【実施例】
【0080】
<4.実施例>
以下、本発明の実施例について説明する。本実施例では、熱伝導性繊維と熱伝導性粒子とを含有するシリコーン樹脂組成物を調整し、シリコーン樹脂組成物から得られた熱伝導性シートの圧縮率に対する厚み方向の熱伝導率について評価した。また、熱伝導性シートを圧縮した状態を維持したときの熱抵抗について評価した。本実施例において、熱伝導性繊維の平均繊維長は、マイクロスコープ(HiROX Co Ltd製、KH7700)で各熱伝導性繊維を測定して得た算出値であり、熱伝導性粒子の平均粒子径は、粒度分布計により測定した値である。なお、本発明は、これらの実施例に限定されるものではない。
【0081】
<熱伝導性シートの圧縮率に対する厚み方向の熱伝導率>
[実施例1]
実施例1では、表1に示すように、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子20.4体積%、平均粒径1μmの窒化アルミニウム粒子24体積%、及び熱伝導性繊維として平均繊維長50μmのピッチ系炭素繊維22.3体積%を混合し、シリコーン樹脂組成物を調製した。
【0082】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、6:4となるように配合した。
【0083】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが2.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。
【0084】
[実施例2]
実施例2では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例1と同様にして熱伝導性シートを得た。
【0085】
[実施例3]
実施例3では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、5:5となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例1と同様にして熱伝導性シートを得た。
【0086】
[比較例1]
比較例1では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、3:7となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例1と同様にして熱伝導性シートを得た。
【0087】
[実施例4]
実施例4では、表1に示すように、熱伝導性繊維として平均繊維長100μmのピッチ系炭素繊維を用いた以外は、実施例1と同様にして熱伝導性シートを得た。
【0088】
[実施例5]
実施例5では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例4と同様にして熱伝導性シートを得た。
【0089】
[実施例6]
実施例6では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、5:5となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例4と同様にして熱伝導性シートを得た。
【0090】
[比較例2]
比較例2では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、3:7となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例4と同様にして熱伝導性シートを得た。
【0091】
[実施例7]
実施例7では、表1に示すように、熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維を用いた以外は、実施例1と同様にして熱伝導性シートを得た。
【0092】
[実施例8]
実施例8では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例7と同様にして熱伝導性シートを得た。
【0093】
[実施例9]
実施例9では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、5:5となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例7と同様にして熱伝導性シートを得た。
【0094】
[比較例3]
比較例3では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、3:7となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例7と同様にして熱伝導性シートを得た。
【0095】
[実施例10]
実施例10では、表1に示すように、熱伝導性繊維として平均繊維長180μmのピッチ系炭素繊維を用いた以外は、実施例1と同様にして熱伝導性シートを得た。
【0096】
[実施例11]
実施例11では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例10と同様にして熱伝導性シートを得た。
【0097】
[実施例12]
実施例12では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、5:5となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例10と同様にして熱伝導性シートを得た。
【0098】
[比較例4]
比較例4では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、3:7となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例10と同様にして熱伝導性シートを得た。
【0099】
[実施例13]
