達を行う。大部分の薬物は、イオン化形態および非イオン化形態の両方で存在する。しかし、通常、脂質可溶性または親油性薬物のみが容易に細胞膜を横切る。横切られるべき膜が透過エンハンサーで処理される場合、非親油性薬物でさえ、細胞膜を横切り得ることが発見された。細胞膜を横切る非親油性薬物の拡散を補助することに加え、透過エンハンサーはまた、親油性薬物の透過性を増大する。
【0113】
透過エンハンサーは、5つの広範なカテゴリー、すなわち、界面活性剤、脂肪酸、胆汁酸塩、キレート剤、および非キレート非界面活性剤剤(Leeら、Critical Reviews in Therapeutic Drug Carrier Systems、1991、92頁)の1つに属するとして分類され得る。透過エンハンサーの上記のクラスの各々は、以下により詳細に記載される。
【0114】
界面活性剤:本発明に関連して、界面活性剤(または「表面活性薬剤」)は、水溶液に溶解されるとき、この溶液の表面張力、または水溶液と別の液体との間の界面間の張力を低減する化学的実体であり、粘膜を通るオリゴヌクレオチドの吸収が増大される。胆汁酸塩および脂肪酸に加え、これらの透過エンハンサーは、例えば、ラウリル硫酸ナトリウム、ポリオキシエチレン−9−ラウリルエステル、およびポリオキシエチレン−20−セチルエーテル(Leeら、Critical Reviews in Therapeutic Drug Carrier Systems、1991、92頁);およびFC−43のような、水素をフッ素で置換した化合物(perfluorochemical)のエマルジョン(Takahashiら、J.Pharm.Pharmacol.、1988、40、252)を含む。
【0115】
脂肪酸:透過エンハンサーとして作用する、種々の脂肪酸およびそれらの誘導体は、例えば、オレイン酸、ラウリン酸、カプリン酸(n−デカン酸)、ミリスチン酸、パルミチン酸、ステアリン酸、リノール酸、リノレン酸、ジカプレート、トリカプレート、モノオレイン(1−モノオレイル−rac−グリセロール)、ジラウリン、カプリル酸、アラキドン酸、グリセロール1−モノカプレート、1−ドデシルアザシクロヘプタン−2−オン、アシルカルニチン、アシルコリン、それらのC
1−10アルキル(例えば、メチル、イソプロピルおよびt−ブチル)エステル、およびそれらのモノおよびジグリセリド(例えば、オレエート、ラウレート、カプレート、ミリステート、パルミテート、ステアレート、リノリエートなど)を含む(Leeら、Critical Reviews in Therapeutic Drug Carrier Systems、1991、92頁;Muranishi、Critical Reviews in Therapeut
ic Drug Carrier Systems、1990、7、1−33;El Haririら、J.Pharm.Pharmacol.、1992、44、651−654)。
【0116】
胆汁酸塩:胆汁の生理学的役割としては、脂質および脂溶性ビタミンの分散および吸収の促進が挙げられる(Brunton、第38章:Goodman & Gilman’s The Pharmacological Basis of Therapeutics、第9版、Hardmanら編、McGraw−Hill,New York、1996、934−935頁)。種々の天然の胆汁酸塩およびその合成の誘導体は、浸透増強剤として作用する。従って、用語「胆汁酸塩」は、胆汁の任意の天然に存在する成分、およびそれらの任意の合成誘導体を含む。本発明の胆汁酸塩としては、例えば、以下が挙げられる:コール酸(またはその薬学的に受容可能なナトリウム塩、コール酸ナトリウム)、デヒドロコール酸(デヒドロコール酸ナトリウム)、デオキシコール酸(デオキシコール酸ナトリウム)、グルコール酸(グルコール酸ナトリウム)、グリコール酸(グリコール酸ナトリウム)、グリコデオキシコール酸(グリコデオキシコール酸ナトリウム)、タウロコール酸(タウロコール酸ナトリウム)、タウロデオキシコール酸(タウロデオキシコール酸ナトリウム)、ケノデオキシコール酸(ケノデオキシコール酸ナトリウム)、ウルソデオキシコール酸(UDCA)、タウロー24,25−ジヒドロ−フシジン酸ナトリウム(STDHF)、グリコジヒドロフシジン酸ナトリウムおよびポリオキシエチレン−9−ラウリルエーテル(POE)(Leeら、Critical Reviews in Therapeutic Drug Carrier Systems、1991、92頁;Swinyard、第39章: Remington’s Pharmaceutical Sciences、第18版、Gennaro編、Mack Publishing Co.,Easton,Pa.、1990、782−783頁;Muranishi,Critical Reviews in Therapeutic Drug
Carrier Systems、1990、7、1−33;Yamamotoら、J.Pharm.Exp.Ther.、1992、263、25;Yamashitaら、J.Pharm.Sci.、1990、79、579−583)。
【0117】
キレート剤: 本発明に関して使用される場合、キレート剤は、金属イオンと錯体を形成することによって溶液から金属イオンを除去し、その結果、粘膜を介するオリゴヌクレオチドの吸収が促進される化合物として定義され得る。本発明における浸透増強剤としてのそれらの使用に関して、キレート剤は、DNaseインヒビターとしても作用するというさらなる利点を有する。なぜなら、最も特徴付けられたDNAヌクレアーゼは、触媒のために二価の金属イオンを必要とし、従って、キレート剤によって阻害されるからである(Jarrett、J.Chromatogr.、1993、618、315−339)。本発明のキレート剤としては、以下が挙げられるが、これらに限定されない:エチレンジアミン四酢酸(EDTA)二ナトリウム、クエン酸、サリチレート(例えば、サリチル酸ナトリウム、5−メトキシサリチレートおよびホモバニレート(homovanilate))、コラーゲンのN−アシル誘導体、ラウレス(laureth)−9およびβ−ジケトンのN−アミノアシル誘導体(エナミン)(Leeら、Critical Reviews in Therapeutic Drug Carrier Systems、1991、92頁;Muranishi,Critical Reviews in Therapeutic Drug Carrier Systems、1990、7、1−33;Buurら、J.Control Rel.、1990、14、43−51)。
【0118】
非キレート性非界面活性剤:本明細書中で使用される場合、非キレート性非界面活性剤浸透促進化合物は、キレート剤または界面活性剤としてわずかな活性しか実証しないにもかかわらず、消化粘膜を通るオリゴヌクレオチドの吸収を促進する化合物として規定され
得る(Muranishi、Critical Reviews in Therapeutic Drug Carrier Systems、1990、7、1−33)。この種類の浸透増強剤としては、例えば、不飽和環式尿素、1−アルキル−アルカノン誘導体および1−アルケニルアザシクロ−アルカノン誘導体(Leeら、Critical Reviews in Therapeutic Drug Carrier Systems、1991、92頁);ならびに非ステロイド抗炎症剤(例えば、ジクロフェナクナトリウム、インドメタシンおよびフェニルブタゾン(Yamashitaら、J.Pharm.Pharmacol.、1987、39、621−626)が挙げられる。
【0119】
細胞レベルでのオリゴヌクレオチドの取り込みを促進する薬剤はまた、本発明の薬学的組成物および他の組成物に添加され得る。例えば、カチオン性脂質(例えば、リポフェクチン(Junichiら、米国特許第5,705,188号))、カチオン性グリセロール誘導体、およびポリカチオン性分子(例えば、ポリリジン(Lolloら、PCT出願WO 97/30731))はまた、オリゴヌクレオチドの細胞取り込みを促進することが知られている。
【0120】
他の薬剤が、投与された核酸の浸透を促進するために利用され得る。これらの薬剤としては、グリコール(例えば、エチレングリコールおよびプロピレングリコール)、ピロール(例えば、2−ピロール)、アゾン(azone)およびテルペン(例えば、リモネンおよびメントン)が挙げられる。
【0121】
(キャリア)
本発明の特定の組成物はまた、処方物中にキャリア化合物を含む。本明細書中で使用される場合、「キャリア化合物」または「キャリア」とは、核酸またはそれらのアナログをいい得、これは、不活性(すなわち、それ自体生物活性を有さない)であるが、例えば、生物学的に活性な核酸を分解すること、または循環から生物学的に活性な核酸を除去することを促進することによって、生物学的活性を有する核酸のバイオアベイラビリティーを減少させるインビボプロセスにより、核酸として認識される。核酸とキャリア化合物との同時投与(典型的に、後者の物質過剰である)は、おそらく、共通のレセプターについてのキャリア化合物と核酸との間の競合に起因して、肝臓、腎臓または他の体外循環レザバにおいて回収される核酸の量の実質的な減少を生じ得る。例えば、肝臓組織における部分的なホスホロチオエートオリゴヌクレオチドの回収は、ポリイノシン酸、硫酸デキストラン、ポリシチジン酸または4−アセトアミド−4’イソチオシアノ−スチルベン−2,2’−ジスルホン酸と同時投与される場合に減少され得る(Miyaoら、Antisense Res.Dev.、1995、5、115−121;Takakuraら、Antisense & Nucl.Acid Drug Dev.、1996、6、177−183)。
【0122】
(賦形剤)
キャリア化合物とは対照的に、「薬物学的キャリア」または「賦形剤」は、薬学的に受容可能な溶媒、懸濁剤または動物に1つ以上の核酸を送達するための他の任意の薬物学的に不活性なビヒクルである。賦形剤は、液体でも固体でもよく、核酸と所定の薬学的組成物の他の成分とが組み合わされる場合、所望のバルク、粘稠度などが提供されるように考慮して計画された投与様式によって選択され得る。代表的な薬学的キャリアとしては、以下が挙げられるが、これらに限定されない:結合剤(例えば、予めゼラチン化したトウモロコシデンプン、ポリビニルピロリドンまたはヒドロキシプロピルメチルセルロースなど);充填剤(例えば、ラクトースおよび他の糖、微結晶性セルロース、ペクチン、ゼラチン、硫酸カルシウム、エチルセルロース、ポリアクリレートまたはリン酸水素カルシウムなど);滑沢剤(例えば、ステアリン酸マグネシウム、タルク、シリカ、コロイド状二酸化ケイ素、ステアリン酸、ステアリン酸金属、水素化植物油、トウモロコシデンプン、ポ
リエチレングリコール、安息香酸ナトリウム、酢酸ナトリウムなど);崩壊剤(例えば、デンプン、デンプングリコール酸ナトリウムなど);および湿潤剤(例えば、ラウリル硫酸ナトリウムなど)。
【0123】
核酸と有害に反応しない、非腸管外投与に適切な薬学的に受容可能な有機賦形剤または無機賦形剤もまた、本発明の組成物を処方するために使用され得る。適切な薬学的に受容可能なキャリアとしては、以下が挙げられるが、これらに限定されない:水、塩溶液、アルコール、ポリエチレングリコール、ゼラチン、ラクトース、アミロース、ステアリン酸マグネシウム、タルク、ケイ酸、粘性パラフィン、ヒドロキシメチルセルロース、ポリビニルピロリドンなど。
【0124】
核酸の局所投与のための処方物としては、以下が挙げられ得る:滅菌水溶液および非滅菌水溶液、アルコールのような一般的な溶媒中の非水溶液、または液体油ベースもしくは固体油ベース中の核酸溶液。これらの溶液はまた、緩衝剤、希釈剤、および他の適切な添加剤を含み得る。核酸と有害な反応をしない、非腸管外投与に適切な薬学的に受容可能な有機賦形剤または無機賦形剤が、使用され得る。
【0125】
適切な薬学的に受容可能な賦形剤としては、以下が挙げられるが、これらに限定されない:水、塩溶液、アルコール、ポリエチレングリコール、ゼラチン、ラクトース、アミロース、ステアリン酸マグネシウム、タルク、ケイ酸、粘性パラフィン、ヒドロキシメチルセルロース、ポリビニルピロリドンなど。
【0126】
(他の成分)
本発明の組成物は、薬学的組成物中に慣習的に見出される他のアジュバント成分を、当該分野で確立された使用レベルでさらに含み得る。したがって、例えば、組成物は、さらなる適合性の薬学的に活性な物質(例えば、かゆみ止め、収れん薬、局所麻酔剤または抗炎症剤)を含み得るか、あるいは本発明の組成物の、種々の投薬形態を生理学的に処方することにおいて有用なさらなる物質(例えば、色素、矯味剤、保存剤、酸化防止剤、乳白剤、増粘剤および安定剤)を含み得る。しかし、このような材料は、添加される場合に、本発明の組成物の成分の生物学的活性を過度に阻害するべきではない。これらの処方物は、安定化され得、そして所望される場合、処方物の核酸と有害に相互作用しない補助剤(例えば、滑沢剤、保存剤、安定剤、湿潤剤、乳化剤、浸透圧に影響する塩、緩衝剤、着色料、矯味物質および/または芳香物質など)と混合され得る。
【0127】
水性懸濁液は、懸濁液の粘性を増加させる物質(例えば、カルボキシメチルセルロースナトリウム、ソルビトールおよび/またはデキストランが挙げられる)を含み得る。懸濁液はまた、安定剤を含み得る。
【0128】
本発明の特定の実施形態は、(a)1つ以上のアンチセンス化合物、および(b)1つ以上の他の化学療法剤(これは、非アンチセンス機構によって機能する)を含む薬学的組成物を提供する。このような化学療法剤の例としては、以下が挙げられるが、これらに限定されない:ダウノルビシン、ダウノマイシン、ダクチノマイシン、ドキソルビシン、エピルビシン、イダルビシン、エソルビシン、ブレオマイシン、マホスファミド(mafosfamide)、イホスファミド、シトシンアラビノシド、ビス−クロロエチルニトロソウレア(bis−chloroethylnitrosurea)、ブスルファン、マイトマイシンC、アクチノマイシンD、ミトラマイシン、プレドニゾン、ヒドロキシプレゲステロン、テストステロン、タモキシフェン、ダカルバジン、プロカルバジン、ヘキサメチルメラミン、ペンタメチルメラミン、ミトキサントロン、アムサクリン、クロラムブシル、メチルシクロへキシルニトロソウレア(methylcyclohexylnitrosurea)、ナイトロジェンマスタード、メルファラン、シクロホスファミド、6
