【実施例】
【0013】
次に、本発明の具体例を説明する。
〔実施例1〕
固形分40重量%のコロイダルシリカ40g、ジエタノールアミン−アジピン酸縮合物1g、塩化ナトリウム150gおよびイオン交換水500gを加え混合後、pH3.5に調整し水系分散媒体を調製した。
アクリロニトリル100g、メタクリロニトリル100g、メタクリル酸10g、エチレングリコールジメタクリレート1g、アゾビス(2,4−ジメチルバレロニトリル)1gを混合して均一溶液の単量体混合物とし、これをイソブタン、イソペンタンとともにオートクレーブ中に仕込み混合した。その後、水系分散媒体をオートクレーブ中に仕込み、5分間700rpmで攪拌後、窒素置換し、反応温度60℃で8時間反応させた。反応圧力は0.5MPa、攪拌は350rpmで行った。
【0014】
この反応により作成された熱膨張性マイクロカプセルの熱膨張特性分析を行った。パーキンエルマー社製のTMA−7型を用いて、特開平11−002615号公報に記載の方法で膨張特性の分析を行った。その結果、発泡開始温度が105℃、最大膨張温度が175℃であった。
次にSBS樹脂中での発泡性能の評価を行った。SBS樹脂(スチレン・ブタジエンブロックコポリマー)に実施例1で得られた熱膨張性カプセル1重量%を混合し、シート化した後、160℃で加熱をしたところSBSの比重が0.9から0.45まで下がった。
また、SBS樹脂(JSR製TR2787、比重0.94g/cm
3、メルトフローレート6.0g/10分、200℃/49.0N)97.5重量%、熱膨張性マイクロカプセル2.5重量%を混合し、続いて型締力約80トン、スクリュー径32mmを有する射出成形機を用いて、射出圧力約1000kg/cm
2、シリンダー温度150〜190℃にて射出成形を行い、直径98mm×厚み3mmの円盤状の成形物を得た。結果を表1に示す。
【0015】
〔比較例1〕
メタクリル酸を用いない以外、実施例1の処方と同様にして熱膨張性マイクロカプセルを作成した。
得られた熱膨張性マイクロカプセルをパーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が105℃、最大膨張温度が155℃であった。
次にSBS樹脂中での発泡性能の評価を行った。SBS樹脂と比較例1で得られた熱膨張性カプセル1重量%を混合し、シート化後160℃で加熱をしたところSBSの比重が0.9から0.7まで下がった。
つづいて実施例1と同様に射出成型を行った。結果を表1に示す。
【0016】
【表1】
【0017】
〔実施例2〕
固形分40重量%のコロイダルシリカ40g、ジエタノールアミン−アジピン酸縮合物1g、塩化ナトリウム160g、イオン交換水500gを加え混合後、pH3.5に調整し水系分散媒体を調製した。
アクリロニトリル50g、メタクリロニトリル50g、メタクリル酸120g、エチレングリコールジメタクリレート3gおよびアゾビス(2,4−ジメチルバレロニトリル)1gを混合して均一溶液の単量体混合物とし、これを2−メチルペンタン20g、2,2,4−トリメチルペンタン15gとともにオートクレーブ中に仕込み混合した。その後、水系分散媒体をオートクレーブ中に仕込み、5分間700rpmで攪拌後、窒素置換し、反応温度60℃で8時間反応させた。反応圧力は0.5MPa、攪拌は350rpmで行った。
この反応により作成された熱膨張性マイクロカプセルの熱膨張特性分析を行った。パーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が190℃、最大膨張温度が260℃であった。
つづいて実施例1と同様に射出成型を行った。温度条件は190〜250℃で行った。結果を表2に示す。
【0018】
〔比較例2〕
メタクリル酸を用いない以外、実施例2の処方と同様にして熱膨張性マイクロカプセルを作成した。
得られた熱膨張性マイクロカプセルをパーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が182℃、最大膨張温度が206℃であった。
つづいて実施例2と同様に射出成型を行った。結果を表2に示す。
【0019】
【表2】
【0020】
〔実施例3〕
固形分40重量%のコロイダルシリカ45g、ジエタノールアミン−アジピン酸縮合物1g、塩化ナトリウム140gおよびイオン交換水500gを加え混合後、pH3.5に調整し水系分散媒体を調製した。
アクリロニトリル70g、メタクリロニトリル70g、メタクリル酸70g、エチレングリコールジメタクリレート3g、アゾビス(2,4−ジメチルバレロニトリル)1gを混合して均一溶液の単量体混合物とし、これをイソペンタン20g、2−メチルペンタン30gとともにオートクレーブ中に仕込み混合した。その後、水系分散媒体をオートクレーブ中に仕込み、5分間700rpmで攪拌後、窒素置換し、反応温度60℃で8時間反応させた。反応圧力は0.5MPa、攪拌は350rpmで行った。
この反応により作成された熱膨張性マイクロカプセルの熱膨張特性分析を行った。パーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が160℃、最大膨張温度が200℃であった。
つづいて実施例1と同様に射出成型を行った。温度条件は150〜210℃で行った。結果を表3に示す。
【0021】
〔比較例3〕
メタクリル酸を用いない以外、実施例3の処方と同様にして熱膨張性マイクロカプセルを作成した。
