(58)【調査した分野】(Int.Cl.,DB名)
前記リンのオキソ酸或いはそれらの塩から選ばれる少なくとも1種の化合物はリン酸基を有する化合物である、請求項1または2に記載の微細繊維状セルロースの製造方法。
請求項1〜3のいずれか1項に記載の微細繊維状セルロースの製造方法により製造した微細繊維状セルロースを含むスラリーを濾材上で脱水して湿紙を得る脱水工程と、前記湿紙を乾燥させる乾燥工程とを有することを特徴とする不織布の製造方法。
【発明を実施するための形態】
【0012】
<微細繊維状セルロース>
本発明の微細繊維状セルロースは、ヒドロキシ基(−OH基)の一部が、下記構造式(1)に示す官能基で置換されたものである。また、通常製紙用途で用いるパルプ繊維よりもはるかに細いセルロース繊維あるいは棒状粒子である。
【0014】
構造式(1)において、a,b,m,nは自然数である(ただし、a=b×mである。)。
α
1,α
2,・・・,α
nおよびα’のうちの少なくとも1つはO
−であり、残りはR,ORのいずれかである。α
nおよびα’の全てがO
−であっても構わない。nが2以上であり、α’がR又はORである場合には、各α
nのうちの少なくとも1つがO
−で残りがR又はORである。nが2以上であり、α’がO
−である場合には、各α
nは全てRであってもよいし、全てORであってもよいし、少なくとも1つがO
−で残りがR又はORであってもよい。
Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、およびこれらの誘導基である。
飽和-直鎖状炭化水素基としては、メチル基、エチル基、n−プロピル基、n−ブチル基等が挙げられる。飽和-分岐鎖状炭化水素基としては、i−プロピル基、t−ブチル基等が挙げられる。飽和-環状炭化水素基としては、シクロペンタン基、シクロヘキサン基等が挙げられる。不飽和-直鎖状炭化水素基としては、ビニル基、アリル基等が挙げられる。不飽和-分岐鎖状炭化水素基としては、i−プロペニル基、3−ブテニル基等が挙げられる。飽和-環状炭化水素基芳香族基としては、フェニル基、ナフタレン基等が挙げられる。
また、前記Rにおける誘導体としては、前記各種炭化水素基の主鎖または側鎖に対し、カルボキシ基、ヒドロキシ基、アミノ基などの官能基のうち、少なくとも1種類が付加または置換した状態の官能基が挙げられる。
また、前記Rの主鎖を構成する炭素原子数は20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数が20を超えると、Rを含むリンオキソ酸基の分子が大きくなりすぎて、繊維原料に浸透しにくくなり、微細繊維状セルロースの収率が低下するおそれがある。
βは有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、リチウム等のアルカリ金属のイオンや、カルシウム、マグネシウム等の2価金属の陽イオン、水素イオン等が挙げられる。これらは1種または2種類以上を組み合わせて適用することもできる。有機物または無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、カリウムのイオンが好ましい。
【0015】
なお、構造式(1)は、α、α’にセルロース分子鎖を含まないモノエステルであることが好ましい。α、α’にセルロース分子鎖を含む場合にはセルロース分子鎖同士が架橋しているため、微細化を阻害するおそれがある。
【0016】
本発明の微細繊維状セルロースの繊維幅は電子顕微鏡で観察して1nm〜1000nmが好ましく、より好ましくは2nm〜500nm、さらに好ましくは4nm〜100nmである。微細繊維状セルロースの繊維幅が1nm未満であると、セルロース分子として水に溶解しているため、微細繊維状セルロースとしての物性(強度や剛性、寸法安定性)が発現しなくなる。一方、1000nmを超えると微細繊維状セルロースとは言えず、通常のパルプに含まれる繊維にすぎないため、微細繊維状セルロースとしての物性(強度や剛性、寸法安定性)が得られない。
微細繊維状セルロースに透明性が求められる用途においては、繊維幅が30nmを超えると、可視光の波長の1/10に近づき、マトリックス材料と複合した場合には界面で可視光の屈折及び散乱が生じ易く、透明性が低下する傾向にあるため、繊維幅は2nm〜30nmが好ましく、より好ましくは2〜20nmである。前記のような微細繊維状セルロースから得られる複合体は、一般的に緻密な構造体となるために強度が高く、セルロース結晶に由来した高い弾性率が得られることに加え、可視光の散乱が少ないため高い透明性も得られる。
【0017】
ここで、微細繊維状セルロースがI型結晶構造を有していることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて、2θ=14〜17°付近と2θ=22〜23°付近の2箇所の位置に典型的なピークを有することで同定することができる。
また、微細繊維状セルロースの電子顕微鏡観察による繊維幅の測定は以下のようにして行う。濃度0.05〜0.1質量%の微細繊維状セルロース含有スラリーを調製し、該スラリーを親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅広の繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍、20000倍、40000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交錯する繊維の幅を目視で読み取る。こうして少なくとも重なっていない表面部分の画像を3組以上観察し、各々の画像に対して、直線X、直線Yと交錯する繊維の幅を読み取る。このように少なくとも20本×2×3=120本の繊維幅を読み取る。本発明における微細繊維幅はこのように読み取った繊維幅の平均値である。
【0018】
本発明の微細繊維状セルロースの繊維長は、0.1μm以上が好ましい。繊維長が0.1μm未満では、微細繊維状セルロースを樹脂に複合した際の強度向上効果を得難くなる。繊維長は、TEMやSEM、AFMの画像解析より求めることができる。上記繊維長は、微細繊維の30質量%以上を占める繊維長である。
【0019】
本発明による微細繊維状セルロースの軸比(繊維長/繊維幅)は100〜10000の範囲であることが好ましい。軸比が100未満であると微細繊維状セルロース含有不織布を形成し難くなるおそれがある。軸比が10000を超えるとスラリー粘度が高くなり、好ましくない。
【0020】
本発明の微細繊維状セルロースが含有する結晶部分の比率は、X線回折法によって求められる結晶化度が60%以上であるセルロース繊維であるが、結晶化度は、好ましくは65%以上、より好ましくは70%以上であると、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求めた(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
【0021】
繊維原料のセルロースのヒドロキシ基の一部が上記構造式(1)の官能基で置換されることによって、セルロースに、リン原子にヒドロキシ基とオキソ基が結合したオキソ酸(以下、「リンオキソ酸」という。)が導入される。そのリンオキソ酸によって、セルロース繊維同士の電気的な反発力が強くなるものと推測される。また、スラリーとした際の分散安定性に優れる。