実施例13では、表1に示すように、熱伝導性繊維として平均繊維長250μmのピッチ系炭素繊維を用いた以外は、実施例1と同様にして熱伝導性シートを得た。
【0100】
[実施例14]
実施例14では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例13と同様にして熱伝導性シートを得た。
【0101】
[実施例15]
実施例15では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、5:5となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例13と同様にして熱伝導性シートを得た。
【0102】
[比較例5]
比較例5では、表1に示すように、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、3:7となるように配合した2液性の付加反応型液状シリコーン樹脂を用いた以外は、実施例13と同様にして熱伝導性シートを得た。
【0103】
【表1】
【0104】
[熱伝導率の測定]
ASTM−D5470に準拠した測定方法により、実施例1〜15、及び比較例1〜5の熱伝導性シートに荷重(0.5、1、1.5、2、3、4、5、6,7.5kgf/cm
2)をかけて熱伝導率を測定した。また、荷重をかけたときの熱伝導性シートの圧縮率は、初期厚み2.0mmを100%としたときの変化の割合とした。
【0105】
図8〜
図12は、それぞれ炭素繊維長が50μm、100μm、150μm、180μm、及び250μmのときの熱伝導性シートの圧縮率に対する熱伝導率を示すグラフである。また、
図13〜
図16は、それぞれシリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、6:4、55:45、5:5、及び3:7のときの熱伝導性シートの圧縮率に対する熱伝導率を示すグラフである。シリコーン主剤A:硬化剤Bが、5:5の等量の場合、未硬化成分により流動性を有するが、シリコーン主剤A:硬化剤Bが、3:7の場合、完全硬化するため、流動性が無く、圧縮性が悪化した。
【0106】
図8〜16から明らかなように、40%以上の圧縮率を有することにより、熱源と放熱部材との間の段差を埋めて密着性を向上させ、優れた熱伝導性が得られることが分かった。また、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が5:5〜6:4であることにより、40%以上の圧縮率を有する熱伝導性シートが得られることが分かった。また、熱伝導性繊維の平均繊維長が、100μm以上250μm以下であることにより、圧縮率が40%以下において20W/mK以上の優れた熱伝導率のピーク値が得られることが分かった。
【0107】
<熱伝導性シートを圧縮した状態を維持したときの熱抵抗>
[実施例16]
実施例16では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子21体積%、平均粒径1μmの窒化アルミニウム粒子22体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維25体積%を混合し、シリコーン樹脂組成物を調製した。
【0108】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した。
【0109】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが3.5mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
【0110】
熱伝導性シートを熱源と放熱部材との間に挟み、0.5kgf/cm
2の荷重をかけて厚みを一定とした状態で、初期の熱抵抗を測定した。初期の熱抵抗は、1.29K・cm
2/Wであった。その後、熱伝導性シートを熱源と放熱部材との間に挟んだ状態で85℃の恒温槽に入れ、1000時間後に取り出し、熱抵抗を測定した。1000時間後の熱抵抗は、1.20K・cm
2/Wであった。よって、初期と1000時間後の熱抵抗の変化率は、−7%であった。表2に、これらの測定結果を示す。
【0111】
[実施例17]
実施例17では、厚みが2.0mmとなるように超音波カッターで切断した以外は、実施例16と同様に、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
【0112】
熱伝導性シートを熱源と放熱部材との間に挟み、2.0kgf/cm
2の荷重をかけて厚みを一定とした状態で、初期の熱抵抗を測定した。初期の熱抵抗は、1.04K・cm
2/Wであった。その後、熱伝導性シートを熱源と放熱部材との間に挟んだ状態で85℃の恒温槽に入れ、1000時間後に取り出し、熱抵抗を測定した。1000時間後の熱抵抗は、0.79K・cm
2/Wであった。よって、初期と1000時間後の熱抵抗の変化率は、−25%であった。表2に、これらの測定結果を示す。
【0113】
[実施例18]
実施例18では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子31体積%、平均粒径1μmの窒化アルミニウム粒子22体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維16体積%を混合し、シリコーン樹脂組成物を調製した。
【0114】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した。
【0115】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが3.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
【0116】
熱伝導性シートを熱源と放熱部材との間に挟み、2.0kgf/cm