−メルカプトプリン、6−チオグアニン、シタラビン、5−アザシチジン、ヒドロキシウレア、デオキシコホルマイシン(deoxycoformycin)、4−ヒドロキシペルオキシシクロホスホラミド、5−フルオロウラシル(5−FU)、5−フルオロデオキシウリジン(5−FUdR)、メトトレキサート(MTX)、コルヒチン、タキソール、ビンクリスチン、ビンブラスチン、エトポシド(VP−16)、トリメトレキサート、イリノテカン(irinotecan)、トポテカン(topotecan)、ゲムシタビン、テニポシド、シスプラチンおよびジエチルスチルベストロール(diethylstilbestrol(DES))。一般的に、The Merck Manual of
Diagnosis and Therapy、第15版、1987、1206−1228頁、Berkowら編、Rahway,N.J.を参照のこと。本発明の化合物と共に使用される場合、このような化学療法剤は、別個に(例えば、5−FUおよびオリゴヌクレオチド)か、連続して(例えば、一定時間の5−FUおよびオリゴヌクレオチド、引き続いてMTXおよびオリゴヌクレオチド)か、あるいは1つ以上の他のこのような化学療法剤と組み合わせて(例えば、5−FU、MTXおよびオリゴヌクレオチド、または5−FU、放射線療法およびオリゴヌクレオチド)使用され得る。抗炎症薬物(非ステロイド抗炎症薬物およびコルチコステロイドが挙げられるが、これらに限定されない)、ならびに抗ウイルス薬物(リビビリン(ribivirin)、ビダラビン、アシクロビルおよびガンシクロビルが挙げられるが、これらに限定されない)もまた、本発明の組成物と組み合わされ得る。一般的に、The Merck Manual of Diagnosis and Therapy、第15版、Berkowら編、1987、Rahway,N.J.、それぞれ、2499−2506頁および46−49頁を参照のこと。他の非アンチセンス化学療法剤もまた、本発明の範囲内である。2つ以上組み合わせた化合物は、一緒にか、または連続して使用され得る。
【0129】
別の関連する実施形態において、本発明の組成物は、第1核酸に標的化された1つ以上のアンチセンス化合物(特にオリゴヌクレオチド)、および第2核酸標的に標的化された1つ以上のさらなるアンチセンス化合物を含み得る。アンチセンス化合物の多数の例は、当該分野で公知である。2つ以上組み合わせた化合物は、一緒にか、または連続して使用され得る。
【0130】
治療組成物の処方およびそれに続く投与は、当業者の技術の範囲内と考えられる。投与は、処置されるべき疾患状態の重篤度および応答性に依存して、数日から数ヶ月間まで続く処置過程で、あるいは治癒がもたらされるか、または疾患状態の縮小が達成されるまで続く。最適な投与スケジュールは、患者の身体における薬物蓄積の測定から計算され得る。当業者は、最適な投薬量、投与方法および繰り返し率を容易に決定し得る。最適な投薬は、個々のオリゴヌクレオチドの相対的な効力に非常に依存し得、そして一般的に、インビトロおよびインビボ動物モデルにおいて有効であることが見出されたEC
50に基づいて評価され得る。一般的に、投薬量は、体重1kgあたり0.01μg〜100gであり、そして1日に1回以上、一週間に1回以上、一ヶ月に1回以上、もしくは1年に1回以上、または2年〜20年ごとに1回、与えられ得る。当業者は、測定された、身体の流体または組織における薬物の滞留時間および濃度に基づいて、投与のための繰り返し率を容易に決定し得る。首尾よい処置の後、患者は、疾患状態の再発を予防するために維持療法を受けることが所望され得、ここで、このオリゴヌクレオチドは、維持用量(体重1kgあたり0.01μg〜100g、1日に1回以上〜20年毎に1回の範囲)で投与される。
【0131】
本発明は、本発明のある好ましい実施形態に従って具体的に記載されているものの、以下の実施例は、本発明を説明するように作用するだけであり、同一なものに限定することを意図しない。
【実施例】
【0132】
(実施例1)
(オリゴヌクレオチド合成のためのヌクレオシドホスホルアミダイト)
(デオキシアミダイトおよび2’−アルコキシアミダイト)
2’−デオキシβ−シアノエチルジイソプロピルホスホルアミダイトおよび2’−メトキシβ−シアノエチルジイソプロピルホスホルアミダイトを、業者(例えば、Chemgenes,Needham,MA、またはGlen Research,Inc.、Sterling,Va.)から購入した。他の2’−O−アルコキシ置換されたヌクレオシドアミダイトを、米国特許第5,506,351号(本明細書中に参考として援用される)に記載されたように調製する。2’−アルコキシアミダイトを使用して合成されたオリゴヌクレオチドについて、テトラゾールおよび塩基のパルス送達後の待ち工程を360秒まで長くしたことを除いて、非改変オリゴヌクレオチドについての標準的なサイクルを利用した。
【0133】
5−メチル−2’−デオキシシチジン(5−Me−C)ヌクレオチドを含むオリゴヌクレオチドを、公開された方法(Sanghvi et al.、Nucleic Acids Research、1993、21、3197−3203)に従って、市販のホスホルアミダイト(Glen Research,Sterling,VA,またはChemGenes,Needham,MA)を使用して、合成した。
【0134】
(2’−フルオロアミダイト)
(2’−フルオロデオキシアデノシンアミダイト)
2’−フルオロオリゴヌクレオチドを、以前に記載されるように[Kawasakiら,J.Med.Chem.,1993,36,831−841および米国特許第5,670,633号(本明細書中に参考として援用される)]合成した。簡潔には、保護ヌクレオシドN6−ベンゾイル−2’−デオキシ−2’−フルオロアデノシンを、文献の手順を改変し、それによりこの2’−α−フルオロ原子を2’−β−トリチル基のS
N2−置換により導入することによって、出発物質として市販の9−β−D−アラビノフラノシルアデニンを利用して合成した。従って、N6−ベンゾイル−9−β−D−アラビノフラノシルアデニンを、3’,5’−ジテトラヒドロピラニル(THP)中間体として、中程度の収量において選択的に保護した。THP基およびN6−ベンゾイル基の脱保護を、標準的な方法論を使用して達成し、そして標準的な方法を使用して、5’−ジメトキシトリチル(DMT)中間体および5’−DMT−3’−ホスホルアミダイト中間体を得た。
【0135】
(2’−フルオロデオキシグアノシン)
2’−デオキシ−2’−フルオログアノシンの合成を、テトライソプロピルジシロキサニル(TPDS)保護9−β−D−アラビノフラノシルグアニンを出発物質として使用して、その中間体ジイソブチリルアラビノフラノシルグアノシンへの変換により達成した。TPDS基の脱保護の次に、そのヒドロキシル基をTHPで保護して、ジイソブチリルジ−THP保護アラビノフラノシルグアニンを得た。選択的O−脱アシル化およびトリフレート化(triflation)の次に、フッ素で粗製生成物を処理し、次いで、THP基の脱保護を行った。
【0136】
標準的な方法論を使用して、その5’−DMT−ホスホルアミダイトおよび5’−DMT−3’−ホスホルアミダイトを得た。
【0137】
(2’−フルオロウリジン)
2’−デオキシ−2’−フルオロウリジンの合成を、文献の手順の改変によって達成した。この手順において、2,2’−無水−1−β−D−アラビノフラノシルウラシルを、70% フッ化水素−ピリジンで処理した。標準的な手順を使用して、その5’−DMT
ホスホルアミダイトおよび5’−DMT−3’ホスホルアミダイトを得た。
【0138】
(2’−フルオロデオキシシチジン)
2’−デオキシ−2’−フルオロシチジンを、2’−デオキシ−2’−フルオロウリジンのアミノ化を介して合成し、続いて、選択的に保護して、N4−ベンゾイル−2’−デオキシ−2’−フルオロシチジンを得た。標準的な手順を使用して、その5’−DMTホスホルアミダイトおよび5’−DMT−3’ホスホルアミダイトを得た。
【0139】
(2’−O−(2−メトキシエチル)修飾アミダイト)
2’−O−メトキシエチル置換ヌクレオシドアミダイトを以下のように調製するか、または代わりに、Martin,P.,Helvetica Chimica Acta,1995,78,486−504の方法に従って調製する。
【0140】
(2,2’−無水[1−(β−D−アラビノフラノシル)−5−メチルウリジン])
5−メチルウリジン(Yamasa,Choshi,Japanから市販されるリボシルチミン)(72.0g、0.279M)、ジフェニルカーボネート(90.0g、0.420M)および重炭酸ナトリウム(2.0g、0.024M)をDMF(300mL)に添加した。この混合物を、攪拌しながら加熱して還流し、発生した二酸化炭素ガスを制御された様式にて放出させた。1時間後、わずかに色が濃くなった溶液を、減圧下で濃縮した。この得られたシロップを、攪拌しながらジエチルエーテル(2.5L)に注いだ。この生成物はガム状物質を形成した。エーテルをデカントし、残渣を、最小量のメタノール(約400mL)に溶解した。この溶液を、新たなエーテル(2.5L)に注いで、硬いガム状物質を得た。このエーテルをデカントし、このガム状物質を、真空オーブンで乾燥して(60℃、1mmHgにて24時間)、固体を得、これを、淡い黄褐色粉末(57g、85%粗収率)に粉にした。そのNMRスペクトルは、その構造と一致し、そのナトリウム塩としてフェノールが混入していた(約5%)。さらなる反応のために、この物質を使用した(または酢酸エチル中のメタノール勾配(10〜25%)を使用するカラムクロマトグラフィーによりさらに精製されて、白色固体を獲得し得る(mp 222〜4℃))。
【0141】
(2’−O−メトキシエチル−5−メチルウリジン)
2,2’−無水−5−メチルウリジン(195g、0.81M)、トリス(2−メトキシエチル)ボレート(231g、0.98M)および2−メトキシエタノール(1.2L)を、2Lのステンレス鋼圧力容器に添加し、予め加熱した160℃の油浴に入れた。155〜160℃にて48時間加熱した後、この容器を開け、その溶液を乾燥するまでエバポレートし、MeOH(200mL)で摩砕した。その残渣を、熱アセトン(1L)中に再懸濁した。不溶性の塩を濾過し、アセトン(150mL)で洗浄し、濾液をエバポレートした。その残渣(280g)をCH
3CN(600mL)中に溶解し、エバポレートした。シリカゲルカラム(3kg)を、0.5% Et
3NHを含有するCH
2Cl
2/アセトン/MeOH(20:5:3)中にパックした。残渣を、CH
2Cl
2(250mL)中に溶解し、このカラムに装填する前に、シリカ(150g)に吸着させた。生成物を、パックした溶媒を用いて溶出して、160g(63%)の生成物を得た。さらなる物質を、不純物質画分を、再度作業することにより得た。
【0142】
(2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルウリジン)
2’−O−メトキシエチル−5−メチルウリジン(160g、0.506M)を、ピリジン(250mL)とともに同時にエバポレートし、その乾燥した残渣を、ピリジン(1.3L)中に溶解した。ジメトキシトリチルクロリド(94.3g、0.278M)の第1のアリコートを添加し、その混合物を、室温にて1時間攪拌した。ジメトキシトリチルクロリドの第2のアリコート(94.3g、0.278M)を添加し、その反応系を、さ
らに1時間攪拌した。次いで、メタノール(170mL)を添加して、その反応系を停止させた。HPLCにより、約70%の生成物の存在が示された。その溶媒をエバポレートし、CH
3CN(200mL)で摩砕した。その残渣を、CHCl
3(1.5L)中に溶解し、2×500mLの飽和NaHCO
3および2×500mLの飽和NaClで抽出した。その有機相をNa
2SO
4で乾燥し、濾過し、エバポレートした。275gの残渣を得た。この残渣を、充填され、0.5% Et
3NHを含有するEtOAc/ヘキサン/アセトン(5:5:1)で溶出される3.5kgのシリカゲルカラムで精製した。この純粋画分をエバポレートして、164gの生成物を得た。さらに約20gを、不純物質画分から得て、合計収量183g(57%)を得た。
【0143】
(3’−O−アセチル−2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルウリジン)
2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルウリジン(106g、0.167M)、DMF/ピリジン(562mLのDMFと188mLのピリジンから調製した、750mLの3:1混合物)および、無水酢酸(24.38mL、0.258M)を合わせ、室温にて24時間攪拌した。この反応系を、最初にMeOHの添加によりTLCサンプルをクエンチすることによって、TLCによりモニターした。TLCにより判断した場合に、反応が完了した際に、MeOH(50mL)を添加し、この混合物を、35℃でエバポレートした。その残渣を、CHCl
3(800mL)中に溶解し、2×200mLの飽和重炭酸ナトリウムおよび2×200mLの飽和NaClで抽出した。その水層を、200mLのCHCl
3で逆抽出(back extract)した。合わせた有機物質を、硫酸ナトリウムで乾燥し、エバポレートして、122gの残渣(約90%生成物)を得た。その残渣を、3.5kgのシリカゲルカラムで精製し、EtOAc/ヘキサン(4:1)を使用して溶出した。純粋な生成物画分をエバポレートして、96g(84%)を得た。さらに1.5gを残りの画分から回収した。
【0144】
(3’−O−アセチル−2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチル−4−トリアゾールウリジン)
第1の溶液を、CH
3CN(700mL)中に3’−O−アセチル−2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルウリジン(96g、0.144M)を溶解することによって調製し、とっておいた。トリエチルアミン(189mL、1.44M)を、CH
3CN(1L)中のトリアゾール(90g、1.3M)の溶液に添加し、−5℃まで冷却し、オーバーヘッドスターラーを用いて0.5時間攪拌した。0〜10℃に維持した攪拌溶液に30分かけてPOCl
3を滴下し、得られた混合物を、さらに2時間攪拌した。第1の溶液を、後者の溶液に45分かけて滴下した。得られた反応混合物を低温室に一晩保存した。塩を反応混合物から濾過し、その溶液をエバポレートした。その残渣をEtOAc(1L)に溶解し、不溶性固体を、濾過により除去した。その濾液を、1×300mLのNaHCO
3および2×300mLの飽和NaClで洗浄し、硫酸ナトリウムで乾燥し、エバポレートした。その残渣を、EtOAcで粉砕して、標題化合物を得た。
【0145】