繊維原料のセルロースのヒドロキシ基(−OH基)におけるリンオキソ酸基の導入量は、微細繊維状セルロース1g(質量)あたり0.1〜2.0mmolが好ましく、0.2〜1.5mmolがより好ましい。リンオキソ酸基導入量が0.1mmol未満では、繊維原料の微細化が困難で、微細繊維状セルロースの安定性が劣る。リンオキソ酸基導入量が2.0mmolを超えると、微細繊維状セルロースが溶解する恐れがある。
【0022】
ここで、リンオキソ酸基のセルロースへの導入量については、TAPPI T237 cm−08(2008) を応用して算出した。具体的には、セルロースに導入された酸性基の導入量をより広範囲まで算出可能にするために、前記試験方法に用いる試験液のうち、炭酸水素ナトリウム(NaHCO
3)/塩化ナトリウム(NaCl)=0.84g/5.85gを蒸留水で1000mlに溶解希釈した試験液を、水酸化ナトリウム1.60gを蒸留水で1000mlに溶解希釈した試験液に変更し、さらに置換基導入前後のセルロース繊維における算出値の差を実質的な置換基導入量とした以外は、TAPPI T237 cm−08(2008) に準じて算出する。
また、当該酸性基導入量算出方法は、基本的には1価の酸性基(カルボキシ基)の導入量算出方法であることから、多価の酸性基であるリンオキソ酸基の導入量の算出については、前記1価の酸性基の導入量として得られた置換基導入量を、リンオキソ酸基の酸価数で除した数値を、リンオキソ酸の基の導入量とした。
【0023】
<微細繊維状セルロースの製造>
本発明の微細繊維状セルロースの製造方法は、セルロースを含む繊維原料を、リンのオキソ酸或いはその塩から選ばれる少なくとも1種の化合物(以下、「化合物A」という。)により処理して、セルロースにリンオキソ酸基を導入するリンオキソ酸基導入工程(a)と、該工程(a)終了後に、リンオキソ酸基を導入したセルロース(以下、「リンオキソ酸基導入セルロース」という。)を解繊処理する解繊処理工程(b)とを有する。
以下、この2工程について詳細説明する。
【0024】
[リンオキソ酸基導入工程(a)]
繊維原料を化合物Aにより処理する方法としては、乾燥状態、あるいは湿潤状態の繊維原料に化合物Aの粉末や水溶液を混合する方法、繊維原料のスラリーに化合物Aの粉末や水溶液を添加する方法等が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態の繊維原料(パルプ)に化合物Aの水溶液を添加する方法、あるいは湿潤状態の繊維原料(パルプ)に化合物Aの粉末や水溶液を添加する方法が好ましい。
【0025】
セルロースを含む繊維原料としては、製紙用パルプ、コットンリンターやコットンリントなどの綿系パルプ、麻、麦わら、バガスなどの非木材系パルプ、ホヤや海草などから単離されるセルロースなどが挙げられる。これらの中でも、入手のしやすさという点で、製紙用パルプが好ましい。製紙用パルプとしては、広葉樹クラフトパルプ(晒クラフトパルプ(LBKP)、未晒クラフトパルプ(LUKP)、酸素漂白クラフトパルプ(LOKP)など)、針葉樹クラフトパルプ(晒クラフトパルプ(NBKP)、未晒クラフトパルプ(NUKP)、酸素漂白クラフトパルプ(NOKP)など)、サルファイトパルプ(SP)、ソーダパルプ(AP)等の化学パルプ、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ、楮、三椏、麻、ケナフ等を原料とする非木材パルプ、古紙を原料とする脱墨パルプが挙げられる。繊維原料は1種を単独で用いてもよいし、2種以上混合して用いてもよい。
上記繊維原料の中でも、入手のしやすさという点で、木材パルプ、脱墨パルプが好ましい。さらに、木材パルプの中でも、化学パルプはセルロース比率が大きいため、微細繊維状セルロースの収率が高く、また、パルプ中のセルロースの分解が小さく、軸比の大きい長繊維の微細繊維状セルロースが得られる点で特に好ましい。化学パルプの中でもクラフトパルプ、サルファイトパルプが最も好ましく選択される。
【0026】
製紙用パルプは、ダブルディスクリファイナー、シングルディスクリファイナー、ビーターなどで叩解してもよいが、叩解があまり進んでいないパルプ(カナダ標準濾水度(CSF)が好ましくは400ml以上、より好ましくは500ml以上のパルプ)を用いることが好ましい。叩解があまり進んでいないパルプを用いると、後述する解繊処理工程で得られる微細繊維状セルロース同士の絡み合いを少なくでき、微細繊維状セルロースの安定性が向上する。また、後述するアルカリ処理前後にパルプを水や有機溶媒で洗浄する際の脱水洗浄性が向上する。
【0027】
本発明で使用する化合物Aとしては、リン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらの塩またはエステルが挙げられる。
これらの中でも、低コストであり、扱いやすく、また、セルロースのヒドロキシ基にリン酸基を導入して解繊効率をより向上できることから、リン酸基を有する化合物が好ましい。
リン酸基を有する化合物としては、リン酸、リン酸のリチウム塩であるリン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、ピロリン酸リチウム、ポリリン酸リチウム、更にリン酸のナトリウム塩であるリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウム、更にリン酸のカリウム塩であるリン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、ポリリン酸カリウムなどが挙げられる。
これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩が好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがより好ましい。
また、反応の均一性が高まり、且つリンオキソ酸基導入の効率が高くなることから化合物Aは水溶液として用いることが好ましい。化合物Aの水溶液のpHは、リンオキソ酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3〜7が好ましい。
【0028】
繊維原料に対する化合物Aの質量割合は、繊維原料100質量部に対して化合物Aが、リン元素量として0.2〜500質量部が好ましく、1〜400質量部がより好ましく、2〜200質量部が最も好ましい。化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えても、収率向上の効果は頭打ちとなり、無駄に化合物Aを使用するだけである。
【0029】
工程(a)においては加熱処理を施すことが好ましい。加熱処理温度は、セルロースの熱分解温度の点から、250℃以下であることが好ましい。また、セルロースの加水分解を抑える観点から、加熱処理温度は100〜170℃であることが好ましい。さらに、加熱処理の際に化合物Aを添加した繊維原料スラリーに水が含まれている間の加熱については、好ましくは130℃以下、より好ましくは110℃以下で加熱して充分にスラリーの水分を除去乾燥した後、100〜170℃で加熱処理することが好ましい。また、スラリー中の水分を除く際には減圧乾燥機を用いてもよい。