2の荷重をかけて厚みを一定とした状態で、初期の熱抵抗を測定した。初期の熱抵抗は、2.23K・cm
2/Wであった。その後、熱伝導性シートを熱源と放熱部材との間に挟んだ状態で85℃の恒温槽に入れ、1000時間後に取り出し、熱抵抗を測定した。1000時間後の熱抵抗は、2.16K・cm
2/Wであった。よって、初期と1000時間後の熱抵抗の変化率は、−3%であった。表2に、これらの測定結果を示す。
【0117】
[参考例1]
参考例1では、実施例1と同組成の熱伝導性シートを使用した。熱伝導性シートを熱源と放熱部材との間に挟まずに、熱伝導性シートに0.5kgf/cm
2の荷重をかけて初期の熱抵抗を測定した。初期の熱抵抗は、1.31K・cm
2/Wであった。その後、熱伝導性シートを85℃の恒温槽に入れ、1000時間後に取り出し、熱抵抗を測定した。1000時間後の熱抵抗は、1.43K・cm
2/Wであった。よって、初期と1000時間後の熱抵抗の変化率は、9.2%であった。表2に、これらの測定結果を示す。
【0118】
[参考例2]
参考例2では、実施例2と同組成の熱伝導性シートを使用した。熱伝導性シートを熱源と放熱部材との間に挟まずに、熱伝導性シートに2.0kgf/cm
2の荷重をかけて初期の熱抵抗を測定した。初期の熱抵抗は、1.0K・cm
2/Wであった。その後、熱伝導性シートを85℃の恒温槽に入れ、1000時間後に取り出し、熱抵抗を測定した。1000時間後の熱抵抗は、1.02K・cm
2/Wであった。よって、初期と1000時間後の熱抵抗の変化率は、2%であった。表2に、これらの測定結果を示す。
【0119】
【表2】
【0120】
また、
図17は、実施例17の熱伝導性シートを熱源と放熱部材との間に挟んだ状態の経過時間に対する熱抵抗を示すグラフである。熱伝導性シートを熱源と放熱部材との間に挟んで2.0kgf/cm
2の荷重をかけた状態で85℃の恒温槽に入れ、100時間後、300時間後、500時間後、及び750時間後に、取り出し、それぞれ熱抵抗を測定した。
図17に示すグラフより、荷重印加直後よりも、変位一定、又は一定荷重を維持した状態の方が、熱抵抗が小さくなることが分かった、また、800時間経過後は、熱抵抗がほぼ一定となることが分かった。
【0121】
表2及び
図17に示すように、熱伝導性粒子及び熱伝導性繊維のフィラーの充填量を70vol%以下とすることにより、40%以上の圧縮率を有する優れた柔軟性が得られるため、時間の経過とともに熱源と放熱部材との密着性が向上し、熱抵抗を低下させることができることが分かった。
【0122】
<熱伝導性シートの厚みの影響について>
次に、所定厚みの熱伝導性シートを作製し、熱伝導率及び熱抵抗について測定した。
【0123】
[熱伝導率の測定]
ASTM−D5470に準拠した測定方法により、熱伝導性シートに荷重(kgf/cm
2)をかけて熱伝導率を測定した。また、荷重をかけたときの熱伝導性シートの圧縮率は、初期厚みを100%としたときの変化の割合とした。
【0124】
[熱抵抗の測定]
熱抵抗測定装置(デクセリアルズ社製)を用いて、熱伝導性シートを熱源と放熱部材との間に20mmφのサンプルを挟み、荷重(kgf/cm
2)をかけた状態で熱抵抗(K・cm
2/W)を測定した。また、荷重をかけたときの熱伝導性シートの圧縮率は、初期厚みを100%としたときの変化の割合とした。
【0125】
[実施例19]
実施例19では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子20.4体積%、平均粒径1μmの窒化アルミニウム粒子24.0体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維22.3体積%を混合し、シリコーン樹脂組成物を調製した。
【0126】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した。
【0127】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが3.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図18〜
図21及び表3に、荷重を0.5kgf/cm
2(圧縮率4.893%)、1.0kgf/cm
2(圧縮率10.071%)、1.5kgf/cm
2(圧縮率20.158%)、2.0kgf/cm
2(圧縮率26.036%)、3.0kgf/cm
2(圧縮率46.728%)かけたときの熱伝導率又は熱抵抗を示す。
【0128】
【表3】
【0129】
[実施例20]
実施例20では、シリコーン硬化物を、厚みが2.5mmとなるように超音波カッターで切断した以外は、実施例19と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図18〜
図21及び表4に、荷重を0.5kgf/cm
2(圧縮率5.771%)、1.0kgf/cm
2(圧縮率10.795%)、1.5kgf/cm
2(圧縮率19.755%)、2.0kgf/cm
2(圧縮率36.586%)、3.0kgf/cm
2(圧縮率52.079%)かけたときの熱伝導率又は熱抵抗を示す。
【0130】
【表4】
【0131】
[実施例21]
実施例21では、シリコーン硬化物を、厚みが2.0mmとなるように超音波カッターで切断した以外は、実施例19と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図18〜
図21及び表5に、荷重を0.5kgf/cm
2(圧縮率5.680%)、1.0kgf/cm
2(圧縮率8.295%)、1.5kgf/cm
2(圧縮率15.470%)、2.0kgf/cm
2(圧縮率25.480%)、3.0kgf/cm
2(圧縮率43.961%)かけたときの熱伝導率又は熱抵抗を示す。
【0132】
【表5】
【0133】