(2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルシチジン)
ジオキサン(500mL)およびNH
4OH(30mL)中の3’−O−アセチル−2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチル−4−トリアゾールウリジン(103g、0.141M)の溶液を、室温にて2時間攪拌した。このジオキサン溶液をエバポレートし、その残渣を、MeOH(2×200mL)で共沸した。その残渣をMeOH(300mL)中に溶解し、2lのステンレス鋼圧力容器に移した。NH
3ガスで飽和させたMeOH(400mL)を添加し、この容器を、100℃まで2時間加熱した(TLCにより、完全な変換が示された)。この容器の内容物を、乾燥するまでエバポレートし、その残渣を、EtOAc(500mL)中に溶解し、飽和NaCl(2
00mL)で1回洗浄した。この有機物質を硫酸ナトリウムで乾燥し、溶媒をエバポレートして、85g(95%)の標題化合物を得た。
【0146】
(N4−ベンゾイル−2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルシチジン)
2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチル−シチジン(85g、0.134M)をDMF(800mL)中に溶解し、無水安息香酸(37.2g、0.165M)を攪拌しながら添加した。3時間攪拌した後、TLCにより、反応が約95%完了したことが示された。溶媒をエバポレートし、その残渣をMeOH(200mL)で共沸した。残渣をCHCl
3(700mL)中に溶解し、飽和NaHCO
3(2×300mL)および飽和NaCl(2×300mL)で抽出し、MgSO
4で乾燥し、エバポレートして、残渣(96g)を得た。その残渣を、溶出溶媒として0.5% Et
3NHを含有するEtOAc/ヘキサン(1:1)を使用して1.5kgのシリカカラムでクロマトグラフィーにかけた。純粋な生成物画分をエバポレートして、90g(90%)の標題化合物を得た。
【0147】
(N4−ベンゾイル−2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルシチジン−3’−アミダイト)
N4−ベンゾイル−2’−O−メトキシエチル−5’−O−ジメトキシトリチル−5−メチルシチジン(74g、0.10M)を、CH
2Cl
2(1L)中に溶解した。テトラゾールジイソプロピルアミン(7.1g)および亜リン酸2−シアノエトキシ−テトラ(イソプロピル)(40.5mL、0.123M)を、窒素雰囲気下で攪拌しながら添加した。得られた混合物を、室温にて20時間攪拌した(TLCにより、反応が95%完了したことが示された)。反応混合物を、飽和NaHCO
3(1×300mL)および飽和NaCl(3×300mL)で抽出した。この水性洗浄液を、CH
2Cl
2(300mL)で逆抽出し、その抽出物を合わせて、MgSO
4で乾燥し、濃縮した。得られた残渣を、溶出溶媒としてEtOAc/ヘキサン(3:1)を使用して1.5kgのシリカカラムでクロマトグラフィーにかけた。純粋画分を合わせて、90.6g(87%)の標題化合物を得た。
【0148】
(2’−O−(アミノオキシエチル)ヌクレオシドアミダイトおよび2’−O−(ジメチルアミノオキシエチル)ヌクレオシドアミダイト)
(2’−(ジメチルアミノオキシエトキシ)ヌクレオシドアミダイト)
2’−(ジメチルアミノオキシエトキシ)ヌクレオシドアミダイト(当該分野で2’−O−(ジメチルアミノオキシエチル)ヌクレオシドアミダイトとしても公知)を、以下の段落に記載されるように調製する。アデノシン、シチジンおよびグアノシンのヌクレオシドアミダイトを、アデノシンおよびシチジンの場合には環外アミンをベンゾイル部分で保護し、グアノシンの場合にはイソブチリルで保護することを除いて、チミジン(5−メチルウリジン)と同様に調製する。
【0149】
(5’−O−tert−ブチルジフェニルシリル−O
2−2’−無水−5−メチルウリジン)
O
2−2’−無水−5−メチルウリジン(Pro.Bio.Sint.,Varese,Italy,100.0g、0.416mmol)、ジメチルアミノピリジン(0.66g、0.013当量、0.0054mmol)を、機械的に攪拌しながらアルゴン雰囲気下で周囲温度にて乾燥ピリジン(500ml)中に溶解した。tert−ブチルジフェニルクロロシラン(125.8g、119.0mL、1.1当量、0.458mmol)を一部添加した。その反応系を、周囲温度にて16時間攪拌した。TLC(Rf 0.22、酢酸エチル)により、完全な反応が示された。この溶液を、減圧下で濃オイルになるまで濃縮した。これを、ジクロロメタン(1L)と、飽和重炭酸ナトリウム(2×1L)
と、ブライン(1L)との間で分配した。その有機層を硫酸ナトリウムで乾燥し、減圧下で濃オイルになるまで濃縮した。このオイルを、酢酸エチルとエチルエーテルの1:1混合物(600mL)中に溶解し、この溶液を−10℃まで冷却した。得られた結晶生成物を、濾過により回収し、エチルエーテル(3×200mL)で洗浄し、149g(74.8%)の白色固体になるまで乾燥した(40℃、1mmHg、24時間)。TLCおよびNMRは、純粋生成物と一致した。
【0150】
(5’−O−tert−ブチルジフェニルシリル−2’−O−(2−ヒドロキシエチル)−5−メチルウリジン)
2Lのステンレス鋼の攪拌されない圧力反応器中に、テトラヒドロフラン(1.0M、2.0当量、622mL)中のボランを添加した。換気フードにおいて、手動で攪拌しながら、まず、水素ガスの蒸発が静まるまでエチレングリコール(350mL、過剰)を慎重に添加した。5’−O−tert−ブチルジフェニルシリル−O
2−2’−無水−5−メチルウリジン(149g、0.311mol)および重炭酸ナトリウム(0.074g、0.003当量)を、手動で攪拌しながら添加した。反応器を封鎖し、内部温度が160℃に達するまで油浴中で加熱し、次いで、16時間維持した(圧力<100psig)。この反応容器を周囲温度まで冷却し、開けた。TLC(所望の生成物についてRf 0.67およびara−T副生成物についてRf 0.82、酢酸エチル)により、生成物の約70%の変換が示された。さらなる副生成物形成を避けるために、反応を停止し、より極端な条件を、エチレングリコールを除去するために用いて、温水浴(40〜100℃)中、減圧下(10〜1mmHg)で濃縮した(あるいは、一旦、低温での溶媒沸騰を行い、残りの溶液を、酢酸エチルと水との間で分配し得る。その生成物は、有機相中にある)。その残渣を、カラムクロマトグラフィー(2kgのシリカゲル、1:1〜4:1の酢酸エチル−ヘキサン勾配)により精製した。適切な画分を合わせ、ストリッピングし(strip)、白色の砕けやすい泡沫(crisp foam)(84g、50%)、混入した出発物質(17.4g)および純粋な再利用可能な出発物質(20g)として生成物を乾燥した。出発物資、あまり純粋でない回収された出発物質に基づく収率は、58%で
あった。TLCおよびNMRは、99%の純粋物質と一致した。
【0151】
(2’−O−([2−フタルイミドオキシ)エチル]−5’−t−ブチルジフェニルシリル−5−メチルウリジン)
5’−O−tert−ブチルジフェニルシリル−2’−O−(2−ヒドロキシエチル)−5−メチルウリジン(20g、36.98mmol)を、トリフェニルホスフィン(11.63g、44.36mmol)およびN−ヒドロキシフタルイミド(7.24g、44.36mmol)と混合した。次いで、これを、40℃にて2日間、高減圧下で、P
2O
5で乾燥した。この反応混合物を、アルゴンでフラッシュし、乾燥THF(369.8mL、Aldrich、しっかりした封鎖瓶)を添加して、透明な溶液を得た。ジエチル−アゾジカルボキシレート(6.98mL、44.36mmol)を、反応混合物に滴下した。添加速度を、得られた濃赤色の着色が、次の滴下の前にちょうど脱色されるように維持した。添加を完了した後、この反応系を4時間攪拌した。そのときまでには、TLCにより、反応の完了が示される(60:40の酢酸エチル:ヘキサン)。溶媒を、真空中でエバポレートした。得られた残渣を、フラッシュカラムに配置し、酢酸エチル:ヘキサン(60:40)で溶出して、2’−O−([2−フタルイミドオキシ)エチル]−5’−t−ブチルジフェニルシリル−5−メチルウリジンを白色泡沫(21.819g、86%)として得た。
【0152】
(5’−O−tert−ブチルジフェニルシリル−2’−O−[(2−ホルムアドキシイミノオキシ(formadoximinooxy))エチル]−5−メチルウリジン)
2’−O−([2−フタルイミドオキシ)エチル]−5’−t−ブチルジフェニルシリル−5−メチルウリジン(3.1g、4.5mmol)を、乾燥CH
2Cl
2(4.5m
L)中に溶解し、メチルヒドラジン(300mL、4.64mmol)を−10℃〜0℃にて滴下した。1時間後、この混合物を濾過し、その濾液を、氷冷CH
2Cl
2で洗浄し、合わせた有機相を、水、ブラインで洗浄し、無水Na
2SO
4で乾燥した。この溶液を濃縮して、2’−O−(アミノオキシエチル)チミジンを得た。次いで、これを、MeOH(67.5mL)中に溶解した。これに、ホルムアルデヒド(20%水溶液、w/w、1.1当量)を添加し、得られた混合物を、1時間攪拌した。溶媒を、真空下で除去し;残渣をクロマトグラフィーにかけて、5’−O−tert−ブチルジフェニルシリル−2’−O−[(2−ホルムアドキシイミノオキシ)エチル]−5−メチルウリジンを白色泡沫(1.95g、78%)として得た。
【0153】
(5’−O−tert−ブチルジフェニルシリル−2’−O−[N,N−ジメチルアミノオキシエチル]−5−メチルウリジン)
5’−O−tert−ブチルジフェニルシリル−2’−O−[(2−ホルムアドキシイミノオキシ)エチル]−5−メチルウリジン(1.77g、3.12mmol)を、乾燥MeOH(30.6mL)中の1M p−トルエンスルホン酸ピリジニウム(PPTS)の溶液に溶解した。シアノホウ化水素ナトリウム(0.39g、6.13mmol)を、10℃にて不活性雰囲気下でこの溶液に添加した。この反応混合物を、10℃にて10分間攪拌した。その後、反応容器を氷浴から取り出し、室温にて2時間攪拌し、この反応系を、TLC(CH
2Cl
2中の5% MeOH)によりモニターした。NaHCO
3水溶液(5%、10mL)を添加し、酢酸エチル(2×20mL)で抽出した。酢酸エチル相を、無水Na
2SO
4で乾燥し、乾燥するまでエバポレートした。残渣を、MeOH(30.6mL)中の1M PPTSの溶液に溶解した。ホルムアルデヒド(20% w/w、30mL、3.37mmol)を添加し、この反応混合物を、室温にて10分間攪拌した。この反応混合物を、氷浴中で10℃まで冷却し、シアノホウ化水素ナトリウム(0.39g、6.13mmol)を添加し、反応混合物を、10℃にて10分間攪拌した。10分後、この反応混合物を、氷浴から取り出し、室温にて2時間攪拌した。この反応混合物に、5% NaHCO
3(25mL)溶液を添加し、酢酸エチル(2×25mL)で抽出した。酢酸エチル層を、無水Na
2SO
4で乾燥し、乾燥するまでエバポレートした。その得られた残渣を、フラッシュカラムクロマトグラフィーにより精製し、CH
2Cl
2中の5% MeOHで溶出して、5’−O−tert−ブチルジフェニルシリル−2’−O−[N,N−ジメチルアミノオキシエチル]−5−メチルウリジンを白色泡沫(14.6g、80%)として得た。
【0154】
(2’−O−(ジメチルアミノオキシエチル)−5−メチルウリジン)
トリエチルアミントリヒドロフルオリド(3.91mL、24.0mmol)を、乾燥THFおよびトリエチルアミン(1.67mL、12mmol、乾燥、KOHで維持)中に溶解した。次いで、トリエチルアミン−2HFのこの混合物を、5’−O−tert−ブチルジフェニルシラン−2’−O−[N,N−ジメチルアミノオキシエチル]−5−メチルウリジン(1.40g、2.4mmol)に添加し、室温にて24時間攪拌した。反応系を、TLC(CH
2Cl
2中の5% MeOH)によりモニターした。溶媒を真空下で除去し、その残渣を、フラッシュカラムに配置し、CH
2Cl
2中の10% MeOHで溶出して、2’−O−(ジメチルアミノオキシエチル)−5−メチルウリジン(766mg、92.5%)を得た。
【0155】
(5’−O−DMT−2’−O−(ジメチルアミノオキシエチル)−5−メチルウリジン)
2’−O−(ジメチルアミノオキシエチル)−5−メチルウリジン(750mg、2.17mmol)を、P
2O
5で、高い減圧下で40℃にて一晩乾燥した。次いで、これを、無水ピリジン(20mL)とともに同時エバポレートした。得られた残渣を、アルゴン雰囲気下でピリジン(11mL)中に溶解した。4−ジメチルアミノピリジン(26.5
mg、2.60mmol)、4,4’−ジメトキシトリチルクロリド(880mg、2.60mmol)を、この混合物に添加し、この反応混合物を、出発物質のすべてがなくなるまで、室温にて攪拌した。ピリジンを真空下で除去し、その残渣を、クロマトグラフィーにかけ、CH
2Cl
2中の10% MeOH(数滴のピリジンを含有する)で溶出して、5’−O−DMT−2’−O−(ジメチルアミノ−オキシエチル)−5−メチルウリジン(1.13g、80%)を得た。
【0156】
(5’−O−DMT−2’−O−(2−N,N−ジメチルアミノオキシエチル)−5−メチルウリジン−3’−[(2−シアノエチル)−N,N−ジイソプロピルホスホルアミダイト])
5’−O−DMT−2’−O−(ジメチルアミノオキシエチル)−5−メチルウリジン(1.08g、1.67mmol)を、トルエン(20mL)と同時エバポレートした。この残渣に、N,N−ジイソプロピルアミンテトラゾニド(0.29g、1.67mmol)を添加し、そして高い減圧下、40℃で一晩、P
2O
5上で乾燥させた。次いで、この反応混合物を、無水アセトニトリル(8.4mL)に溶解し、そして2−シアノエチル−N,N,N
1,N
1−テトライソプロピルホスホルアミダイト(2.12mL、6.08mmol)を添加した。この反応混合物を、周囲温度で、4時間、不活性雰囲気下で撹拌した。この反応の進行を、TLC(ヘキサン:酢酸エチル 1:1)でモニタリングした。溶媒をエバポレートし、次いで、残渣を、酢酸エチル(70mL)に溶解し、そして5%NaHCO
3水溶液(40mL)で洗浄した。酢酸エチル層を、無水Na
2SO