なお、加熱処理の際、化合物Aを添加した繊維原料スラリーに水が含まれている間において、繊維原料を静置する時間が長くなると、乾燥に伴い水分子と溶存する化合物Aが繊維原料表面に移動する。そのため、繊維原料中の化合物Aの濃度にムラが生じる可能性があり、セルロース表面へのリンオキソ酸基の導入が均一に進行しない恐れがある。乾燥による繊維原料(パルプ)中の化合物Aの濃度ムラ発生を抑制するためには、ごく薄いシート状の繊維原料(パルプ)を用いるか、ニーダー等で繊維原料と化合物Aを混練しながら加熱乾燥/減圧乾燥させる方法を採ればよい。
加熱処理に用いる加熱装置としては、スラリーが保持する水分およびリンオキソ酸基などのセルロース水酸基への付加反応で生じる水分を常に装置系外に排出できる。送風方式のオーブン等が好ましい。装置系内の水分を常に排出すれば、リンオキソ酸エステル化の逆反応であるリンオキソ酸エステル結合の加水分解反応を抑制できることに加えて、セルロース糖鎖の酸加水分解を抑制することもでき、軸比の高い微細繊維状セルロースを得ることができる。
【0030】
[解繊処理工程(b)]
解繊処理工程(b)では、通常、解繊処理装置を用いて、リンオキソ酸導入セルロースを解繊処理して、微細繊維状セルロース含有スラリーを得る。
解繊処理装置としては、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーターなど、湿式粉砕する装置等を適宜使用することができる。
【0031】
解繊処理の際には、リンオキソ酸導入セルロースを水と有機溶媒を単独または組み合わせて希釈してスラリー状にすることが好ましい。希釈後のリンオキソ酸導入セルロースの固形分濃度は0.1〜20質量%であることが好ましく、0.5〜10質量%であることがより好ましい。希釈後のリンオキソ酸導入セルロースの固形分濃度が前記下限値以上であれば、解繊処理の効率が向上し、前記上限値以下であれば、解繊処理装置内での閉塞を防止できる。
【0032】
[その他の処理工程)]
本発明においては、工程(a)と工程(b)の間にアルカリ処理工程を有すると、微細繊維状セルロースの収率が向上するため、好ましい。また、該アルカリ処理によって、セルロースに導入されたリンオキソ酸基に陽イオンを供給して、容易に塩にすることができる。
【0033】
アルカリ処理の方法としては、特に限定されないが、例えば、アルカリ溶液中に、リンオキソ酸基導入セルロースを浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。無機アルカリ化合物としては、アルカリ金属の水酸化物またはアルカリ土類金属の水酸化物、アルカリ金属の炭酸塩またはアルカリ土類金属の炭酸塩、アルカリ金属のリン酸塩またはアルカリ土類金属のリン酸塩が挙げられる。アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが挙げられ、アルカリ土類金属の水酸化物としては、水酸化カルシウムが挙げられる。
アルカリ金属の炭酸塩としては炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムが挙げられる。アルカリ土類金属の炭酸塩としては炭酸カルシウムなどが挙げられる。
アルカリ金属のリン酸塩としてはリン酸リチウム、リン酸カリウム、リン酸3ナトリウム、リン酸水素2ナトリウムなどが挙げられる。アルカリ土類金属のリン酸塩としてはリン酸カルシウム、リン酸水素カルシウムなどが挙げられる。
有機アルカリ化合物としては、アンモニア、脂肪族アミン、芳香族アミン、脂肪族アンモニウム、芳香族アンモニウム、複素環式化合物およびその水酸化物、炭酸塩、リン酸塩等が挙げられる。
例えば、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N−ジメチル−4−アミノピリジン、炭酸アンモニウム、炭酸水素アンモニウム、リン酸水素2アンモニウム等が挙げられる。
【0034】
アルカリ溶液における溶媒としては水または有機溶媒のいずれであってもよいが、極性溶媒(水、アルコール等の極性有機溶媒)が好ましく、少なくとも水を含む水系溶媒がより好ましい。
また、アルカリ溶液のうちでは、汎用性が高いことから、水酸化ナトリウム水溶液、水酸化カリウム水溶液が特に好ましい。
【0035】
リンオキソ酸基導入セルロースを浸漬させたアルカリ溶液の25℃におけるpHは9以上であることが好ましく、10以上であることがより好ましく、11〜14であることがさらに好ましい。アルカリ溶液のpHが前記下限値以上であれば、微細繊維状セルロースの収率がより高くなる。しかし、pHが14を超えると、アルカリ溶液の取り扱い性が低下する。
【0036】
アルカリ処理工程におけるアルカリ溶液使用量を減らすために、アルカリ処理工程の前に、リンオキソ酸基導入セルロースを水や有機溶媒により洗浄しても構わない。アルカリ処理後には、取り扱い性を向上させるために、解繊処理工程の前に、アルカリ処理済みリンオキソ酸基導入セルロースを水や有機溶媒により洗浄することが好ましい。
【0037】
<作用効果>
上記微細繊維状セルロースの製造方法によれば、繊維原料(パルプ)を充分に微細化でき、微細繊維状セルロースの収率が高くなって、微細繊維状セルロースの製造効率が向上する。その理由は、化合物Aにより処理したパルプはセルロースにリンオキソ酸基などが導入され、セルロース繊維同士の静電反発力が高くなり、また、セルロース間への水の浸透圧が向上し、解繊性が高くなるため、と推測される。
また、上記微細繊維状セルロースの製造方法は、ニトロキシラジカル誘導体、臭化アルカリおよび酸化剤を用いなくてもよいため、コストが低く、また、環境負荷が小さい。
【0038】
<微細繊維状セルロース含有スラリー>
本発明の微細繊維状セルロース含有スラリーは、微細繊維状セルロースが分散媒中に分散されてなる。
分散媒としては、水の他に、極性有機溶剤を使用することができ、好ましい極性有機溶剤としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tブチルアルコール等のアルコール類、アセトン、メチルエチルケトン(MEK)等のケトン類、ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)等が挙げられる。これらは1種であってもよいし、2種以上でもよい。また、微細繊維状セルロース含有スラリーの分散安定性を妨げない範囲であれば、上記の水および極性有機溶剤に加えて非極性有機溶媒を使用しても構わない。微細繊維状セルロース含有スラリーにおける微細繊維状セルロースの含有量は0.05〜20質量%であることが好ましく、0.1〜10質量%であることがより好ましい。微細繊維状セルロースの含有量が前記下限値以上であれば、後述の不織布や複合体を製造する際の製造効率に優れ、前記上限値以下であれば、スラリーの分散安定性に優れる。
【0039】
<不織布>
以下に、本発明の不織布およびその製造方法の一実施形態について説明する。
本発明の不織布は、上記微細繊維状セルロースを含有するものである。
【0040】
本発明の不織布の厚みは特に制限されるものではないが、好ましくは10μm以上、さらに好ましくは50μm以上、特に好ましくは80μm以上であり、好ましくは10cm以下、さらに好ましくは1cm以下、より好ましくは1mm以下、特に好ましくは250μm以下である。不織布の厚みは、製造の安定性、強度の点から上記下限値以上で厚い方が好ましく、生産性、均一性、樹脂の含浸性の点から上記上限値以下で薄い方が好ましい。