[実施例22]
実施例22では、シリコーン硬化物を、厚みが1.5mmとなるように超音波カッターで切断した以外は、実施例19と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図18〜
図21及び表6に、荷重を0.5kgf/cm
2(圧縮率6.501%)、1.0kgf/cm
2(圧縮率8.603%)、1.5kgf/cm
2(圧縮率15.055%)、2.0kgf/cm
2(圧縮率23.978%)、3.0kgf/cm
2(圧縮率39.808%)、4.0kgf/cm
2(圧縮率50.901%)かけたときの熱伝導率又は熱抵抗を示す。
【0134】
【表6】
【0135】
[実施例23]
実施例23では、シリコーン硬化物を、厚みが1.0mmとなるように超音波カッターで切断した以外は、実施例19と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図18〜
図21及び表7に、荷重を0.5kgf/cm
2(圧縮率4.269%)、1.0kgf/cm
2(圧縮率7.649%)、1.5kgf/cm
2(圧縮率11.679%)、2.0kgf/cm
2(圧縮率20.420%)、3.0kgf/cm
2(圧縮率38.141%)、4.0kgf/cm
2(圧縮率47.330%)かけたときの熱伝導率又は熱抵抗を示す。
【0136】
【表7】
【0137】
[実施例24]
実施例24では、シリコーン硬化物を、厚みが0.5mmとなるように超音波カッターで切断した以外は、実施例19と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図18〜
図21及び表8に、荷重を0.5kgf/cm
2(圧縮率5.671%)、1.0kgf/cm
2(圧縮率7.860%)、1.5kgf/cm
2(圧縮率8.648%)、2.0kgf/cm
2(圧縮率10.667%)、3.0kgf/cm
2(圧縮率15.892%)、4.0kgf/cm
2(圧縮率21.753%)、5.3kgf/cm
2(圧縮率29.821%)、6.0kgf/cm
2(圧縮率36.038%)、7.5kgf/cm
2(圧縮率44.279%)かけたときの熱伝導率又は熱抵抗を示す。
【0138】
【表8】
【0139】
[実施例25]
実施例25では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子20.4体積%、平均粒径1μmの窒化アルミニウム粒子24.0体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維22.3体積%を混合し、シリコーン樹脂組成物を調製した。
【0140】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、60:40となるように配合した。
【0141】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが3.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図22〜
図25及び表9に、荷重を0.5kgf/cm
2(圧縮率5.522%)、1.0kgf/cm
2(圧縮率12.867%)、1.5kgf/cm
2(圧縮率33.780%)、2.0kgf/cm
2(圧縮率46.857%)、3.0kgf/cm
2(圧縮率59.113%)、4.0kgf/cm
2(圧縮率66.573%)、5.3kgf/cm
2(圧縮率72.782%)、6.0kgf/cm
2(圧縮率75.367%)、7.5kgf/cm
2(圧縮率77.601%)かけたときの熱伝導率又は熱抵抗を示す。
【0142】
【表9】
【0143】
[実施例26]
実施例26では、シリコーン硬化物を、厚みが2.5mmとなるように超音波カッターで切断した以外は、実施例25と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図22〜
図25及び表10に、荷重を0.5kgf/cm
2(圧縮率6.042%)、1.0kgf/cm
2(圧縮率12.571%)、1.5kgf/cm
2(圧縮率31.371%)、2.0kgf/cm
2(圧縮率43.307%)、3.0kgf/cm
2(圧縮率53.652%)、4.0kgf/cm
2(圧縮率59.514%)、5.3kgf/cm
2(圧縮率66.962%)、6.0kgf/cm
2(圧縮率70.629%)、7.5kgf/cm
2(圧縮率74.061%)かけたときの熱伝導率又は熱抵抗を示す。
【0144】
【表10】
【0145】
[実施例27]
実施例27では、シリコーン硬化物を、厚みが2.0mmとなるように超音波カッターで切断した以外は、実施例25と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図22〜
図25及び表11に、荷重を0.5kgf/cm
2(圧縮率4.800%)、1.0kgf/cm
2(圧縮率10.710%)、1.5kgf/cm
2(圧縮率19.467%)、2.0kgf/cm
2(圧縮率43.161%)、3.0kgf/cm
2(圧縮率53.111%)、4.0kgf/cm
2(圧縮率59.107%)、5.3kgf/cm
2(圧縮率68.042%)、6.0kgf/cm
2(圧縮率71.279%)、7.5kgf/cm
2(圧縮率73.934%)かけたときの熱伝導率又は熱抵抗を示す。
【0146】
【表11】
【0147】
[実施例28]
実施例28では、シリコーン硬化物を、厚みが1.5mmとなるように超音波カッターで切断した以外は、実施例25と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図22〜
図25及び表12に、荷重を0.5kgf/cm
2(圧縮率5.777%)、1.0kgf/cm
2(圧縮率12.835%)、1.5kgf/cm