4で乾燥し、そして濃縮した。得られた残渣を、クロマトグラフィー(溶出液として酢酸エチル)にかけて、5’−O−DMT−2’−O−(2−N,N−ジメチルアミノオキシエチル)−5−メチルウリジン−3’−[(2−シアノエチル)−N,N−ジイソプロピルホスホルアミダイト]を泡状物として得た(1.04g、74.9%)。
【0157】
(2’−(アミノオキシエトキシ)ヌクレオシドアミダイト)
2’−(アミノオキシエトキシ)ヌクレオシドアミダイト(2’−O−(アミノオキシエチル)ヌクレオシドアミダイトとしても当該分野で公知)を、以下のパラグラフにおいて記載するようにして調製する。アデノシンヌクレオシドアミダイト、シチジンヌクレオシドアミダイトおよびチミジンヌクレオシドアミダイトを、同じようにして調製する。
【0158】
(N2−イソブチリル−6−O−ジフェニルカルバモイル−2’−O−(2−エチルアセチル)−5’−O−(4,4’−ジメトキシトリチル)グアノシン−3’−[(2−シアノエチル)−N,N−ジイソプロピルホスホルアミダイト])
2’−O−アミノオキシエチルグアノシンアナログは、ジアミノプリンリボシドの選択的2’−O−アルキル化によって得られ得る。数グラム量のジアミノプリンリボシドを、Schering AG(Berlin)から購入して、少量の3’−O−異性体と共に、2’−O−(2−エチルアセチル)ジアミノプリンリボシドを提供し得る。2’−O−(2−エチルアセチル)ジアミノプリンリボシドを溶解し得、そしてアデノシンデアミナーゼを用いる処理によって、2’−O−(2−エチルアセチル)グアノシンに変換し得る(McGee,D.P.C.,Cook,P.D.,Guinosso,C.J.,WO
94/02501 A1 940203)。標準的な保護手順により、2’−O−(2−エチルアセチル)−5’−O−(4,4’−ジメトキシトリチル)グアノシンおよび2−N−イソブチリル−6−O−ジフェニルカルバモイル−2’−O−(2−エチルアセチル)−5’−O−(4,4’−ジメトキシトリチル)グアノシンを得、これらを還元して、2−N−イソブチリル−6−ジフェニルカルバモイル−2’−O−(2−ヒドロキシエチル)−5’−O−(4,4’−ジメトキシトリチル)グアノシンを提供し得る。上記のように、ヒドロキシル基を、Mitsunobu反応によってN−ヒドロキシフタルイミドで置換し得、そしてこの保護されたヌクレオシドを、従来どおり、亜リン酸化して、2−N−イソブチリル−6−O−ジフェニルカルバモイル−2’−O−([2−フタルイミ
ドキシ(phthalmidoxy)]エチル)−5’−O−(4,4’−ジメトキシトリチル)グアノシン−3’−[(2−シアノエチル)−N,N−ジイソプロピルホスホルアミダイト]を得ることができる。
【0159】
(2’−ジメチルアミノエトキシエトキシ(2’−DMAEOE)ヌクレオシドアミダイト)
2’−ジメチルアミノエトキシエトキシヌクレオシドアミダイト(2’−O−ジメチルアミノエトキシエチル(すなわち、2’−O−CH
2−O−CH
2−N(CH
2)
2)または2’−DMAEOEヌクレオシドアミダイトとしても当該分野で公知)を、以下のようにして調製する。他のヌクレオシドアミダイトも、同じようにして調製する。
【0160】
(2’−O−[2(2−N,N−ジメチルアミノエトキシ)エチル]−5−メチルウリジン)
2[2−(ジメチルアミノ)エトキシ]エタノール(Aldrich,6.66g,50mmol)を、100mLの容器(bomb)中で撹拌しながら、ボランのテトラヒドロフラン溶液(1M,10mL,10mmol)にゆっくりと添加する。この固体が溶解するにつれて、水素ガスが発生する。O
2−,2’−アンヒドロ−5−メチルウリジン(1.2g,5mmol)および炭酸水素ナトリウム(2.5mg)を添加し、そしてこの容器を密閉し、油浴に入れ、そして155℃で26時間加熱する。この容器を、室温まで冷却し、そして開ける。粗溶液を濃縮し、そして残渣を水(200mL)とヘキサン(200mL)との間で分配する。過剰のフェノールをヘキサン層に抽出する。水層を、酢酸エチル(3×200mL)で抽出し、そして合わせた有機層を、水で1回洗浄し、無水硫酸ナトリウムで乾燥し、そして濃縮する。残渣を、1:20のメタノール/塩化メチレン(これは2%のトリエチルアミンを含む)を溶出液として使用するシリカゲルカラムにかける。このカラムの画分を濃縮すると、無色の固体が形成され、これを回収して、表題化合物を白色固体として得る。
【0161】
(5’−O−ジメトキシトリチル−2’−O−[2(2−N,N−ジメチルアミノエトキシ)−エチル)]−5−メチルウリジン)
無水ピリジン(8mL)中の0.5g(1.3mmol)の2’−O−[2(2−N,N−ジメチルアミノ−エトキシ)エチル)]−5−メチルウリジンに、トリエチルアミン(0.36mL)およびジメトキシトリチルクロリド(DMT−Cl,0.87g、2当量)を添加し、1時間撹拌する。この反応混合物を、水(200mL)に注ぎ入れ、そしてCH
2Cl
2(2×200mL)で抽出する。合わせたCH
2Cl
2層を、飽和NaHCO
3溶液で洗浄し、続いて、飽和NaCl溶液で洗浄し、そして無水硫酸ナトリウムで乾燥する。溶媒をエバポレートし、続いて、MeOH:CH
2Cl
2:Et
3N(20:1,v/v,1%のトリエチルアミンを含む)を使用するシリカゲルクロマトグラフィーにかけて、表題化合物を得る。
【0162】
(5’−O−ジメトキシトリチル−2’−O−[2(2−N,N−ジメチルアミノエトキシ)エチル)]−5−メチルウリジン−3’−O−(シアノエチル−N,N−ジイソプロピル)ホスホルアミダイト)
ジイソプロピルアミノテトラゾリド(0.6g)および2−シアノエトキシ−N,N−ジイソプロピルホスホルアミダイト(1.1mL、2当量)を、アルゴン雰囲気下で、CH
2Cl
2(20mL)に溶解した5’−O−ジメトキシトリチル−2’−O−[2(2−N,N−ジメチルアミノエトキシ)エチル)]−5−メチルウリジン(2.17g,3mmol)の溶液に添加する。この反応混合物を、一晩撹拌し、そして溶媒をエバポレートする。得られた残渣を、酢酸エチルを溶出液として使用するシリカゲルフラッシュカラムクロマトグラフィーにより精製して、表題化合物を得る。
【0163】
(実施例2)
(オリゴヌクレオチドの合成)
非置換および置換のホスホジエステル(P=O)オリゴヌクレオチドを、ヨウ素による酸化を用いる標準的なホスホルアミダイト化学を使用して、自動DNA合成機(Applied Biosystemsモデル380B)で合成する。
【0164】
ホスホロチオエート(P=S)を、ホスファイト結合の段階的チオ化(thiation)のために、標準的な酸化ボトルをアセトニトリル中0.2Mの3H−1,2−ベンゾジチオール−3−オン1,1−ジオキシド溶液で置き換えた以外は、ホスホジエステルオリゴヌクレオチドと同様に合成する。このチオ化を待つ工程を、68秒までのばし、続いてキャッピング工程を行った。CPGカラムからの切断および濃水酸化アンモニウム中での55℃における脱ブロック化(18時間)の後、このオリゴヌクレオチドを、2.5容量のエタノールを用いて2回、0.5MのNaCl溶液から沈殿させることにより精製した。ホスフィネートオリゴヌクレオチドを、米国特許第5,508,270号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0165】
アルキルホスホネートオリゴヌクレオチドを、米国特許第4,469,863号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0166】
3’−デオキシ−3’−メチレンホスホネートオリゴヌクレオチドを、米国特許第5,610,289号または同第5,625,050号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0167】
ホスホルアミダイトオリゴヌクレオチドを、米国特許第5,256,775号または米国特許第5,366,878号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0168】
アルキルホスホノチオエートオリゴヌクレオチドを、公開PCT出願PCT/US94/00902およびPCT/US93/06976(それぞれ、WO 94/17093およびWO 94/02499として公開されている)(本明細書中で参考として援用される)に記載されるようにして調製する。
【0169】
3’−デオキシ−3’−アミノホスホルアミデートオリゴヌクレオチドを、米国特許第5,476,925号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0170】
ホスホトリエステルオリゴヌクレオチドを、米国特許第5,023,243号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0171】
ボラノ(borano)ホスフェートオリゴヌクレオチドを、米国特許第5,130,302号および同第5,177,198号(この両方は本明細書中で参考として援用される)に記載されるようにして調製する。
【0172】
(実施例3)
(オリゴヌクレオシドの合成)
メチレンメチルイミノ結合オリゴヌクレオシド(MMI結合オリゴヌクレオシドとしても特定される)、メチレンジメチルヒドラゾ結合オリゴヌクレオシド(MDH結合オリゴヌクレオシドとしても特定される)、およびメチレンカルボニルアミノ結合オリゴヌクレオシド(アミド−3結合オリゴヌクレオシドとしても特定される)、およびメチレンアミノカルボニル結合オリゴヌクレオシド(アミド−4結合オリゴヌクレオシドとしても特定
される)、ならびに例えば、MMI結合とP=O結合またはP=S結合とを交互に有する混合骨格化合物を、米国特許第5,378,825号、同第5,386,023号、同第5,489,677号、同第5,602,240号および同第5,610,289号(これら全ては本明細書中で参考として援用される)に記載されるようにして調製する。
【0173】
ホルムアセタール(formacetal)結合オリゴヌクレオシドおよびチオホルムアセタール結合オリゴヌクレオシドを、米国特許第5,264,562号および同第5,264,564号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0174】
エチレンオキシド結合オリゴヌクレオシドを、米国特許第5,223,618号(本明細書中で参考として援用される)に記載されるようにして調製する。
【0175】
(実施例4)
(PNAの合成)
ペプチド核酸(PNA)を、以下に言及される様々な手順のいずれかに従って調製する:Peptide Nucleic Acids(PNA):Synthesis,Properties and Potential Applications,Bioorganic & Medicinal Chemistry,1996,4,5−23。これらをまた、米国特許第5,539,082号、同第5,700,922号および同第5,719,262号(本明細書中で参考として援用される)に従って調製し得る。
【0176】
(実施例5)
(キメラオリゴヌクレオチドの合成)
本発明のキメラオリゴヌクレオチド、キメラオリゴヌクレオシドまたは混合オリゴヌクレオチド/オリゴヌクレオシドは、いくつかの異なるタイプのものであり得る。これらとしては、第1のタイプ(結合ヌクレオシドの「ギャップ」セグメントが、結合ヌクレオシドの5’「ウイング」セグメントと3’「ウイング」セグメントとの間に位置する)、および第2の「開放端」タイプ(ここで「ギャップ」セグメントは、オリゴマー化合物の3’末端または5’末端のいずれかに位置する)が挙げられる。第1のタイプのオリゴヌクレオチドは、「ギャップマー(gapmer)」またはギャップオリゴヌクレオチドとしても当該分野で公知である。第2のタイプのオリゴヌクレオチドは、「ヘミマー(hemimer)」または「ウイングマー(wingmer)」としても当該分野で公知である。
【0177】
([2’−O−Me]−−[2’−デオキシ]−−[2’−O−Me]キメラホスホロチオエートオリゴヌクレオチド)
2’−O−アルキルホスホロチオエートオリゴヌクレオチドセグメントおよび2’−デオキシホスホロチオエートオリゴヌクレオチドセグメントを有するキメラオリゴヌクレオチドを、上記のように、Applied Biosystemsの自動DNA合成機モデル380Bを使用して合成する。オリゴヌクレオチドを、DNA部分については2’−デオキシ−5’−ジメトキシトリチル−3’−O−ホスホルアミダイトを、5’ウイングおよび3’ウイングについては5’−ジメトキシトリチル−2’−O−メチル−3’−O−ホスホルアミダイトを使用して、自動合成機を使用して合成する。標準的な合成サイクルを、テトラゾールおよび塩基の送達の後に待つ工程を600sまでのばし、RNAについては4回、2’−O−メチルについては2回繰り返すことによって改変する。完全に保護されたオリゴヌクレオチドを、支持体から切断し、そしてホスフェート基を、3:1のアンモニア/エタノール中、室温で一晩脱保護し、次いで乾固するまで凍結乾燥する。室温で24時間、メタノール性アンモニアで処理して、全ての塩基を脱保護し、サンプルを再び、乾固するまで凍結乾燥する。このペレットを、THF中1MのTBAFに、室温で2
4時間再懸濁して、2’位を脱保護する。次いで、この反応を、1M TEAAでクエンチし、次いで、このサンプルを、rotovacによって2分の1の容量になるまで減らし、その後G25サイズ排除カラムで脱塩する。次いで、回収したオリゴを、収率においては分光光度計によって、そして純度についてはキャピラリー電気泳動および質量分析法によって分析する。
【0178】
([2’−O−(2−メトキシエチル)]−−[2’−デオキシ]−−[2’−O−(メトキシエチル)]キメラホスホロチオエートオリゴヌクレオチド)
[2’−O−(2−メトキシエチル)]−−[2’−デオキシ]−−[2’−O−(メトキシエチル)]キメラホスホロチオエートオリゴヌクレオチドを、2’−O−メチルアミダイトの代わりに2’−O−(メトキシエチル)アミダイトを使用したこと以外は、2’−O−メチルキメラオリゴヌクレオチドについて上で記載された手順に従って調製した。
【0179】
([2’−O−(2−メトキシエチル)ホスホジエステル]−−[2’−デオキシホスホロチオエート]−−[2’−O−(2−メトキシエチル)ホスホジエステル]キメラオリゴヌクレオチド)