【0041】
本発明の不織布は空隙率が20vol%以上であることが好ましく、さらには35vol%以上60vol%以下であることが好ましい。不織布の空隙率が小さいと、上記化学修飾を施す場合にその反応が進行しにくくなったり、樹脂等のマトリックス材料が含浸しにくくなり、複合体にしたときに未含浸部が残るため、その界面で散乱が生じてヘーズが高くなり好ましくない。また、不織布の空隙率が高いと複合体としたとき、セルロース繊維による充分な補強効果が得られず、線熱膨張率が大きくなるので、好ましくない。
【0042】
ここでいう空隙率とは、不織布中における空隙の体積率を示し、空隙率は、不織布の面積、厚み、質量から、下記式によって求めることができる。
空隙率(vol%)={(1−B/(M×A×t)}×100
ここで、Aは不織布の面積(cm
2)、t(cm)は厚み、Bは不織布の質量(g)、Mはセルロースの密度であり、本発明ではM=1.5g/cm
3と仮定する。不織布の膜厚は、膜厚計(PEACOK社製 PDN−20)を用いて、不織布の種々な位置について10点の測定を行い、その平均値を採用する。
【0043】
また、複合体中の不織布の空隙率を求める場合、分光分析や、複合体の断面のSEM観察を画像解析することにより空隙率を求めることもできる。
【0044】
本発明の不織布の通気度は、坪量に依存するため特に限定されないが、例えば坪量が50g/m
2のシートの場合には、100〜20000秒/100ccであることが好ましい。
【0045】
(製造装置)
図5に、本実施形態の不織布の製造方法で使用する製造装置を示す。本実施形態の製造装置1は、脱水セクション20と、脱水セクション20の下流側に設けられた乾燥セクション40と、乾燥セクションの下流側に設けられた巻取セクション60とを具備するものである。
【0046】
[脱水セクション]
脱水セクション20は、抄紙用ワイヤー10を用いて微細繊維状セルロース含有スラリー3aを脱水して含水ウェブ3bを得るセクションである。
抄紙用ワイヤーとしては、プラスチックワイヤー、金属ワイヤーなどの織布や不織布、紙類を使用することができ、これらのうち、不織布や紙類が好ましい。
【0047】
脱水セクション20には、抄紙用ワイヤー10を繰り出す送出リール21と、微細繊維状セルロース含有スラリー3aの吐出部20aおよび分散媒の脱水部30とが設けられている。
吐出部20aには、送出リール21から繰り出された走行中の抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aを吐出する複数のダイヘッド22と、各ダイヘッド22の下流側に配置され、吐出された微細繊維状セルロース含有スラリー3aの上面を均すプレート24とが設けられている。
吐出部20aおよび脱水部30には、微細繊維状セルロース含有スラリー3aから分散媒を強制的に脱水する吸引装置26,32が設けられている。吸引装置26,32は、抄紙用ワイヤー10の下方に配置され、その上面には真空ポンプ(図示せず)に接続された吸引孔(図示せず)が多数形成されている。ただし、吸引装置26の上流側では吸引孔は形成されず、真空ポンプに接続されていない非吸引孔にされていることが好ましい。上流側に吸引孔が形成されると、微細繊維状セルロース含有スラリー3aの塗膜の表面が粗くなるおそれがある。また、下流側では脱水量が少なくなるため、脱水部30における吸引装置32は、下流側に孔が形成されていなくてもよい。
【0048】
[乾燥セクション]
乾燥セクション40は、含水ウェブ3bを、ドライヤーを用いて乾燥して不織布3cを得るセクションである。 乾燥セクション40には、フード49内に、シリンダードライヤーで構成された第1ドライヤー42および第2ドライヤー52と、第1ドライヤー42の外周に沿って配置されたフェルト布44とが設けられている。第1ドライヤー42は、第2ドライヤー52よりも上流側に配置されている。また、フェルト布44は無端状にされており、ガイドロール46によって、循環走行している。
乾燥セクション40では、含水ウェブ3bを、ガイドロール48によって移送するようになっている。具体的には、まず、含水ウェブ3bの微細繊維状セルロース含有スラリー3aが塗布された面A(以下、「塗布面A」という。)が第1ドライヤー42の外周面に接し、含水ウェブ3bの微細繊維状セルロース含有スラリー3aが塗布されなかった面B(以下、「非塗布面B」という。)がフェルト布44に接するように移送し、次いで、塗布面Aが第2ドライヤー52の外周面に接するようになっている。
【0049】
[巻取セクション]
巻取セクション60は、抄紙用ワイヤー10から不織布3cを分離し、これを巻き取るセクションである。 巻取セクション60には、抄紙用ワイヤー10から不織布3cを分離する一対の分離ローラ62a,62bと、不織布3cを巻き取る巻取リール64と、使用済みの抄紙用ワイヤー10を巻き取って回収する回収リール66とが設けられている。分離ローラ62bは抄紙用ワイヤー10側に、分離ローラ62aは不織布3c側に配置されている。
【0050】
(製造方法)
本実施形態の不織布の製造方法は、上記微細繊維状セルロースの製造方法により製造した微細繊維状セルロースを含むスラリーを濾材上で脱水して湿紙を得る脱水工程と、前記湿紙を乾燥させて不織布を得る乾燥工程と、不織布を巻き取る巻取工程とを有する。
【0051】
[脱水工程]
脱水工程では、抄紙用ワイヤー10を送出リール21から繰り出し、抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aをダイヘッド22から吐出し、抄紙用ワイヤー10の微細繊維状セルロース含有スラリー3aの上面をプレート24によって均す。それと共に、吸引装置26,32により、抄紙用ワイヤー10上の微細繊維状セルロース含有スラリー3aに含まれる分散媒を吸引し、脱水して、含水ウェブ3bを得る。
脱水工程において、抄紙用ワイヤー10の走行張力が大きい場合には、抄紙用ワイヤー10が破断するおそれがあるため、通常の抄紙に使用されるワイヤーを抄紙用ワイヤー10の下に配置して抄紙用ワイヤー10を支持してもよい。
【0052】
抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aを供給する前には、予め抄紙用ワイヤー10に水を含浸させて湿潤状態にしてもよい。抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aを吐出すると、ワイヤーの吸水により伸びてシワが発生することがあるが、予め湿潤状態にすれば、そのシワの発生を防止できる。
抄紙用ワイヤー10を湿潤状態にする手段としては、抄紙用ワイヤー10を水に浸漬させる水槽、水の塗工装置が挙げられる。水の塗工装置としては、ブレードコーター、エアーナイフコーター、ロールコーター、バーコーター、グラビアコーター、ロッドブレードコーター、リップコーター、カーテンコーター、ダイコーター等を使用することができる。
【0053】
脱水工程にて抄紙用ワイヤー10に供給する微細繊維状セルロース含有スラリー3aは、微細繊維状セルロースおよび水を含有する液である。