2(圧縮率20.523%)、2.0kgf/cm
2(圧縮率34.738%)、3.0kgf/cm
2(圧縮率48.046%)、4.0kgf/cm
2(圧縮率57.129%)、5.3kgf/cm
2(圧縮率63.879%)、6.0kgf/cm
2(圧縮率66.955%)、7.5kgf/cm
2(圧縮率71.815%)かけたときの熱伝導率又は熱抵抗を示す。
【0148】
【表12】
【0149】
[実施例29]
実施例29では、シリコーン硬化物を、厚みが1.0mmとなるように超音波カッターで切断した以外は、実施例25と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。
図22〜
図25及び表13に、荷重を0.5kgf/cm
2(圧縮率5.588%)、1.0kgf/cm
2(圧縮率10.313%)、1.5kgf/cm
2(圧縮率15.619%)、2.0kgf/cm
2(圧縮率36.487%)、3.0kgf/cm
2(圧縮率50.618%)、4.0kgf/cm
2(圧縮率58.540%)、5.3kgf/cm
2(圧縮率55.963%)、6.0kgf/cm
2(圧縮率59.207%)、7.5kgf/cm
2(圧縮率64.443%)かけたときの熱伝導率又は熱抵抗を示す。
【0150】
【表13】
【0151】
図18〜
図25に示すように、3.0mm以下の厚みにおいて、圧縮率が40%以上であり、熱抵抗が0.5kgf/cm
2以上3kgf/cm
2以下の荷重範囲で極小値を有する熱伝導性シートを得ることができることが分かった。このように熱伝導性シートの熱抵抗値が、0.5kgf/cm
2以上3kgf/cm
2以下の荷重範囲において、荷重をかけるにつれて小さくなり、最小値を取った後に大きくなることにより、例えば基板上の電子部品などの発熱体に熱伝導シートを放熱部材と共に設置した場合、小さい荷重で発熱体と放熱部材とを密着させることができ、優れた熱伝導性を得ることができる。また、小さい荷重で基板に設置できるため、基板の破壊などのリスクを低減することができる。
【0152】
<熱伝導性シートの最大圧縮応力及び残留応力について>
次に、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)を所定比で配合し、所定厚みの熱伝導性シートの最大圧縮応力及び残留応力について測定した。
【0153】
[最大圧縮応力及び残留応力の測定]
25mm×25mmの試験片を引張圧縮試験機((株)エーアンドディー製テンシロンRTG1225)で25.4mm/minの速度で40%圧縮したときの最大圧縮応力を測定した。また、40%圧縮した状態で10分間保持したときの残留応力を測定した。なお、25.4mm/minよりも遅い速度で圧縮した場合、25.4mm/minの速度で圧縮したときよりも最大圧縮応力は小さくなる。
試験片:25mm×25mm
圧縮率:40%
試験速度:25.4mm/min
試験機ロードセル:2.5kN
圧縮板:金属
【0154】
[実施例30]
実施例30では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子20.4体積%、平均粒径1μmの窒化アルミニウム粒子24.0体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維22.3体積%を混合し、シリコーン樹脂組成物を調製した。
【0155】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、50:50となるように配合した。
【0156】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが1.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は1000Nであり、10分後の残留応力は220Nであった。
【0157】
[実施例31]
実施例31では、シリコーン硬化物を、厚みが1.5mmとなるように超音波カッターで切断した以外は、実施例30と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は780Nであり、10分後の残留応力は204Nであった。
【0158】
[実施例32]
実施例32では、シリコーン硬化物を、厚みが2.0mmとなるように超音波カッターで切断した以外は、実施例30と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は700Nであり、10分後の残留応力は197Nであった。
【0159】
[実施例33]
実施例33では、シリコーン硬化物を、厚みが3.0mmとなるように超音波カッターで切断した以外は、実施例30と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は660Nであり、10分後の残留応力は178Nであった。
【0160】
[実施例34]
実施例34では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子20.4体積%、平均粒径1μmの窒化アルミニウム粒子24.0体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維22.3体積%を混合し、シリコーン樹脂組成物を調製した。
【0161】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、55:45となるように配合した。
【0162】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが1.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は980Nであり、10分後の残留応力は198Nであった。
【0163】