[2’−O−(2−メトキシエチル)ホスホジエステル]−−[2’−デオキシホスホロチオエート]−−[2’−O−(メトキシエチル)ホスホジエステル]キメラオリゴヌクレオチドを、2’−O−メチルアミダイトの代わりに2’−O−(メトキシエチル)アミダイトを使用したこと以外は、2’−O−メチルキメラオリゴヌクレオチドについて上で記載された手順に従って調製する。ヨウ素を用いる酸化により、ホスホジエステルヌクレオチド間結合をキメラ構造のウイング部分内に形成し、そして3,H−1,2ベンゾジチオール−3−オン1,1ジオキシド(Beaucage試薬)を利用する硫黄化により、中心ギャップについてホスホロチオエートヌクレオチド間結合を生成する。
【0180】
他のキメラオリゴヌクレオチド、キメラオリゴヌクレオシドおよび混合キメラオリゴヌクレオチド/オリゴヌクレオシドを、米国特許第5,623,065号(本明細書中で参考として援用される)に従って合成する。
【0181】
(実施例6)
(オリゴヌクレオチドの単離)
オリゴヌクレオチドまたはオリゴヌクレオシドを、制御型多孔質ガラスカラム(controlled pore glass column)(Applied Biosystems)から切断し、55℃で18時間、濃水酸化アンモニウム中で脱ブロック化した後、このオリゴヌクレオチドまたはオリゴヌクレオシドを、2.5容量のエタノールを用いて2回、0.5MのNaClから沈殿させることにより精製する。合成されたオリゴヌクレオチドを、変性ゲルを用いるポリアクリルアミドゲル電気泳動により分析し、全長の少なくとも85%の物質であると判断した。合成で得られたホスホロチオエート結合およびホスホジエステル結合の相対量を、
31P核磁気共鳴分光法によって定期的にチェックし、そしていくつかの研究のために、オリゴヌクレオチドを、Chiangら、J.Biol.Chem.1991,266,18162−18171に記載されるようにHPLCによって精製した。HPLCで精製した物質について得られた結果は、HPLCで精製していない物質について得られた結果と類似していた。
【0182】
(実施例7)
(オリゴヌクレオチドの合成−96ウェルプレート様式)
オリゴヌクレオチドを、固相P(III)ホスホルアミダイト化学によって、標準的な96ウェル様式で同時に96の配列を構築し得る自動合成機で合成した。ホスホジエステルヌクレオチド間結合を、水性ヨウ素を用いて酸化することによって得た。無水アセトニ
トリル中で、3,H−1,2ベンゾジチオール−3−オン−1,1ジオキシド(Beaucage試薬)を利用して硫黄化することによって、ホスホロチオエートヌクレオチド間結合を生成した。標準的な塩基保護されたβ−シアノエチルジイソプロピルホスホルアミダイトを、商業的販売業者(例えば、PE−Applied Biosystems,Foster City,CA、またはPharmacia,Piscataway,NJ)から購入した。非標準的なヌクレオシドを、公知の文献または特許方法によって合成する。これらを、塩基保護されたβ−シアノエチルジイソプロピルホスホルアミダイトとして利用する。
【0183】
オリゴヌクレオチドを、支持体から切断し、そして高温(55〜60℃)で12〜16時間、濃NH
4OHを使用して脱保護し、次いで遊離した生成物を減圧下で乾燥した。次いで、この乾燥した生成物を滅菌水に再懸濁して、マスタープレートを得、次いで、このプレートから、全ての分析プレートサンプルおよび試験プレートサンプルを、ロボット式ピペッターを利用して希釈する。
【0184】
(実施例8)
(オリゴヌクレオチドの分析−96ウェルプレート様式)
各ウェル中のオリゴヌクレオチドの濃度を、サンプルの希釈およびUV吸収分光法によって評価した。個々の生成物の全長完全性を、キャピラリー電気泳動(CE)によって、96ウェル様式(Beckman P/ACE
TM MDQ)、または別々の調製されたサンプルについては、市販のCE装置(例えば、Beckman P/ACE
TM 5000,ABI 270)のいずれかで評価した。塩基および骨格の組成を、エレクトロスプレー質量分光法を利用する化合物の質量分析により確認した。全てのアッセイ試験プレートを、シングルチャネルロボット式ピペッターおよびマルチチャネルロボット式ピペッターを使用して、マスタープレートから希釈した。このプレート上の化合物の少なくとも85%が、全長の少なくとも85%である場合、プレートを許容可能であると判断した。
【0185】
(実施例9)
(細胞培養およびオリゴヌクレオチド処理)
標的核酸が、測定可能なレベルで存在している限り、標的核酸発現に対するアンチセンス化合物の効果を、種々の細胞型の任意のものにおいて試験し得る。これは、例えば、PCRまたはノーザンブロット分析を使用して、慣用的に決定され得る。以下の7個の細胞型を、例示目的のために示すが、選択された細胞型で標的が発現される限り、他の細胞型が慣用的に使用され得る。これは、当該分野で慣用的な方法(例えば、ノーザンブロット分析、リボヌクレアーゼ保護アッセイまたはRT−PCR)によって容易に決定され得る。
【0186】
(T−24細胞)
ヒト移行細胞の膀胱癌細胞株T−24を、American Type Culture Collection(ATCC)(Manassas,VA)から入手した。T−24細胞を、McCoyの5A基本完全培地(Gibco/Life Technologies,Gaithersburg,MD)(10%ウシ胎仔血清(Gibco/Life Technologies,Gaithersburg,MD)、100単位/mLのペニシリン、および100μg/mLのストレプトマイシン(Gibco/Life
Technologies,Gaithersburg,MD)を補充)中で慣用的に培養した。細胞が90%のコンフルエンスに達したら、トリプシン処理および希釈によって、慣用的に継代した。RT−PCR分析で使用するために、細胞を、96ウェルプレート(Falcon−Primaria #3872)に、7000細胞/ウェルの密度で播種した。
【0187】
ノザンブロットまたは他の分析のために、細胞を、100mmまたは他の標準的組織培養プレート上に播種し、そして適切な容量の培地およびオリゴヌクレオチドを使用して同様に処理し得る。
【0188】
(A549細胞)
ヒト肺癌細胞株A549を、American Type Culture Collection(ATCC)Manassas,VA)から入手した。A549細胞を、DMEM基本培地(Gibco/Life Technologies,Gaithersburg,MD)(10%ウシ胎仔血清(Gibco/Life Technologies,Gaithersburg,MD)、100単位/mLのペニシリン、および100μg/mLのストレプトマイシン(Gibco/Life Technologies,Gaithersburg,MD)を補充)中で、慣用的に培養した。細胞が90%のコンフルエンスに達したら、トリプシン処理および希釈によって、慣用的に継代した。
【0189】
(NHDF細胞):
ヒト新生児皮膚線維芽細胞(NHDF)を、Clonetics Corporation(Walkersville、MD)から得た。NHDFを、供給業者によって推奨されるように、補充された線維芽細胞増殖培地(Clonetics Corporation、Walkersville、MD)中で慣用的に維持した。細胞を、供給業者によって推奨されるように、10継代まで維持した。
【0190】
(HEK細胞):
ヒト胚性ケラチノサイト(HEK)を、Clonetics Corporation(Walkersville、MD)から得た。HEKを、供給業者によって推奨されるように処方した、ケラチノサイト増殖培地(Clonetics Corporation、Walkersville、MD)において慣用的に維持した。細胞を、供給業者によって推奨されるように、10継代まで慣用的に維持した。
【0191】
(HepG2細胞):
ヒト肝芽細胞腫細胞株HepG2を、American Type Culture Collection(Manassas,VA)から得た。HepG2細胞を、10%ウシ胎仔血清、非必須アミノ酸、および1mMピルビン酸ナトリウムを補充したEagleのMEM(Gibco/Life Technologies,Gaithersburg、MD)中で慣用的に培養した。細胞が、90%コンフルエンスに達したら、トリプシン処理および希釈によって、慣用的に継代した。細胞を、RT−PCR分析における使用のために7000細胞/ウェルの密度で、96ウェルプレート(Falcon−Primaria #3872)に播種した。
【0192】
ノザンブロットまたは他の分析のために、細胞を、100mmまたは他の標準的組織培養プレート上に播種し、そして適切な容量の培地およびオリゴヌクレオチドを使用して同様に処理し得る。
【0193】
(AML12細胞)
AML12(αマウス肝臓12)細胞株を、TGFαについてトランスジェニックであるマウス(CD1系統、系列MT42)由来の肝細胞から樹立した。細胞を、0.005mg/mlインスリン、0.005mg/mlトランスフェリン、5ng/mlセレン、および40ng/mlデキサメタゾンならびに90%;10%ウシ胎仔血清を含む、Dulbecco改変Eagle培地とHamのF12培地との1:1混合物中で培養する。継代培養するために、使用済培地を除去し、そして0.25%トリプシン、0.03%EDTA溶液の新鮮培地を添加する。新鮮トリプシン溶液(1〜2ml)を添加し、そして
この培養物を、細胞が剥がれるまで室温で静置する。
【0194】
細胞が90%コンフルエンスに達したら、トリプシン処理および希釈によって、慣用的に継代した。細胞を、RT−PCR分析における使用のために7000細胞/ウェルの密度で、96ウェルプレート(Falcon−Primaria #3872)に播種した。
【0195】
ノザンブロットまたは他の分析のために、細胞を、100mmまたは他の標準的組織培養プレート上に播種し、そして適切な容量の培地およびオリゴヌクレオチドを使用して同様に処理し得る。
【0196】
(初代マウス肝細胞)
初代マウス肝細胞を、Charles River Labs(Wilmington,MA)から購入したCD−1マウスから調製し、そして10%ウシ胎仔血清(Gibco/Life Technologies,Gaithersburg、MD)、250nMデキサメタゾン(Sigma)、および10nMウシインスリン(Sigma)を補充したHepatocyte Attachment Media(Gibco)中で慣用的に培養した。細胞を、RT−PCR分析における使用のために10000細胞/ウェルの密度で、96ウェルプレート(Falcon−Primaria #3872)に播種した。
【0197】
ノザンブロットまたは他の分析のために、細胞を、ラット尾コラーゲン(200μg/mL)(Becton Dickinson)でコートした100mmまたは他の標準的培養プレート上にプレーティングし、そして適切な容量の培地およびオリゴヌクレオチドを使用して同様に処理し得る。
【0198】
(アンチセンス化合物での処理)
細胞が80%コンフルエンスに達したときに、これらを、オリゴヌクレオチドで処理した。96ウェルプレートで増殖された細胞に関して、ウェルを一度200μL OPTI−MEM
TM−1低血清培地(Gibco BRL)で洗浄し、次いで、3.75μg/mL LIPOFECTIN
TM(Gibco BRL)および所望の濃度のオリゴヌクレオチドを含む130μLのOPTI−MEM
TM−1で処理した。4〜7時間の処理後、培地を、新鮮な培地と置き換えた。細胞をオリゴヌクレオチド処理の16〜24時間後に収穫した。
【0199】
使用されるオリゴヌクレオチドの濃度は、細胞株間で異なる。特定の細胞株に対して最適なオリゴヌクレオチド濃度を決定するために、細胞を、ある範囲の濃度でポジティブコントロールオリゴヌクレオチドを用いて処理する。ヒト細胞について、ポジティブコントロールオリゴヌクレオチドは、ヒトH−rasを標的化するホスホロチオエート骨格を有する、ISIS 13920、
【0200】
【化1】
配列番号1、2’−O−メトキシエチルギャップマー(gapmer)(2’−O−メトキシエチルが太字で示される))である。マウス細胞またはラット細胞について、ポジティブコントロールオリゴヌクレオチドは、マウスc−rafおよびラットc−rafの両方を標的とするホスホロチオエート骨格を有する、ISIS 15770、
【0201】
【化2】
配列番号2、2’−O−メトキシエチルギャップマー(2’−O−メトキシエチルが太字で示される)である。次いで、c−Ha−ras mRNA(ISIS 13920に対して)またはc−raf mRNA(ISIS 15770に対して)の80%阻害を生じるポジティブコントロールオリゴヌクレオチドの濃度を、その細胞株についての、後の実験における新規オリゴヌクレオチドのスクリーニング濃度として利用する。80%阻害に達しない場合、H−ras mRNAまたはc−raf mRNAの60%阻害を生じるポジティブコントロールオリゴヌクレオチドの最低濃度を、その細胞株についての、後の実験におけるオリゴヌクレオチドスクリーニング濃度として利用する。60%阻害が達成されない場合、その特定の細胞株を、オリゴヌクレオチドトランスフェクション実験に適さないとみなす。
【0202】
(実施例10)
(アポリポタンパク質B発現のオリゴヌクレオチド阻害の分析)
アポリポタンパク質B発現のアンチセンス調節を、当該分野で公知の種々の方法でアッセイし得る。例えば、アポリポタンパク質B mRNAレベルを、例えば、ノーザンブロット分析、競合的ポリメラーゼ連鎖反応(PCR)、またはリアルタイムPCR(RT−PCR)によって定量し得る。リアルタイム定量的PCRが、ここでは好ましい。RNA分析を、全細胞RNAまたはポリ(A)+mRNAに対して実施し得る。RNA単離の方法は、例えば、Ausubel,F.M.ら,Current Protocols in Molecular Biology,第1巻,4.1.1〜4.2.9頁および4.5.1〜4.5.3頁,John Wiley & Sons,Inc.,1993に教示される。ノーザンブロット分析は、当該分野において慣用的であり、例えば、Ausubel,F.M.ら,Current Protocols in Molecular Biology,第1巻,4.2.1〜4.2.9頁,John Wiley & Sons,Inc.,1996に教示される。リアルタイム定量的(PCR)は、市販のABI PRISM
TM 7700 Sequence Detection System(PE−Applied Biosystems,Foster City,CAから入手可能であり、そして製造業者の指示に従って使用される)を使用して簡便に達成し得る。
【0203】