また、微細繊維状セルロース含有スラリー3aは、樹脂エマルションを含有してもよい。ここで、樹脂エマルションとは、粒子径が0.001〜10μmの天然樹脂あるいは合成樹脂の粒子が水中に乳化したエマルションである。樹脂エマルションに含まれる粒子状の樹脂としては特に限定されないが、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリ(メタ)アクリル酸アルキルエステル重合体、(メタ)アクリル酸アルキルエステル共重合体、ポリ(メタ)アクリロニトリル、ポリエステル、ポリウレタン、ポリアミド、エポキシ樹脂、オキセタン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、珪素樹脂、ジアリルフタレート樹脂等の前駆体、およびこれらを構成するモノマーやオリゴマー等の樹脂エマルション、天然ゴム、スチレン−ブタジエン共重合体、分子鎖末端が−SH、−CSSH、−SO
3H、−(COO)x M、−(SO
3)x Mおよび−CO−R(なお、前記官能基において、Mはカチオン、xはMの価数に依存する1〜3の整数であり、Rはアルキル基である)の群から選ばれる少なくとも1つの官能基で変性されたスチレン−ブタジエン共重合体、酸変性、アミン変性、アミド変性、アクリル変性等の変性スチレン−ブタジエン共重合体、(メタ)アクリロニトリル−ブタジエン共重合体、ポリイソプレン、ポリクロロプレン、スチレン−ブタジエン−メチルメタクリレート共重合体、スチレン−(メタ)アクリル酸アルキルエステル共重合体等が挙げられる。また、ポリエチレン、ポリプロピレン、ポリウレタン、エチレン−酢酸ビニル共重合体等を後乳化法によってエマルション化したものであってもよい。これらの樹脂エマルションは2種類以上含有してもかまわない。
また、本スラリーを脱水し、乾燥した場合、不織布3c中に微細繊維セルロースとマトリックス材料を含有した状態で得られるため、これをさらに加熱や光照射などによって硬化処理を施す方法によって複合化することもできる。この場合、シートを複数枚積層して硬化処理を施してもよい。
【0054】
さらに、微細繊維状セルロース含有スラリー3aは、セルロース凝結剤を配合しても構わない。該セルロース凝結剤としては、水溶性無機塩やカチオン性官能基を含む水溶性有機化合物が挙げられる。
水溶性無機塩としては塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化アンモニウム、塩化マグネシウム、塩化アルミニウム、硫酸ナトリウム、硫酸カリウム、硫酸アルミニウム、硫酸マグネシウム、硝酸ナトリウム、硝酸カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムリン酸ナトリウム、リン酸アンモニウムなどが挙げられる。
カチオン性官能基を含む水溶性有機化合物としてはポリアクリルアミド、ポリビニルアミン、尿素樹脂、メラミン樹脂、メラミン−ホルムアルデヒド樹脂、第四級アンモニウム塩を含有するモノマーを重合あるいは共重合したポリマーなどが挙げられる。
【0055】
さらに、微細繊維状セルロース含有スラリー3aは、水溶性有機高分子、無機高分子、有機高分子と無機高分子とのハイブリッド高分子等の材料を1種類以上含有しても構わない。
ここで、水溶性高分子としては、ポリビニルアルコール、ビニルアルコール/エチレン共重合体やビニルアルコールとブチラール等その他のモノマー類との共重合体構造を有するもの、ポリエチレンオキサイドあるいはその末端をアルキル修飾したもの、ポリプロピレンオキサイド、ポリブチラール系樹脂(水溶性のグレード)のようなノニオン性の水溶性高分子、ポリ(メタ)アクリル酸およびポリ(メタ)アクリル酸塩、ポリ(メタ)アクリル酸の有機アミノ誘導体エステル、ポリエチレンイミンとその誘導体、ポリアミン、ポリアクリルアミド、アクリルアミド・アクリル酸ソーダ共重合物、澱粉、カチオン化澱粉、リン酸化澱粉、カルボキシメチルセルロース、アルギン酸およびアルギン酸塩等が挙げられる。
無機高分子としてはガラス、シリケート材料、チタネート材料などのセラミックス等が挙げられ、これらは例えばアルコラートの脱水縮合反応により形成することができる。
【0056】
さらに、得られる不織布3cの多孔性を向上させるためには、微細繊維状セルロース含有スラリー3aに有機溶媒を含有させる、あるいは脱水後の湿紙の水分を有機溶媒で置換することが好ましい。有機溶媒を混合する場合、水と有機溶媒との質量比率(水:有機溶媒)を100:10〜10:100にすることが好ましく、100:30〜30:100にすることがより好ましく、100:50〜50:100にすることがさらに好ましい。有機溶媒の混合量が前記下限値以上であれば、不織布3cの多孔性を充分に向上させることができ、前記上限値以下であれば、微細繊維状セルロース含有スラリー3aの高粘度化を抑制できる。
脱水後の湿紙の水分を有機溶媒で置換する場合には、微細繊維状セルロース含有スラリー3aを脱水の後、固形分5質量%以上30質量%以下に調製した湿紙を有機溶媒あるいは水と有機溶媒の混合溶液に含浸あるいは混合溶液を塗布し、吸引脱水するなどによって処理し、乾燥させることにより本発明の不織布を得ることができる。
【0057】
有機溶媒としては、例えば、アルコール、ケトン、エーテル、エステル、芳香族化合物、炭化水素、環状炭化水素、環状炭化水素誘導体が挙げられる。
アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、n−ペンタノール、n−ヘキサノール、n−ヘプタノール、n−オクタノール、2−エチル−1−ヘキサノール、ベンジルアルコール、フェノールなどの1価アルコール類、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール 、1,5−ペンタンジオール、1,6−ヘキサンジオール、トリエチレングリコール、1,2−ヘキサンジオール、1,2−オクタンジオールなどの2価アルコール類、ジプロピレングリコールメチルエーテル、エチレングリコールモノ−n−ブチルエーテル、エチレングリコールモノ−t−ブチルエーテル、ジエチレングリコールモノエチルエーテルなどのグリコールエーテル類、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどが挙げられる。
エーテルとしては、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールイソプロピルメチルエーテルなどのグライム類、1,4−ジオキサン、テトラヒドロフラン、アニソール等が挙げられる。
ケトンとしては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、t−ブチルメチルケトン、ジイソプロピルケトン、ブチルイソプロピルケトン、イソブチルイソプロピルケトン、ジイソブチルケトン、3−メチル-2−ペンタノン、4−メチル-2−ペンタノン、3−メチル−2−ヘキサノン、5−メチル-3−ヘプタノン、2−デカノン、3−デカノン、4−デカノン、5−デカノン等が挙げられる。
エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸ブチル、酢酸アミル、アセト酢酸アミル、酢酸ヘキシル、アセト酢酸ヘキシル、酢酸ヘプチル、アセト酢酸ヘプチル、酢酸オクチル、アセト酢酸オクチル、プロピオン酸メチル、プロピオン酸エチル、2−ヒドロキシプロピオン酸エチル、酪酸メチル、酪酸エチル、吉草酸メチル、吉草酸エチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘプタン酸メチル、ヘプタン酸エチル、オクタン酸メチル、オクタン酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、シュウ酸ジメチル、シュウ酸ジエチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、マレイン酸ジメチル、マレイン酸ジエチルなどの脂肪酸エステル、安息香酸メチル、安息香酸エチルなどの芳香族エステルが挙げられる。
芳香族化合物としてはベンゼン、トルエン、キシレン、エチルベンゼン等が挙げられる。
炭化水素としては、n−ヘキサン、n−ヘプタン、n−オクタン等が挙げられる。
環状炭化水素としては、シクロペンタン、シクロヘキサン、テルペン等が挙げられる。
環状炭化水素誘導体としては、シクロペンタノール、シクロペンタノン、シクロペンチルメチルエーテル、シクロヘキサノール、シクロヘキサノン、シクロヘキサノンジメチルアセタール、テルピノレン、テルピネオール等が挙げられる。
【0058】
上記の有機溶媒は2種以上を混合し、併用しても構わない。また、水と混合して使用する場合、混合溶液中に占める有機溶媒の割合は、好ましくは40質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。有機溶媒の割合の上限は特に制限はない。混合溶液における有機溶媒は2種以上のものを使用しても構わない。さらに、該有機溶媒は水に溶解していることが好ましいが、水に溶解しない有機溶媒を乳化させてエマルジョンとして使用しても構わない。
【0059】
微細繊維状セルロース含有スラリー3aの固形分濃度は0.05〜1.5質量%であることが好ましく、0.1〜0.8質量%であることがより好ましい。微細繊維状セルロース含有スラリー3aの濃度が前記下限値以上であれば、脱水工程にて充分な生産効率を確保でき、前記上限値以下であれば、高粘度化を防ぎ、取り扱い性を向上させることができる。
【0060】
脱水工程では、得られる不織布3cの坪量が、好ましくは10〜900g/m2、より好ましくは20〜300g/m2となるように微細繊維状セルロース含有スラリー3aを供給する。坪量が前記下限値以上であると、得られた不織布3cを抄紙用ワイヤー10から容易に剥離でき、連続生産に適する。一方、坪量が前記上限値以下であると、脱水時間をより短縮でき、生産性をより高くできる。
【0061】
[乾燥工程]
乾燥工程では、まず、抄紙用ワイヤー10の上面に載置した含水ウェブ3bを、加熱した第1ドライヤー42の外周面の約半周に、第1ドライヤー42の外周面に塗布面Aが接するように巻き掛けて、含水ウェブ3bに残留していた分散媒を蒸発させる。蒸発した分散媒は、抄紙用ワイヤー10の細孔を通ってフェルト布44から蒸発する。
次いで、含水ウェブ3bを、加熱した第2ドライヤー52の外周面の約3/4周に、第2ドライヤー52の外周面に塗布面Aが接するように巻き掛けて、含水ウェブ3bに残留していた分散媒を蒸発させる。
このように含水ウェブ3bを乾燥させて不織布3cを得る。
【0062】
[巻取工程]
巻取工程では、抄紙用ワイヤー10および不織布3cを一対の分離ローラ62a,62bで挟み込むことにより、不織布3cを抄紙用ワイヤー10から分離させて一方の分離ローラ62aの表面に転移する。そして、分離ローラ62aの表面から不織布3cを引き離して、巻取りリール64により巻き取る。それと共に、使用した抄紙用ワイヤー10を回収リール66により巻き取る。
【0063】
(他の実施形態)
本発明の不織布の製造方法では、上記製造装置1を使用しなくてもよい。例えば、抄紙用ワイヤー10を無端または有端のベルトの上に載せて移送してもよい。
また、本発明の不織布の製造方法では、一般の紙を製造する際に使用する抄紙機を容易に適用することができる。抄紙機としては、長網式、円網式、傾斜式等の連続抄紙機のほか、これらを組み合わせた多層抄き合わせ抄紙機を適用できる。
【0064】
(作用効果)
上記不織布の製造方法は、上記製造方法により製造した微細繊維状セルロース含有スラリー3aを濾材上で脱水し、乾燥させて不織布を製造する方法であるため、繊維原料に対する不織布の収率を向上させることができる。
【0065】
また、上記不織布の製造方法で得られた不織布は、適度な空隙を有することから、マトリックス材料との複合体を得る際の、マトリックス材料の樹脂含浸性が良好である。さらに、本発明の不織布を用いると、得られる複合体の黄色味が低くなり、かつ充分な補強効果が発現し、線熱膨張が低くなる。
また、本発明の不織布は、単体で使用することもできる。例えば、微細繊維特有の緻密な構造を活かして、フィルター部材や電池用セパレータ等に好適に用いることができる。
【0066】
(化学修飾処理)
本発明においては、セルロースに対して、化学修飾処理を施してもよい。ここで、化学修飾とは、セルロース中のヒドロキシ基に化学修飾剤を反応させて付加させることである。化学修飾処理は、微細繊維状セルロースの製造のどの時点で行ってもよく、繊維原料に施してもよいし、リン酸基導入セルロースに施してもよいし、アルカリ処理セルロースに施してもよいし、不織布に施してもよい。また、化学修飾処理を、リン酸基導入工程と同時に行ってもよい。
【0067】
化学修飾によってセルロースに導入させる官能基としては、アセチル基、アクリロイル基、メタクリロイル基、プロピオニル基、プロピオロイル基、ブチリル基、2−ブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基、ミリストイル基、パルミトイル基、ステアロイル基、ピバロイル基、ベンゾイル基、ナフトイル基、ニコチノイル基、イソニコチノイル基、フロイル基、シンナモイル基等のアシル基、2−メタクリロイルオキシエチルイソシアノイル基等のイソシアネート基、メチル基、エチル基、プロピル基、2−プロピル基、ブチル基、2−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ミリスチル基、パルミチル基、ステアリル基等のアルキル基、オキシラン基、オキセタン基、チイラン基、チエタン基等が挙げられる。これらの中では特にアセチル基、アクリロイル基、メタクリロイル基、ベンゾイル基、ナフトイル基等の炭素数2〜12のアシル基、メチル基、エチル基、プロピル基等の炭素数1〜12のアルキル基が好ましい。
【0068】
修飾方法としては、特に限定されるものではないが、セルロース繊維と次に挙げるような化学修飾剤とを反応させる方法がある。この反応条件についても特に限定されるものではないが、必要に応じて溶媒、触媒等を用いたり、加熱、減圧等を行うこともできる。
【0069】
化学修飾剤の種類としては、酸、酸無水物、アルコール、ハロゲン化試薬、イソシアナート、アルコキシシラン、オキシラン(エポキシ)等の環状エーテルよるなる群から選ばれる1種又は2種以上が挙げられる。
【0070】
酸としては、例えば酢酸、アクリル酸、メタクリル酸、プロパン酸、ブタン酸、2−ブタン酸、ペンタン酸等が挙げられる。
酸無水物としては、例えば無水酢酸、無水アクリル酸、無水メタクリル酸、無水プロパン酸、無水ブタン酸、無水2−ブタン酸、無水ペンタン酸等が挙げられる。
ハロゲン化試薬としては、例えばアセチルハライド、アクリロイルハライド、メタクロイルハライド、プロパノイルハライド、ブタノイルハライド、2−ブタノイルハライド、ペンタノイルハライド、ベンゾイルハライド、ナフトイルハライドが挙げられる。