[実施例35]
実施例35では、シリコーン硬化物を、厚みが1.5mmとなるように超音波カッターで切断した以外は、実施例34と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は756Nであり、10分後の残留応力は188Nであった。
【0164】
[実施例36]
実施例36では、シリコーン硬化物を、厚みが2.0mmとなるように超音波カッターで切断した以外は、実施例34と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は680Nであり、10分後の残留応力は133Nであった。
【0165】
[実施例37]
実施例37では、シリコーン硬化物を、厚みが3.0mmとなるように超音波カッターで切断した以外は、実施例34と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は610Nであり、10分後の残留応力は124Nであった。
【0166】
[実施例38]
実施例38では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子20.4体積%、平均粒径1μmの窒化アルミニウム粒子24.0体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維22.3体積%を混合し、シリコーン樹脂組成物を調製した。
【0167】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、57:43となるように配合した。
【0168】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが1.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は932Nであり、10分後の残留応力は172Nであった。
【0169】
[実施例39]
実施例39では、シリコーン硬化物を、厚みが1.5mmとなるように超音波カッターで切断した以外は、実施例38と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は712Nであり、10分後の残留応力は156Nであった。
【0170】
[実施例40]
実施例40では、シリコーン硬化物を、厚みが2.0mmとなるように超音波カッターで切断した以外は、実施例38と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は645Nであり、10分後の残留応力は120Nであった。
【0171】
[実施例41]
実施例41では、シリコーン硬化物を、厚みが3.0mmとなるように超音波カッターで切断した以外は、実施例38と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は570Nであり、10分後の残留応力は111Nであった。
【0172】
[実施例42]
実施例42では、2液性の付加反応型液状シリコーン樹脂に、熱伝導性粒子としてシランカップリング剤でカップリング処理した平均粒径5μmのアルミナ粒子20.4体積%、平均粒径1μmの窒化アルミニウム粒子24.0体積%、及び熱伝導性繊維として平均繊維長150μmのピッチ系炭素繊維22.3体積%を混合し、シリコーン樹脂組成物を調製した。
【0173】
2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーン主剤Aと硬化剤Bとの配合比(シリコーン主剤A:硬化剤B)が、60:40となるように配合した。
【0174】
得られたシリコーン樹脂組成物を、中空四角柱状の金型(35mm×35mm)の中に押出成形し、35mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが1.0mmとなるように超音波カッターで切断し、熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は910Nであり、10分後の残留応力は154Nであった。
【0175】
[実施例43]
実施例43では、シリコーン硬化物を、厚みが1.5mmとなるように超音波カッターで切断した以外は、実施例42と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は690Nであり、10分後の残留応力は147Nであった。
【0176】
[実施例44]
実施例44では、シリコーン硬化物を、厚みが2.0mmとなるように超音波カッターで切断した以外は、実施例42と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は590Nであり、10分後の残留応力は90Nであった。
【0177】
[実施例45]
実施例45では、シリコーン硬化物を、厚みが3.0mmとなるように超音波カッターで切断した以外は、実施例42と同様にして熱伝導性シートを得た。この熱伝導性シートは、40%以上の圧縮率を有するものであった。また、表14に示すように、最大圧縮応力は543Nであり、10分後の残留応力は85Nであった。
【表14】
【0178】
表14に示すように、3.0mm以下の厚みにおいて、25mm/min以下の速度で40%圧縮したときの最大圧縮応力が1000N以下であり、25mm/min以下の速度で40%圧縮し、40%圧縮した状態で10分間保持したときの残留応力が220N以下であることが分かった。このように25mm/min以下の速度で40%圧縮したときの最大圧縮応力が1000N以下であることにより、設置の際の基板への負荷が低減されるため、基板の破壊などのリスクを低減することができる。また、25mm/min以下の速度で40%圧縮し、40%圧縮した状態で10分間保持したときの残留応力が220N以下であることにより、長期利用の際に基板にかかる応力を低減することができる。