アポリポタンパク質Bのタンパク質レベルは、当該分野で周知の種々の方法(例えば、免疫沈降法、ウェスタンブロット分析(イムノブロッティング)、ELISAまたは蛍光細胞分析分離(FACS))で定量し得る。アポリポタンパク質Bに対する抗体を、同定し、種々の供給源(例えば、MSRS抗体カタログ(Aerie Corporation,Birmingham,MI))から入手し得るか、または従来の抗体産生方法によって調製し得る。ポリクローナル抗血清の調製のための方法は、例えば、Ausubel,F.M.ら,Current Protocols in Molecular Biology,第2巻,11.12.1〜11.12.9頁,John Wiley & Sons,Inc.,1997に教示される。モノクローナル抗体の調製は、例えば、Ausubel,F.M.ら,Current Protocols in Molecular Biology,第2巻,11.4.1〜11.11.5頁,John Wiley & Sons,Inc.,1997に教示される。
【0204】
免疫沈降方法は、当該分野において標準的であり、そして例えば、Ausubel,F.M.ら,Current Protocols in Molecular Biology,第2巻,10.16.1〜10.16.11頁,John Wiley & Sons,Inc.,1998に見出され得る。ウェスタンブロット(イムノブロット)分
析は、当該分野において標準的であり、そして例えば、Ausubel,F.M.ら,Current Protocols in Molecular Biology,第2巻,10.8.1〜10.8.21頁,John Wiley & Sons,Inc.,1997に見出され得る。酵素結合イムノソルベント検定法(ELISA)は、当該分野において標準的であり、そして例えば、Ausubel,F.M.ら,Current
Protocols in Molecular Biology,第2巻,11.2.1〜11.2.22頁,John Wiley & Sons,Inc.,1991に見出され得る。
【0205】
(実施例11)
(ポリ(A)+mRNA単離)
ポリ(A)+mRNAを、Miuraら,Clin.Chem,,1996,42,1758−1764に従って単離した。ポリ(A)+mRNA単離のための他の方法は、例えば、Ausubel,F.M.ら,Current Protocols in Molecular Biology,第1巻,4.5.1〜4.5.3頁,John Wiley & Sons,Inc.,1993に教示される。簡単に述べると、96ウェルプレートで増殖された細胞について、増殖培地を、その細胞から除去し、そして各ウェルを、200μLの冷PBSで洗浄した。60μLの溶解緩衝液(10mM Tris−HCl、pH7.6、1mM EDTA、0.5M NaCl、0.5% NP−40、20mM バナジル−リボヌクレオシド複合体)を各ウェルに添加し、そのプレートを穏やかに攪拌し、次いで、室温で5分間インキュベートした。55μLの溶解物を、Oligo d(T)コーティング済み96ウェルプレート(AGCT Inc.,Irvine
CA)に移した。プレートを60分間室温でインキュベートし、200μLの洗浄緩衝液(10mM Tris−HCl、pH7.6、1mM EDTA、0.3M NaCl)で3回洗浄した。最後の洗浄の後、プレートをペーパータオル上で吸い取らせて過剰な洗浄緩衝液を除去し、次いで、5分間風乾した。60μLの溶出緩衝液(5mM Tris−HCl pH7.6)(70℃まで予備加熱した)を、各ウェルに添加し、そのプレートを、90℃のホットプレート上で5分間インキュベートし、次いで、その溶出物を、新しい96ウェルプレートに移した。
【0206】
100mmプレート上または他の標準的なプレート上で増殖した細胞を、適切な容量の全ての溶液を使用して、同様に処理し得る。
【0207】
(実施例12)
(全RNA単離)
全RNAを、Qiagen Inc.(Valencia,CA)から購入したRNEASY 96
TMキットおよび緩衝液を製造業者の推奨する手順に従って使用して、単離した。簡単に述べると、96ウェルプレート上で増殖した細胞に対して、増殖培地を、その細胞から除去し、そして各ウェルを200μLの冷PBSで洗浄した。100μLの緩衝液RLTを各ウェルに添加し、そしてそのプレートを20秒間激しく攪拌した。次いで、100μLの70%エタノールを各ウェルに添加し、そして内容物を、3回ピペッティングして出し入れすることによって混合した。次いで、そのサンプルを、廃液収集トレイを備え減圧供給源に取り付けられたQIAVAC
TMマニホルドに取り付けられた、RNEASY96
TMウェルプレートに移した。減圧を15秒間適用した。1mLの緩衝液RW1を、RNEASY96
TMプレートの各ウェルに添加し、そして再び減圧を15秒間適用した。次いで、1mLの緩衝液RPEをRNEASY96
TMプレートの各ウェルに添加し、そして減圧を15秒間適用した。次いで、緩衝液RPE洗浄を繰り返し、そして減圧をさらに10分間適用した。次いで、そのプレートをQIAVAC
TMマニホルドから取り外し、そしてペーパータオル上にて吸い取らせて乾かした。次いで、そのプレートを、1.2mLコレクションチューブを備えるコレクションチューブラックを備え付けた
QIAVAC
TMマニホルドに、再び取り付けた。次いで、各ウェルに60μLの水をピペッティングし、1分間インキュベートし、次いで、30秒間減圧を適用することによって、RNAを溶出した。この溶出工程を、さらに60μLの水を用いて繰り返した。
【0208】
反復するこのピペッティング工程および溶出工程を、QIAGEN Bio−Robot 9604(Qiagen,Inc.,Valencia,CA)を使用して自動化し得る。基本的に、培養プレート上で細胞を溶解させた後、そのプレートをロボットデッキに移し、このロボットデッキにおいて、ピペッティング工程、DNase処理工程および溶出工程を実施する。
【0209】
(実施例13)
(アポリポタンパク質B mRNAレベルのリアルタイム定量的PCR分析)
アポリポタンパク質B mRNAレベルの定量を、ABI PRISM
TM 7700
Sequence Detection System(PE−Applied Biosystems,Foster City,CA)を製造業者の指示に従って使用して、リアルタイム定量的PCRによって決定した。これは、ポリメラーゼ連鎖反応(PCR)生成物をリアルタイムでハイスループット定量することを可能にする、閉鎖管式で非ゲルベースの蛍光検出システムである。PCRが完了した後に増幅生成物を定量する標準的なPCRに対して、リアルタイム定量的PCRにおける生成物は、それらが蓄積するにつれて定量される。これは、順方向PCRプライマーと逆方向PCRプライマーとの間で特異的にアニールしかつ2つの蛍光色素を含むオリゴヌクレオチドプローブを、このPCR反応において含むことによって達成される。レポーター色素(例えば、Operon Technologies Inc.,Alameda,CAまたはPE−Applied
Biosystems,Foster City,CAのいずれかから入手される、JOE、FAM、またはVIC)を、そのプローブの5’末端に結合させ、そしてクエンチャー色素(例えば、Operon Technologies Inc.,Alameda,CAまたはPE−Applied Biosystems,Foster City,CAのいずれかから入手される、TAMRA)を、そのプローブの3’末端に結合させる。そのプローブおよび色素がインタクトである場合、レポーター色素発光は、3’クエンチャー色素が近いことにより、クエンチされる。増幅の間、そのプローブが標的配列にアニールすることによって、Taqポリメラーゼの5’エキソヌクレアーゼ活性によって切断され得る基質が、生成される。PCR増幅サイクルの伸長期の間、Taqポリメラーゼによりそのプローブが切断されると、そのプローブの残りから(それ故、クエンチャー部分から)レポーター色素が遊離され、そして配列特異的蛍光シグナルが生成される。各サイクルに伴い、さらなるレポーター色素分子が、それらの個々のプローブから切断される。そしてその蛍光強度を、ABI PRISM
TM7700 Sequence Detection Systemに組み込まれたレーザーオプティクスによって、規則的間隔でモニターする。各アッセイにおいて、未処理のコントロールサンプル由来のmRNAの系列希釈物を含む一連の並行反応を使用して、試験サンプルのアンチセンスオリゴヌクレオチド処理後の阻害%を定量するために使用する標準曲線を作成する。
【0210】
定量的PCR分析の前に、測定している標的遺伝子に特異的なプライマー−プローブセットを、そのセットがGAPDH増幅反応によって「多重化(multiplex)」される能力について評価する。多重化において、その標的遺伝子と内部標準遺伝子GAPDHとの両方が、単一のサンプル中で同時に増幅される。この分析において、未処理細胞から単離したmRNAを、系列希釈する。各希釈物を、GAPDHのみに特異的なプライマー−プローブセット、標的遺伝子のみに特異的なプライマー−プローブセット(「一重化(single−plexing)」)、または両方に特異的なプライマー−プローブセット(多重化)の存在下で増幅する。PCR増幅に続いて、希釈の関数としてのGAPDH mRNAシグナルおよび標的mRNAシグナルの標準曲線を、一重化サンプルおよび
多重化サンプルの両方から作成する。多重化サンプルから作成したGAPDHシグナルおよび標的シグナルの傾きおよび補正係数の両方が、一重化サンプルから作成したそれらの対応する値の10%以内に入る場合、その標的に特異的なプライマー−プローブセットは、多重化可能であるとみなされる。他のPCR方法もまた、当該分野において公知である。
【0211】
PCR試薬を、PE−Applied Biosystems,Foster City,CAから得た。25μL PCRカクテル(1×TAQMAN
TM緩衝液A、5.5mM MgCl
2、300μMのdATP、300μMのdCTPおよび300μMのdGTP、600μMのdUTP、100nMの順方向プライマー、100nMの逆方向プライマー、および100nMのプローブ、20単位のRNAseインヒビター、1.25単位のAMPLITAQ GOLD
TM、および12.5単位のMuLV逆転写酵素)を、96ウェルプレート(25μLの全RNA溶液を含む)に添加することによって、RT−PCR反応を行った。このRT反応を、48℃で30分間インキュベーションすることによって、実行した。AMPLITAQ GOLD
TMを活性化するために95℃で10分間インキュベーションした後、40サイクルの2工程PCRプロトコルを実行した。この2工程PCRプロトコルは、95℃にて15秒間(変性)、その後、60℃にて1.5分間(アニーリング/伸長)であった。
【0212】
リアルタイムRT−PCRによって得られる遺伝子標的量を、GAPDHの発現レベル(この遺伝子の発現は一定である)を使用すること、またはRiboGreen
TM(Molecular Probes,Inc.Eugene,OR)を使用して全RNAを定量することのいずれかによって、正規化する。GAPDH発現を、標的と同時に実施するか、多重化するか、または別々に実施することによって、リアルタイムRT−PCRによって定量する。全RNAを、Molecular ProbesからのRiboGreen
TMRNA定量試薬を使用して定量する。RiboGreen
TMによるRNA定量の方法は、Jones,L.J.ら,Analytical Biochemistry,1998,265,368−374に教示される。
【0213】
このアッセイにおいて、175μLのRiboGreen
TM作業試薬(10mM Tris−HCl、1mM EDTA、pH7.5中で、1:2865に希釈したRiboGreen
TM試薬)を、25μLの精製細胞RNAを含む96ウェルプレートにピペッティングする。このプレートを、480nmでの励起および520nmでの発光を用いてCytoFluor 4000(PE Applied Biosystems)で読み取る。
【0214】
ヒトアポリポタンパク質Bに対するプローブおよびプライマーを、公開された配列情報(GenBank登録番号NM
000384(本明細書中において、配列番号3として援用される))を使用して、ヒトアポリポタンパク質B配列にハイブリダイズするように設計した。ヒトアポリポタンパク質Bについて、そのPCRプライマーは、
【0215】
【化3】
であり、そしてそのPCRプローブは、
【0216】
【化4】
(配列番号6)であった。ここで、FAM(PE−Applied Biosystems、Foster City,CA)は、蛍光レポーター色素であり、そしてTAMRA(PE−Applied Biosystems、Foster City,CA)は、クエンチャー色素である。ヒトGAPDHについて、そのPCRプライマーは:
【0217】
【化5】
であり、そしてそのPCRプローブは:
【0218】
【化6】
(配列番号9)であった、ここで、JOE(PE−Applied Biosystems、Foster City,CA)は、蛍光レポーター色素であり、そしてTAMRA(PE−Applied Biosystems、Foster City,CA)は、クエンチャー色素である。
【0219】
マウスアポリポタンパク質Bに対するプローブおよびプライマーを、公開された配列情報(GenBank登録番号M35186(本明細書中において、配列番号10として援用される))を使用して、マウスアポリポタンパク質B配列にハイブリダイズするように設計した。マウスアポリポタンパク質Bについて、そのPCRプライマーは:
【0220】
【化7】
であり、そしてPCRプローブは:
【0221】
【化8】
(配列番号13)であった。ここで、FAM(PE−Applied Biosystems、Foster City,CA)は、蛍光レポーター色素であり、そしてTAMRA(PE−Applied Biosystems、Foster City,CA)は、クエンチャー色素である。マウスGAPDHについて、そのPCRプライマーは:
【0222】
【化9】
であり、そしてそのPCRプローブは、
【0223】
【化10】
であった。ここで、JOE(PE−Applied Biosystems、Foster City,CA)は、蛍光レポーター色素であり、そしてTAMRA(PE−Applied Biosystems、Foster City,CA)は、クエンチャー色
素である。
【0224】
(実施例14)
(アポリポタンパク質B mRNAレベルのノーザンブロット分析)
アンチセンス処理の18時間後、細胞単層を、冷PBSで2回洗浄し、そして1mL RNAZOL