アルコールとしては、例えばメタノール、エタノール、プロパノール、2−プロパノール等が挙げられる。
イソシアナートとしては、例えばメチルイソシアナート、エチルイソシアナート、プロピルイソシアナート等が挙げられる。
アルコキシシランとしては、例えばメトキシシラン、エトキシシラン等が挙げられる。
オキシラン(エポキシ)等の環状エーテルとしては、例えばエチルオキシラン、エチルオキセタンが挙げられる。
これらの中では特に無水酢酸、無水アクリル酸、無水メタクリル酸、ベンゾイルハライド、ナフトイルハライドが好ましい。
これらの化学修飾剤は1種を単独で用いてもよく、2種以上を併用してもよい。
【0071】
触媒としてはピリジンやトリエチルアミン、水酸化ナトリウム、酢酸ナトリウム等の塩基性触媒や、酢酸、硫酸、過塩素酸等の酸性触媒を用いることが好ましい。
【0072】
化学修飾の際の温度条件としては、高すぎるとセルロースの黄変や重合度の低下等が懸念され、低すぎると反応速度が低下することから、10〜250℃が好ましい。反応時間は化学修飾剤や化学修飾率にもよるが、通常、数分から数十時間である。
【0073】
本発明において、セルロースの化学修飾率は、セルロースの全ヒドロキシ基に対して、通常65mol%以下、好ましくは50mol%以下、より好ましくは40mol%以下である。化学修飾率の下限は特にない。
化学修飾を行うことで、セルロースの分解温度が上昇し、耐熱性が高くなるが、化学修飾率が高すぎると、セルロース構造が破壊されて結晶性が低下するため、後述する複合体においては線熱膨張係数が大きくなる傾向にあり、好ましくない。
【0074】
ここでいう化学修飾率とは、セルロース中の全ヒドロキシ基のうちの化学修飾されたものの割合のことである。化学修飾率は、IR、NMR、滴定法などにより求めることができる。例えば、エステルの化学修飾率は下記の滴定法によって測定することができる。
【0075】
乾燥セルロース0.05gを精秤し、これにエタノール1.5ml、蒸留水0.5mlを添加する。これを60〜70℃の湯浴中で30分静置した後、0.5N水酸化ナトリウム水溶液2mlを添加する。これを60〜70℃の湯浴中で3時間静置した後、超音波洗浄器にて30分間超音波振とうする。これを、フェノールフタレインを指示薬として0.2N塩酸標準溶液で滴定する。
ここで、滴定に要した0.2N塩酸水溶液の量Z(ml)から、化学修飾により導入された置換基のモル数Qは、下記式で求められる。
Q(mol)=0.5(N)×2(ml)/1000−0.2(N)×Z(ml)/1000
ここで、化学修飾前のカルボキシ基の導入量を、A mmol/g、a mol%、置換基の分子量をSとし、化学修飾基の導入量を、B mmol/g、b mol%、置換基の分子量をTとすると
Ammol/gは先の方法により算出され
Ammol/gから a mol%は以下の式(I)により算出される。
【数1】
一方、Bmmo/gはQとAから以下の式(II)により算出される。
B(mmol/g)=(Q × 1000)/サンプル量−2A (II)
また、Bmmol/gと、 b mol%は以下の式(III)関係にある。
【数2】
従って、b mol%は下記式(IV)で示される。
【数3】
【0076】
<複合体>
本発明の複合体は、微細繊維状セルロースとマトリックス材料とを含むものである。
【0077】
(マトリックス材料)
本発明において、マトリックス材料とは、微細繊維状セルロース同士の空隙、微細繊維状セルロースが不織布を形成している場合には不織布の空隙を埋める材料であり、好ましくは高分子材料である。
マトリックス材料として好適な高分子材料としては、熱可塑性樹脂、熱硬化性樹脂(熱硬化性樹脂の前駆体が加熱により重合硬化した硬化物)、光硬化性樹脂(光硬化性樹脂の前駆体が放射線(紫外線や電子線等)の照射により重合硬化した硬化物)が挙げられる。これらは1種であってもよいし、2種以上であってもよい。
【0078】
熱可塑性樹脂としては、特に限定されるものではないが、スチレン系樹脂、アクリル系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂、非晶性フッ素系樹脂等が挙げられる。
【0079】
熱硬化性樹脂としては、特に限定されるものではないが、エポキシ樹脂、アクリル樹脂、オキセタン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、珪素樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂等が挙げられる。
【0080】
光硬化性樹脂としては、特に限定されるものではないが、上述の熱硬化性樹脂として例示したエポキシ樹脂、アクリル樹脂、オキセタン樹脂等が挙げられる。
【0081】
さらに、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂の具体例としては、特開2009−299043号公報に記載のものが挙げられる。
【0082】
上記マトリックス材料としては、透明性に優れ且つ高耐久性の複合体を得る点では、非晶質でガラス転移温度(Tg)の高い合成高分子が好ましい。非晶質の程度としては、結晶化度で10%以下、特に5%以下であるものが好ましく、また、Tgは110℃以上、特に120℃以上、とりわけ130℃以上のものが好ましい。Tgが低いと例えば熱水等に触れた際に変形する恐れがあり、実用上問題が生じる。なお、マトリックス材料のTgはDSC法による測定で求められ、結晶化度は、非晶質部と結晶質部の密度から算定することができる。
また、低吸水性の複合体を得るためには、マトリックス材料は、ヒドロキシ基、カルボキシ基、アミノ基などの親水性の官能基が少ないことが好ましい。
【0083】
本発明の複合体中の微細繊維状セルロースの含有量は、1質量%以上99質量%以下であり、マトリックス材料の含有量が1質量%以上99質量%以下であることが好ましい。低線熱膨張性を発現するには、微細繊維状セルロースの含有量が1質量%以上、マトリックス材料の含有量が99質量%以下であることが、また、透明性を発現するには微細繊維状セルロースの含有量が99質量%以下、マトリックス材料の含有量が1質量%以上であることが好ましい。
より好ましい範囲は、微細繊維状セルロースの含有量が2質量%以上90質量%以下であり、マトリックス材料が10質量%以上98質量%以下であり、さらに好ましい範囲は、微細繊維状セルロースの含有量が5質量%以上80質量%以下であり、マトリックス材料の含有量が20質量%以上95質量%以下である。特に、本発明の複合体では、微細繊維状セルロースの含有量が70質量%以下でマトリックス材料の含有量が30質量%以上、さらには、微細繊維状セルロースの含有量が60質量%以下で、マトリックス材料の含有量が40質量%以上であることが好ましい。また、微細繊維状セルロースの含有量が10質量%以上でマトリックス材料の含有量が90質量%以下、さらには微細繊維状セルロースの含有量が15質量%以上でマトリックス材料の含有量が85質量%以下、さらには微細繊維状セルロース繊維の含有量が20質量%以上でマトリックス材料の含有量が80質量%以下であることが好ましい。
【0084】