得られた熱膨張性マイクロカプセルをパーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が153℃、最大膨張温度が175℃であった。
つづいて実施例3と同様に射出成型を行った。結果を表3に示す。
【0022】
【表3】
【0023】
〔実施例4〕
固形分40重量%のコロイダルシリカ45g、ジエタノールアミン−アジピン酸縮合物を1g、塩化ナトリウムを140g、イオン交換水500gを加え混合後、pH3.5に調整し水系分散媒体を調製した。
アクリロニトリル70g、メタクリロニトリル70g、イタコン酸70g、エチレングリコールジメタクリレート3g、α−メチルスチレン10g、アゾビス(2,4−ジメチルバレロニトリル)1gを混合して均一溶液の単量体混合物とし、これをイソペンタン20g、2−メチルペンタン30gとともにオートクレーブ中に仕込み混合した。その後、水系分散媒体をオートクレーブ中に仕込み、5分間700rpmで攪拌後、窒素置換し、反応温度60℃で8時間反応させた。反応圧力は0.5MPa、攪拌は350rpmで行った。
この反応により作成された熱膨張性マイクロカプセルの熱膨張特性分析を行った。パーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が163℃、最大膨張温度が210℃であった。
つづいて実施例1と同様に射出成型を行った。結果を表4に示す。
【0024】
〔比較例4〕
イタコン酸を用いない以外、実施例4の処方と同様にして熱膨張性マイクロカプセルを作成した。
得られた熱膨張性マイクロカプセルをパーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が160℃、最大膨張温度が183℃であった。
つづいて実施例1と同様に射出成型を行った。結果を表4に示す。
【0025】
【表4】
【0026】
〔実施例5〕
固形分40重量%のコロイダルシリカ40g、ジエタノールアミン−アジピン酸縮合物1g、塩化ナトリウム150gおよびイオン交換水500gを加え混合後、pH3.5に調整し水系分散媒体を調製した。
アクリロニトリル100g、メタクリロニトリル100g、メタクリル酸10g、エチレングリコールジメタクリレート1g、アゾビス(2,4−ジメチルバレロニトリル)1gを混合して均一溶液の単量体混合物とし、これをイソペンタン64gとともにオートクレーブ中に仕込み混合した。その後、水系分散媒体をオートクレーブ中に仕込み、5分間700rpmで攪拌後、窒素置換し、反応温度60℃で8時間反応させた。反応圧力は0.5MPa、攪拌は350rpmで行った。
この反応により作成された熱膨張性マイクロカプセルの熱膨張特性分析を行った。パーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が140℃、最大膨張温度が197℃であった。
【0027】
〔比較例5〕
固形分40重量%のコロイダルシリカ25g、ジエタノールアミン−アジピン酸縮合物0.6g、塩化ナトリウム55gおよびイオン交換水160gを加え混合後、pH3.5に調整し水系分散媒体を調製した。
アクリロニトリル45g、N,N−ジメチルアクリルアミド16g、N−メチロールアクリルアミド5g、メタクリル酸23g、エチレングリコールジメタクリレート0.1gおよびアゾビスイソブチロニトリル0.3gを混合して均一溶液の単量体混合物とし、これをイソペンタン15gとともにオートクレーブ中に仕込み混合した。その後、水系分散媒体をオートクレーブ中に仕込み、5分間700rpmで攪拌後、窒素置換し、反応温度70℃で20時間反応させた。反応圧力は0.5MPa、攪拌は350rpmで行った。
この反応により作成された熱膨張性マイクロカプセルの熱膨張特性分析を行った。パーキンエルマー社製のTMA−7型を用いて膨張特性の分析を行ったところ、発泡開始温度が141℃、最大膨張温度が200℃であった。
【0028】
次に実施例1と比較例1、および実施例5と比較例5で得られた熱膨張性マイクロカプセルの膨張体の荷重付与前後での体積保持率(%)を評価した。実施例1と比較例1との比較により熱膨張性マイクロカプセルにカルボキシル基を有する単量体(II)を用いた場合と用いない場合の体積保持率の比較を実施した。実施例5と比較例5で熱膨張性マイクロカプセルに単量体(II)のカルボキシル基と反応する官能基を有する単量体を用いない場合と用いた場合の比較を実施した。
体積保持率とは、発泡体の荷重付与前真比重(D1)、荷重付与後真比重(D2)を測定し、下式より求める。
体積保持率(%)={1−(D2−D1)/D1}×100
体積保持率は、好ましくは50%以上、より好ましくは70%以上、特に好ましくは80%以上である。体積保持率が、50%未満では、形状変化のない多孔体を作成するときに有効であるが、形状変化を伴う樹脂中での発泡において樹脂の特性を失うことがあり、好ましくない。
荷重付与方法は、25℃においてステンレス製のシリンダー内(内径12.5mm)に発泡体を充填した後、上方からピストンにより任意の荷重を0.5時間付与することによる。
評価結果を表5に示す。
【0029】
【表5】
【0030】
上記結果より、本発明で得られた熱膨張性マイクロカプセルは高温下での発泡性能と発泡体の高弾性率による加重付与後の体積保持率において、従来発見されている熱膨張性マイクロカプセルをはるかに上回る性能を発現するマイクロカプセルであると言える。