TM(TEL−TEST ”B” Inc.,Friendswood,TX)中に溶解させた。全RNAを、製造業者の推奨するプロトコルに従って、調製した。20μgの全RNAを、MOPS緩衝液系(AMRESCO,Inc.Solon,OH)を使用して、1.1%ホルムアルデヒドを含む1.2%アガロースゲルを通す電気泳動によって分画した。RNAを、ノーザン/サザントランスファー緩衝液系(TEL−TEST ”B” Inc.,Friendswood,TX)を使用する一晩のキャピラリートランスファーによって、そのゲルからHYBOND
TM−N+ナイロン膜(Amersham Pharmacia Biotech,Piscataway,NJ)に移した。RNAトランスファーを、UV可視化によって確認した。膜を、STRATALINKER
TM UV Crosslinker 2400(Stratagene,Inc,La Jolla,CA)を使用するUV架橋によって固定し、次いで、ストリンジェントな条件についての製造業者の推奨を使用して、QUICKHYB
TMハイブリダイゼーション溶液(Stratagene,La Jolla,CA)を使用してプロービングした。
【0225】
ヒトアポリポタンパク質Bを検出するために、ヒトアポリポタンパク質B特異的プローブを、
【0226】
【化11】
を使用するPCRによって、調製した。ローディング効率およびトランスファー効率における変動を正規化するために、膜をストリッピングし、そしてヒトグリセルアルデヒド−3−リン酸デヒドロゲナーゼ(GAPDH)RNA(Clontech,Palo Alto,CA)についてプロービングした。
【0227】
マウスアポリポタンパク質Bを検出するために、ヒトアポリポタンパク質B特異的プローブを、
【0228】
【化12】
を使用するPCRによって、調製した。ローディング効率およびトランスファー効率における変動を正規化するために、膜をストリッピングし、そしてマウスグリセルアルデヒド−3−リン酸デヒドロゲナーゼ(GAPDH)RNA(Clontech,Palo Alto,CA)についてプロービングした。
【0229】
ハイブリダイズした膜を、PHOSPHORIMAGER
TMおよびIMAGEQUANT
TM Software V3.3(Molecular Dynamics,Sunnyvale,CA)を使用して可視化し、そして定量した。データを、未処理コントロールにおけるGAPDHレベルに対して正規化した。
【0230】
(実施例15)
(2’−MOEウィングとデオキシギャップとを有するキメラホスホロチオエートオリゴヌクレオチドによる、ヒトアポリポタンパク質B発現のアンチセンス阻害)
本発明に従って、公開された配列(GenBank登録番号NM_000384(本明細書中で配列番号3として援用される)を使用して、ヒトアポリポタンパク質B mRNAの異なる領域を標的とするように、一連のオリゴヌクレオチドを設計した。それらのオリゴヌクレオチドを表1に示す。「標的部位」とは、そのオリゴヌクレオチドが結合する特定の標的配列上で最初の(最も5’側の)ヌクレオチド番号を示す。表1におけるすべての化合物が、20ヌクレオチド長のキメラオリゴヌクレオチド(「ギャップマー(gapmer)」)であり、これは、10個の2’−デオキシヌクレオチドからなる中心「ギャップ」領域と、それに両方の側(5’方向および3’方向)で隣接する5ヌクレオチドの「ウィング(wing)」から構成されている。このウィングは、2’−メトキシエチル(2’−MOE)ヌクレオチドから構成されている。ヌクレオシド間(骨格)結合は、そのオリゴヌクレオチド全体にわたってホスホロチオエート(P=S)結合である。シチジン残基はすべて5’−メチルシチジンである。これらの化合物を、HepG2細胞におけるヒトアポリポタンパク質B mRNAレベルに対する効果について、本明細書中の他の実施例に記載されるような定量的リアルタイムPCRによって分析した。データは、2回の実験からの平均である。「N.D.」が存在する場合、それは「データなし」を示す。
【0231】
(表1)
(2’−MOEウィングとデオキシギャップとを有するキメラホスホロチオエートオリゴヌクレオチドによるヒトアポリポタンパク質B mRNAレベルの阻害)
【0232】
【表1】
表1に示されるように、配列番号17、配列番号18、配列番号19、配列番号21、配列番号23、配列番号25、配列番号27、配列番号31、配列番号38、配列番号43、配列番号46、配列番号51、配列番号52、配列番号53、配列番号55、配列番号57、配列番号62、配列番号63、および配列番号66は、このアッセイにおいてヒトアポリポタンパク質B発現の少なくとも30%の阻害を示した。従って、これらの配列
が好ましい。これらの好ましい配列が相補的である標的部位は、本明細書中において「活性部位」と呼ばれており、従って、本発明の化合物により標的化される好ましい部位である。アポリポタンパク質Bは、哺乳動物において2つの形態(ApoB−48およびApoB−100)で存在し、これらの形態は、アミノ末端が共直線性であるので、ヌクレオチド1〜6530を標的とするアンチセンスオリゴヌクレオチドは、両方の形態にハイブリダイズし、一方、ヌクレオチド6531〜14121を標的とするアンチセンスオリゴヌクレオチドは、アポリポタンパク質Bの長い方の形態に特異的である。
【0233】
(実施例16)
(2’−MOEウィング(wing)とデオキシギャップとを有するキメラホスホロチオエートオリゴヌクレオチドによるヒトアポリポタンパク質B発現のアンチセンス阻害−用量応答研究)
本発明に従って、実施例15におけるアンチセンスオリゴヌクレオチドの部分集合を、用量応答研究においてさらに調査した。処理用量は、50nM、150nMおよび250nMであった。これらの化合物を、HepG2細胞におけるヒトアポリポタンパク質B mRNAレベルに対する効果について、本明細書中の他の実施例に記載されるような定量的リアルタイムPCRによって分析した。データは、2回の実験からの平均であり、そのデータを表2に示す。
【0234】
(表2)
(2’−MOEウィングとデオキシギャップとを有するキメラホスホロチオエートオリゴヌクレオチドによるヒトアポリポタンパク質B mRNAレベルの阻害)
【0235】
【表2】
(実施例17)
(2’−MOEウィングとデオキシギャップとを有するキメラホスホロチオエートオリゴヌクレオチドによるマウスアポリポタンパク質B発現のアンチセンス阻害)
本発明に従って、公開された配列(GenBank登録番号M35186(本明細書中で配列番号10として援用される)を使用して、マウスアポリポタンパク質B mRNAの異なる領域を標的とする、一連のオリゴヌクレオチドを設計した。それらのオリゴヌクレオチドを表3に示す。「標的部位」とは、そのオリゴヌクレオチドが結合する特定の標的配列上で最初の(最も5’側の)ヌクレオチド番号を示す。表3におけるすべての化合物が、20ヌクレオチド長のキメラオリゴヌクレオチド(「ギャップマー(gapmer)」)であり、これは、10個の2’−デオキシヌクレオチドからなる中心「ギャップ」領域と、それに両方の側(5’方向および3’方向)で隣接する5ヌクレオチドの「ウィング(wing)」から構成されている。このウィングは、2’−メトキシエチル(2’−MOE)ヌクレオチドから構成されている。ヌクレオシド間(骨格)結合は、そのオリゴヌクレオチド全体にわたってホスホロチオエート(P=S)結合である。シチジン残基はすべて5’−メチルシチジンである。これらの化合物を、初代肝細胞におけるマウスアポリポタンパク質B mRNAレベルに対する効果について、本明細書中の他の実施例に記載されるような定量的リアルタイムPCRによって分析した。データは、2回の実験からの平均である。「N.D.」が存在する場合、それは「データなし」を示す。
【0236】
(表3)
(2’−MOEウィングとデオキシギャップとを有するキメラホスホロチオエートオリ
ゴヌクレオチドによるマウスアポリポタンパク質B mRNAレベルの阻害)
【0237】
【表3】
表3に示されるように、配列番号71、配列番号74、配列番号76、配列番号78、配列番号81、配列番号83、配列番号84、配列番号87、配列番号88、配列番号90、配列番号101、配列番号102、配列番号103、配列番号109、配列番号111、配列番号114、配列番号115、配列番号116、配列番号117、配列番号118、配列番号119、配列番号120および配列番号121は、このアッセイにおいてマ
ウスアポリポタンパク質B発現の少なくとも50%の阻害を示した。従って、これらの配列が好ましい。これらの好ましい配列が相補的である標的部位は、本明細書中において「活性部位」と呼ばれており、従って、本発明の化合物により標的化される好ましい部位である。
【0238】
(実施例18)
(2’−MOEウィングとデオキシギャップとを有するキメラホスホロチオエートオリゴヌクレオチドによるマウスアポリポタンパク質B発現のアンチセンス阻害−用量応答研究)
本発明に従って、実施例17におけるアンチセンスオリゴヌクレオチドの部分集合を、用量応答研究においてさらに調査した。処理用量は、50nM、150nMおよび300nMであった。これらの化合物を、初代肝細胞におけるヒトアポリポタンパク質B mRNAレベルに対する効果について、本明細書中の他の実施例に記載されるような定量的リアルタイムPCRによって分析した。データは、2回の実験からの平均であり、そのデータを表4に示す。
【0239】
(表4)
(2’−MOEウィングとデオキシギャップとを有するキメラホスホロチオエートオリゴヌクレオチドによるマウスアポリポタンパク質B mRNAレベルの阻害)
【0240】
【表4】
(実施例19)
(アポリポタンパク質Bタンパク質レベルのウェスタンブロット分析)
ウェスタンブロット分析(イムノブロット分析)を、標準的方法を使用して行った。細胞をオリゴヌクレオチド処理の16〜20時間後に採集し、PBSで1回洗浄し、Laemmli緩衝液(100μl/ウェル)中に懸濁し、5分間沸騰させ、そして16% SDS−PAGEゲル上にローディングした。ゲルを150Vにて1.5時間泳動させ、そしてウェスタンブロッティング用の膜にトランスファーした。アポリポタンパク質Bに対する適切な一次抗体を、その一次抗体種に対する放射標識二次抗体または蛍光標識二次抗体とともに使用した。バンドを、PHOSPHORIMAGER
TM(Molecular Dynamics,Sunnyvale CA)を使用して可視化した。
【0241】
(実施例20)
(C57BL/6マウスにおけるアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果:やせた動物対高脂肪食動物)
高脂血症誘導性アテローム性動脈硬化症性プラーク形成に対して感受性であると報告されている系統であるC57BL/6マウスを、以下の研究において使用して、やせたマウス対高脂肪食マウスにおける潜在的脂質減少化合物としてのアンチセンスオリゴヌクレオチドを評価した。
【0242】
雄C57BL/6マウスを、2つの同等の群((1)野生型コントロールマウス(やせた動物)および(2)高脂肪食(60% kcal脂肪)を与えられる動物)に分割した。コントロール動物には、生理食塩水処理を与え、そして通常の齧歯類用食餌にて維持した。一晩絶食させた後、各群からのマウスに、生理食塩水または50mg/kg ISIS 147764(配列番号109)を3日間ごとに6週間、腹腔内投与した。研究の終
了時に、最後の注射の48時間後に、動物を屠殺し、肝臓中の標的mRNAレベル、コレステロールレベルおよびトリグリセリドレベル、肝臓酵素レベルおよび血清中グルコースレベルについて評価した。
【0243】
この比較研究の結果を、表5に示す。
【0244】
(表5)
(やせたマウスおよび高脂肪マウスにおける、アポリポタンパク質B mRNAレベル、コレステロールレベル、脂質レベル、トリグリセリドレベル、肝臓酵素レベルおよびグルコースレベルに対するISIS 147764処理の効果)
【0245】
【表5】
ISIS 147764による処理が、やせたマウスおよび高脂肪マウスの両方において、コレステロールならびにLDLリポタンパク質およびHDLリポタンパク質ならびに血清中グルコールを低下させたこと、ならびに示された効果が、実際には、mRNAレベルの減少により支持されるアポリポタンパク質B発現の阻害に起因することが、これらのデータから明らかである。肝臓酵素レベルの有意な変化は観察されなかった。このことは、このアンチセンスオリゴヌクレオチドが、いずれの処理群に対しても毒性ではなかったことを示す。
【0246】
(実施例21)
(高脂肪食マウスに対するアポリポタンパク質B(ISIS 147764)のアンチセンス阻害効果;6週間時間経過研究)
本発明に従って、6週間の時間経過研究を実施して、高脂肪食マウスにおける脂質代謝およびグルコース代謝に対するISIS 147764の効果をさらに調査した。
【0247】
高脂肪食(60% kcal脂肪)を与えた雄C57BL/6マウス(n=8)を、アンチセンスオリゴヌクレオチド(ISIS 147764)による処理の効果について6週間の時間経過にわたって評価した。コントロール動物には、生理食塩水処理(50mg/kg)を与えた。動物の部分集合に、1日経口用量(20mg/kg)のアトロバスタチンカルシウム(Lipitor(登録商標),Pfizer Inc.)を与えた。すべてのマウス(アトロバスタチン処理動物を除く)に、一晩絶食させた後に、5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)または生理食塩水(50mg/kg)を、3日間ごと(1週間に2回)に6週間、腹腔内投与した。血清中コレステロールおよびリポタンパク質を、0週間目、2週間目、および6週間目の暫定時点にて分析した。研究終了時に、最後の注射の48時間後に動物を屠殺し、そして肝臓中の標的mRNAレベル、コレステロールレベル、リポタンパク質レベル、トリグリセリドレベル、肝臓酵素(ASTおよびALT)レベルおよび血清中グルコースレベル、ならびに体重、肝臓重量、脾臓重量および脂肪パッド重量について評価した。
【0248】
(実施例22)
(高脂肪食マウスにおけるアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果−肝臓におけるmRNA発現)
