【実施例】
【0030】
以下に、実施例により本発明を詳細に説明するが、本実施例は一例に過ぎず、本発明は、以下に示す実施例に限定されない。最初に、圧延の途中に中間焼鈍ありの実施例・比較例について説明し、次に、中間焼鈍なしの実施例・比較例について説明する。
【0031】
1.中間焼鈍有りの実施例・比較例
表1に示す組成のアルミニウム合金を半連続鋳造法により溶解鋳造し、厚さ500mmの鋳塊を作製した。次に、この鋳塊を面削後、表1に示す条件で均質化処理を行い、均質化処理後には熱間圧延を行い、板厚を3.0mmとした。その後、冷間圧延により板厚0.8mmとして、440℃で3時間の中間焼鈍を行い、さらに冷間圧延と箔圧延を行い、箔厚12μmのアルミニウム合金箔を得た。
【0032】
【表1】
【0033】
そして、各アルミニウム合金箔でリチウムイオン二次電池の正極材を製造した。LiCoO
2を主体とする活物質に、バインダーとなるPVDFを加えて正極スラリーとした。正極スラリーを、幅30mmとした前記アルミニウム合金箔の両面に塗布し、120℃で24時間、140℃で3時間、160℃で15分の3条件にて熱処理を行い乾燥した後、ローラープレス機により圧縮加工を施し、活物質の密度を増加させた。
【0034】
製造した各々のアルミニウム合金箔について、引張強さ、0.2%耐力、導電率、120℃で24時間の熱処理後の引張強さと0.2%耐力、140℃で3時間の熱処理後の引張強さと0.2%耐力、160℃で15分の熱処理後の引張強さと0.2%耐力を測定して評価した。結果を表2に示す。さらに、各正極材材料について、活物質塗布工程における切れ発生の有無、活物質剥離の有無を評価した。結果を表3に示す。
なお、表2及び表3において、実施例1−1〜1−12は、それぞれ、表1の実施例1〜12に対応し、比較例1−1〜1−8は、それぞれ、表1の比較例1〜8に対応する。
【0035】
【表2】
【0036】
【表3】
【0037】
<引張強さ>
圧延方向に切り出したアルミニウム合金箔の引張強さを、島津製作所製インストロン型引張試験機AG−10kNXを使用して測定した。測定条件は、試験片サイズを10mm×100mm、チャック間距離50mm、クロスヘッド速度10mm/分とした。また、乾燥工程を想定し、120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後のアルミニウム合金箔についても、圧延方向に切り出し、上記と同じく引張強さを測定した。引張強さは、180MPa以上を合格とし、180MPa未満を不合格とした。120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の引張強さは、170MPa以上を合格とし、170MPa未満を不合格とした。
【0038】
<0.2%耐力>
上記と同じく、引張試験を実施して、応力/ひずみ曲線から0.2%耐力を求めた。0.2%耐力は、160MPa以上を合格とし、160MPa未満を不合格とした。120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の0.2%耐力は、150MPa以上を合格とし、150MPa未満を不合格とした。
【0039】
<導電率>
導電率は、四端子法にて電気比抵抗値を測定し、導電率に換算して求めた。60%IACS以上を合格とし、60%IACS未満を不合格とした。
【0040】
<活物質塗布工程における切れ発生の有無>
活物質塗布工程において塗布した正極材に、切れが発生したか否かを目視で観察した。切れが発生しなかった場合を合格とし、発生した場合を不合格とした。
【0041】
<活物質剥離の有無>
活物質剥離の有無は、目視で観察を行った。剥離が発生しなかった場合を合格とし、少なくとも一部発生した場合を不合格とした。
【0042】
実施例1−1〜1−12では、活物質塗布工程における切れ発生や活物質剥離の有無もなく、導電率も高く、良好な評価結果を得られた。また、実施例1−7と1−8の比較から、熱間圧延終了温度を285℃以下にすることによって、アルミニウム合金箔の強度がより高くなることが分かった。
比較例1−1では、Si量が多いために、導電率が十分でなかった。
比較例1−2では、Fe量が少ないために、強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1−3では、Fe量が多いために、導電率が十分でなかった。
比較例1−4では、Cu量が多いために、導電率が十分でなかった。
比較例1−5では、均質化処理温度が低いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1−6では、均質化処理時の保持時間が短いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1−7では、熱間圧延の開始温度が低いために、Fe固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例1−8では、熱間圧延の終了温度が高いために、熱間圧延後のアルミニウム合金板が再結晶し強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
【0043】
2.中間焼鈍なしの実施例・比較例
表1に示す組成のアルミニウム合金を半連続鋳造法により溶解鋳造し、厚さ500mmの鋳塊を作製した。次に、この鋳塊を面削後、表1に示す条件で均質化処理を行い、均質化処理後には熱間圧延を行い、板厚を3.0mmとした。さらに、中間焼鈍を実施せずに、冷間圧延と箔圧延を連続で行い、箔厚12μmのアルミニウム合金箔を得た。
そして、各アルミニウム合金箔においてリチウムイオン二次電池の正極材を製造した。LiCoO
2を主体とする活物質に、バインダーとなるPVDFを加えて正極スラリーとした。正極スラリーを、幅30mmとしたアルミニウム合金箔の両面に塗布し、120℃で24時間、140℃で3時間、160℃で15分の3条件にて加熱し乾燥した後、ローラープレス機により圧縮加工を施し、活物質の密度を増加させた。
【0044】
製造した各々のアルミニウム合金箔について、引張強さ、0.2%耐力、導電率、120℃で24時間の熱処理後の引張強さと0.2%耐力、140℃で3時間の熱処理後の引張強さと0.2%耐力、160℃で15分の熱処理後の引張強さと0.2%耐力を測定して評価した。結果を表4に示す。
さらに、各正極材材料について、活物質塗布工程における切れ発生の有無、活物質剥離の有無を評価した。結果を表5に示す。なお、各種評価結果は、「1.中間焼鈍有りの実施例・比較例」と同様の判定基準とした。
なお、表4及び表5において、実施例2−1〜2−12は、それぞれ、表1の実施例1〜12に対応し、比較例2−1〜2−8は、それぞれ、表1の比較例1〜8に対応する。
【0045】
【表4】
【0046】
【表5】
【0047】
実施例2−1〜2−12では、活物質塗布工程における切れ発生や活物質剥離の有無もなく、導電率も高く、良好な評価結果を得られた。また、実施例2−7と2−8の比較から、熱間圧延終了温度を285℃以下にすることによって、アルミニウム合金箔の強度がより高くなることが分かった。
比較例2−1では、Si量が多いために、導電率が十分でなかった。
比較例2−2では、Fe量が少ないために、強度及び120℃で24時間、140℃で3時間、160℃で15の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2−3では、Fe量が多いために、導電率が十分でなかった。
比較例2−4では、Cu量が多いために、導電率が十分でなかった。
比較例2−5では、均質化処理温度が低いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2−6では、均質化処理時の保持時間が短いために、固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2−7では、熱間圧延の開始温度が低いために、Fe固溶量が低下して強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例2−8では、熱間圧延の終了温度が高いために、熱間圧延後のアルミニウム合金板が再結晶し強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。