高脂肪食(60% kcal脂肪)を与えた雄C57BL/6マウス(n=8)を、mRNA発現に対するISIS 147764の効果について6週間の時間経過にわたって評価した。コントロール動物には、生理食塩水処理(50mg/kg)を与えた。マウスに、一晩絶食させた後に、5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)または生理食塩水(50mg/kg)を、3日間ごと(1週間に2回)に6週間、腹腔内投与した。研究終了時に、最後の注射の48時間後に動物を屠殺し、そして肝臓中の標的mRNAレベルについて評価した。ISIS 147764は、5mg/kg用量、25mg/kg用量、および50mg/kg用量において、mRNAレベルをそれぞれ15%、75%、および88%減少させる、用量応答効果を示した。
【0249】
(実施例23)
(血清中コレステロールレベルおよびトリグリセリドレベルに対するアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果)
高脂肪食(60% kcal脂肪)を与えた雄C57BL/6マウス(n=8)を、血清中コレステロールレベルおよびトリグリセリドレベルに対するISIS 147764の効果について6週間の時間経過にわたって評価した。コントロール動物には、生理食塩水処理(50mg/kg)を与えた。マウスに、一晩絶食させた後に、5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)または生理食塩水(50mg/kg)を、3日間ごと(1週間に2回)に6週間、腹腔内投与した。
【0250】
血清中コレステロールレベルを、0週間目、2週間目、および6週間目に測定した。このデータを表6に示す。この表の値は、阻害パーセントとして表されており、生理食塩水コントロールに対して正規化されている。
【0251】
血清中コレステロールに加えて、研究終了時に、最後の注射の48時間後に動物を屠殺し、そしてトリグリセリドレベルについて評価した。
【0252】
ISIS 147764により処理したマウスは、研究終了までに、正常レベルに対して、血清中コレステロール(コントロール動物について240mg/dL、そして5mg/kg用量、25mg/kg用量、および50mg/kg用量について、それぞれ225mg/dL、125mg/dLおよび110mg/dL)ならびにトリグリセリド(コントロール動物について115mg/dL、そして5mg/kg用量、25mg/kg用量、および50mg/kg用量について、それぞれ125mg/dL、150mg/dLおよび85mg/dL)の両方の減少を示した。これらのデータを、20mg/kg経口用量でのアトロバスタチンカルシウムの効果ともまた比較した。このアトロバスタチンカルシウムの効果は、研究終了時に、血清中コレステロールの極小の減少(20%)しか示さなかった。
【0253】
(表6)
(ISIS 147764によるマウスアポリポタンパク質Bコレステロールレベルの阻害パーセント)
【0254】
【表6】
(実施例24)
(リポタンパク質レベルに対するアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果)
高脂肪食(60% kcal脂肪)を与えた雄C57BL/6マウス(n=8)を、リポタンパク質(VLDL、LDL、およびHDL)レベルに対するISIS 147764の効果について6週間の時間経過にわたって評価した。コントロール動物には、生理食塩水処理(50mg/kg)を与えた。マウスに、一晩絶食させた後に、5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)または生理食塩水(50mg/kg)を、3日間ごと(1週間に2回)に6週間、腹腔内投与した。
【0255】
リポタンパク質レベルを、0週間目、2週間目、および6週間目に測定した。このデータを表7に示す。この表の値は、阻害パーセントとして表されており、生理食塩水コントロールに対して正規化されている。負の値は、観察されたリポタンパク質レベル増加を示す。
【0256】
これらのデータを、0週間目、2週間目、および6週間目での、一日経口用量20mg/kgのアトロバスタチンカルシウムの効果ともまた比較した。
【0257】
これらのデータは、50mg/kg用量のISIS 147764が、アトロバスタチンよりも大きな程度まで、調査した血清中リポタンパク質部類すべてを減少可能であることを、示す。
【0258】
(表7)
(アトロバスタチンと比較した、ISIS 147764によるマウスアポリポタンパク質Bリポタンパク質レベルの阻害パーセント)
【0259】
【表7】
(実施例25)
(血清中ASTレベルおよび血清中ALTレベルに対するアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果)
高脂肪食(60% kcal脂肪)を与えた雄C57BL/6マウス(n=8)を、肝
臓酵素(ASTおよびALT)レベルに対するISIS 147764の効果について6週間の時間経過にわたって評価した。コントロール動物には、生理食塩水処理(50mg/kg)を与えた。マウスに、一晩絶食させた後に、5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)または生理食塩水(50mg/kg)を、3日間ごと(1週間に2回)に6週間、腹腔内投与した。
【0260】
ASTレベルおよびALTレベルを、6週間目に測定した。このデータを表8に示す。この表の値は、IU/Lとして表されている。これらの肝臓酵素(ALTおよびAST)のレベルの増加は、毒性および肝臓損傷を示す。
【0261】
ISIS 147764により処理したマウスは、生理食塩水コントロールと比較して、この研究の期間にわたって有意なASTレベル変化を何ら示さなかった(生理食塩水コントロールについての65IU/Lと比較して、5mg/kg用量、25mg/kg用量、および50mg/kg用量について、それぞれ105IU/L、70IU/Lおよび80IU/L)。一日経口用量20mg/kgのアトロバスタチンにより処理したマウスは、ASTレベル85IU/Lを有した。
【0262】
ALTレベルは、生理食塩水コントロールと比較して、この研究の期間にわたってすべての処理によって増加した(生理食塩水コントロールについての25IU/Lと比較して、5mg/kg用量、25mg/kg用量、および50mg/kg用量について、それぞれ50IU/L、70IU/Lおよび100IU/L)。一日経口用量20mg/kgのアトロバスタチンにより処理したマウスは、ASTレベル40IU/Lを有した。
【0263】
(実施例26)
(血清中グルコースレベルに対するアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果)
高脂肪食(60% kcal脂肪)を与えた雄C57BL/6マウス(n=8)を、血清中グルコースレベルに対するISIS 147764の効果について6週間の時間経過にわたって評価した。コントロール動物には、生理食塩水処理(50mg/kg)を与えた。マウスに、一晩絶食させた後に、5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)または生理食塩水(50mg/kg)を、3日間ごと(1週間に2回)に6週間、腹腔内投与した。
【0264】
研究終了時に、最後の注射の48時間後に動物を屠殺し、そして血清中グルコースレベルについて評価した。ISIS 147764は、生理食塩水コントロールについての300mg/dLと比較して、5mg/kg用量、25mg/kg用量、および50mg/kg用量について、それぞれ225mg/dL、190mg/dLおよび180mg/dLにまで血清中グルコースレベルを減少させる、用量応答効果を示した。一日経口用量20mg/kgのアトロバスタチンにより処理したマウスは、血清中グルコースレベル215mg/dLを有した。これらのデータは、ISIS 147764が、高脂肪食マウスにおいて血清中グルコースレベルを減少可能であることを示す。
【0265】
(実施例27)
(体重、脾臓重量、肝臓重量および脂肪パッド重量に対するアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果)
高脂肪食(60% kcal脂肪)を与えた雄C57BL/6マウス(n=8)を、体重、脾臓重量、肝臓重量および脂肪パッド重量に対するISIS 147764の効果について6週間の時間経過にわたって評価した。コントロール動物には、生理食塩水処理(
50mg/kg)を与えた。マウスに、一晩絶食させた後に、5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)または生理食塩水(50mg/kg)を、3日間ごと(1週間に2回)に6週間、腹腔内投与した。
【0266】
研究終了時に、最後の注射の48時間後に動物を屠殺し、そして体重、脾臓重量、肝臓重量および脂肪パッド重量を測定した。これらのデータを表8に示す。値は、生理食塩水処理したコントロール動物と比較した体重または器官重量の変化パーセントとして表している。一日経口用量20mg/kgのアトロバスタチンにより処理したマウスからのデータもまた、この表に示している。負の値は、重量の減少を示した。
【0267】
(表8)
(体重または器官重量に対するマウスアポリポタンパク質Bのアンチセンス阻害の効果)
【0268】
【表8】
これらのデータは、脾臓重量および肝臓重量の両方の増加により相殺されたISIS 147764の投与範囲にわたる脂肪減少を示し、用量が増加するにつれて全体重の全体的減少が生じている。
【0269】
(実施例28)
(B6.129P−Apoe
tm1Uncノックアウトマウスにおけるアポリポタンパク質B(ISIS 147764)のアンチセンス阻害の効果:やせた動物対高脂肪食動物)
Jackson Laboratory(Bar Harbor,ME)から得たB6.129P−Apoe
tm1Uncノックアウトマウス(本明細書中でApoEノックアウトマススと呼ぶ)は、Apoe
tm1Unc変異についてホモ接合性であり、年齢によっても性別によっても影響を受けない全血漿コレステロールレベルの顕著な増加を示す。これらの動物は、3ヶ月齢にて、近位大動脈中に脂肪線条を示す。これらの病変は、年齢とともに増加し、そして脂質が少ないがより細長い細胞を含む病変(アテローム性動脈硬化症性病変のより進行した病期特有である)へと進行する。
【0270】
これらのマウスにおける変異は、アポリポタンパク質E(ApoE)遺伝子中に存在する。ApoEタンパク質の主要な目的は、コレステロールおよびトリグリセリドを身体全体へと輸送することである。アポリポタンパク質Eは、リポタンパク質構造を安定化させ、低密度リポタンパク質レセプター(LDLR)および関連タンパク質に結合し、そしてHDLサブクラス中に存在し、HDLにLDLR結合能を提供する。ApoEは、肝臓および脳において最も豊富に発現される。雌B6.129P−Apoe
tm1Uncノックアウトマウス(ApoEノックアウトマウス)を以下の研究に使用して、潜在的脂質減少化合物としてのアンチセンスオリゴヌクレオチドを評価した。
【0271】
雌ApoEノックアウトマウスは、5週齢〜7週齢の範囲であった。これらの雌Apo
Eノックアウトマウスに、研究開始前の2週間、通常の食餌を与えた。その後、ApoEノックアウトマウスに、60%脂肪食(0.15%コレステロール添加)を無制限に与えて、高脂血症および肥満を誘導した。コントロール動物には、コレステロールを添加していない高脂肪食を与えて維持した。一晩絶食させた後、各群からのマウスに、生理食塩水、50mg/kgのコントロールアンチセンスオリゴヌクレオチド(ISIS 29837 TCGATCTCCTTTTATGCCCG;配列番号124)、あるいは5mg/kg ISIS 147764(配列番号109)、25mg/kg ISIS 147764(配列番号109)、50mg/kg ISIS 147764(配列番号109)を、3日間ごとに6週間、腹腔内投与した。
【0272】
このコントロールオリゴヌクレオチドは、20ヌクレオチド長のキメラオリゴヌクレオチド(「ギャップマー(gapmer)」)であり、これは、10個の2’−デオキシヌクレオチドからなる中心「ギャップ」領域と、それに両方の側(5’方向および3’方向)で隣接する5ヌクレオチドの「ウィング(wing)」から構成されている。このウィングは、2’−メトキシエチル(2’−MOE)ヌクレオチドから構成されている。ヌクレオシド間(骨格)結合は、そのオリゴヌクレオチド全体にわたってホスホロチオエート(P=S)結合である。シチジン残基はすべて5’−メチルシチジンである。
【0273】
研究終了時に、最後の注射の48時間後に動物を屠殺し、そして肝臓中の標的mRNAレベルについてRT−PCR法により評価しノーザンブロット分析により確認した。そしてその動物を、グルコースレベル、コレステロールレベルおよび脂質レベルについてHPLC分離法により評価し、トリグリセリドレベルおよび肝臓酵素レベルについて評価した(LabCorp Preclinical Services;San Diego,CAが実施した)。一日経口用量20mg/kgのアトロバスタチンにより処理したマウスからのデータもまた、比較のための表に示している。この比較研究の結果を表9に示す。データは、生理食塩水コントロールに対して正規化している。
【0274】
(表9)
(ApoEノックアウトマウスにおけるアポリポタンパク質B mRNAレベル、コレステロールレベル、グルコースレベル、脂質レベル、トリグリセリドレベルおよび肝臓酵素レベルに対する、ISIS 147764処理の効果)
【0275】
【表9】
ISIS 147764による処理が、ApoEノックアウトマウスにおいて、グルコースおよびコレステロールならびに調査したすべてのリポタンパク質(HDL、LDLおよびVLDL)を低下させたことが、これらのデータから明らかである。さらに、これら
の減少は、アポリポタンパク質Bタンパク質レベルおよびアポリポタンパク質RNAレベルの両方の減少と相関した。このことは、アンチセンス作用機構を示す。肝臓効果レベルの有意な変化は観察されなかった。このことは、このアンチセンスオリゴヌクレオチドが、いずれの処理群に対しても毒性ではなかったことを示す。
(配列表)
【表11】
【表12】
【表13】
【表14】
【表15】
【表16】
【表17】
【表18】
【表19】
【表20】
【表21】
【表22】
【表23】
【表24】
【表25】
【表26】
【表27】
【表28】
【表29】
【表30】
【表31】
【表32】
【表33】
【表34】
【表35】
【表36】
【表37】
【表38】
【表39】
【表40】
【表41】
【表42】
【表43】
【表44】
【表45】
【表46】
【表47】
【表48】
【表49】
【表50】
【表51】
【表52】
【表53】