複合体中の微細繊維状セルロース及びマトリックス材料の含有量は、例えば、複合体とする前の不織布の質量と複合体の質量より求めることができる。また、複合体をマトリックス材料が可溶な溶媒に浸漬してマトリックス材料のみを取り除き、残った繊維の質量から求めることもできる。その他、マトリックス材料の比重から求める方法や、NMR、IRを用いてマトリックス材料やセルロース繊維由来の官能基を定量して求めることもできる。
【0085】
本発明の複合体は、平膜状(フィルム状)又は平板状であってもよいし、曲面を有する膜状又は板状であってもよいし、その他の立体的な形状であってもよい。
本発明の複合体が膜状又は平板状である場合には、厚みが10μm以上、10cm以下であることが好ましい。このような厚みの複合体にすることで強度を保つことができる。複合体の厚みは、より好ましくは50μm以上、1cm以下であり、さらに好ましくは80μm以上、250μm以下である。また、厚みは必ずしも均一である必要はなく、部分的に異なっていてもよい。
【0086】
また、本発明の複合体が膜状又は平板状である場合、複数枚重ねて積層体としてもよい。また、セルロース繊維を含む複合体とセルロースを含まない樹脂シートを積層してもよい。積層体に加熱プレス処理を加えることで厚膜化することができる。厚膜の複合体はグレージングや構造材料として好適に用いることができる。
【0087】
本発明の複合体は、その用途に応じて、その表面に無機膜が積層されてもよい。無機膜を構成する無機材料としては、例えば、白金、銀、アルミニウム、金、銅等の金属、シリコン、ITO、SiO
2、SiN、SiOxNy、ZnO等、TFT等が挙げられる。これらの組み合わせや膜厚は任意に設計することができる。
【0088】
(複合体の製造方法)
複合体を製造する方法としては、特に制限はなく、例えば、以下の方法により複合体を得ることができる。
【0089】
(a) 不織布に可塑性樹脂前駆体を含浸させて重合させる方法。
(b) 不織布に熱硬化性樹脂前駆体又は光硬化性樹脂前駆体を含浸させて重合硬化させる方法。
(c) 不織布に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を含浸させて乾燥した後、加熱プレス等で密着させ、必要に応じて重合硬化させる方法。
(d) 不織布に熱可塑性樹脂の溶融体を含浸させ、加熱プレス等で密着させる方法
(e) 熱可塑性樹脂シートと不織布とを交互に配置し、加熱プレス等で密着させる方法
(f) 不織布の片面もしくは両面に液状の熱可塑性樹脂前駆体や熱硬化性樹脂前駆体もしくは光硬化性樹脂前駆体を塗布して重合硬化させる方法。
(g) 不織布の片面もしくは両面に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を塗布して、溶媒を除去後、必要に応じて重合硬化させる方法。
(h) 微細繊維状セルロース含有スラリーとモノマー溶液又は分散液(熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質又は分散質を含む溶液又は分散液)とを混合した後、溶媒除去、重合硬化させる方法。
(i) 微細繊維状セルロース含有スラリーと高分子溶液又は分散液(熱可塑性樹脂溶液又は分散液)を混合した後、溶媒を除去する方法。
【0090】
(a)不織布に液状の熱可塑性樹脂前駆体を含浸させて重合させる方法としては、重合可能なモノマーやオリゴマーを不織布に含浸させ、熱処理等により上記モノマーを重合させることによりセルロース繊維複合体を得る方法が挙げられる。一般的には、モノマーの重合に用いられる重合触媒を重合開始剤として用いることができる。
【0091】
(b)不織布に熱硬化性樹脂前駆体又は光硬化性樹脂前駆体を含浸させて重合硬化させる方法としては、エポキシ樹脂モノマー等の熱硬化性樹脂前駆体、又はアクリル樹脂モノマー等の光硬化性樹脂前駆体と硬化剤の混合物を、不織布に含浸させ、熱又は放射線等により上記熱硬化性樹脂前躯体又は光硬化性樹脂前躯体を硬化させることによりセルロース繊維複合体を得る方法が挙げられる。
【0092】
(c)不織布に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を含浸させて乾燥した後、加熱プレス等で密着させ、必要に応じて重合硬化させる方法としては、樹脂が溶解する溶媒に樹脂を溶解させ、その溶液を不織布に含浸させ、乾燥させることでセルロース繊維複合体を得る方法が挙げられる。この場合、乾燥後加熱プレス等で溶媒が乾燥した空隙を密着させることでより高性能なセルロース繊維複合体を得る方法が挙げられる。光硬化性樹脂の場合にはさらに、必要に応じて放射線等による重合硬化を行う。
ここで樹脂を溶解させる溶媒としては、樹脂の溶解性に応じて選択すればよい。
【0093】
(d)不織布に熱可塑性樹脂の溶融体を含浸させ、加熱プレス等で密着させる方法としては、熱可塑性樹脂をガラス転移温度以上又は融点以上で熱処理することにより溶解させて、不織布に含浸させ、加熱プレス等で密着することによりセルロース繊維複合体を得る方法が挙げられる。熱処理は加圧下で行うことが好ましく、真空加熱プレス機能を有する設備の使用が有効である。
【0094】
(e)熱可塑性樹脂シートとセ不織布を交互に配置し、加熱プレス等で密着させる方法としては、不織布の片面もしくは両面に熱可塑性樹脂のフィルムもしくはシートを配置し、必要に応じて加熱やプレスすることにより、熱可塑性樹脂と不織布を貼り合わせる方法が挙げられる。この場合、不織布の表面に接着剤やプライマーなどを塗布して貼り合わせてもよい。貼り合わせる際に気泡を抱き込まないように、加圧された2本のロールの間を通す方法や、真空状態でプレスする方法を用いることができる。
【0095】
(f)不織布の片面もしくは両面に液状の熱可塑性樹脂前駆体や熱硬化性樹脂前駆体もしくは光硬化性樹脂前駆体を塗布して硬化させる方法としては、不織布の片面もしくは両面に熱重合開始剤を処方した熱硬化性樹脂前駆体を塗布して加熱することにより硬化させて両者を密着させる方法や、不織布の片面もしくは両面に光重合開始剤を処方した光硬化性樹脂前駆体を塗布した後、紫外線等の放射線を照射して硬化させる方法が挙げられる。また、不織布に熱もしくは光硬化性樹脂前駆体を塗布した後、さらに不織布を重ねるなど、多層構造にしてから、硬化させてもよい。
【0096】
(g)不織布の片面もしくは両面に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を塗布して、溶媒を除去後、必要に応じて重合硬化させることにより複合化する方法としては、溶媒に可溶な樹脂を溶解させた樹脂溶液を用意し、不織布の片面もしくは両面に塗布し、加熱により溶媒を除去する方法が挙げられる。光硬化性樹脂の場合にはさらに、必要に応じて放射線等による重合硬化を行う。
樹脂を溶解させる溶媒としては、樹脂の溶解性に応じて選択すればよい。
【0097】
(h)微細繊維状セルロース含有スラリーとモノマー溶液又は分散液(熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質又は分散質を含む溶液又は分散液)とを混合した後、溶媒除去と重合硬化の工程を経ることにより複合化する方法としては、溶媒に可溶なモノマーを溶解させた溶液、もしくは分散液を用意し、微細繊維状セルローススラリーを混合する。この際、必要に応じてセルロース繊維の解繊は分散媒(溶媒)としてあらかじめ有機溶媒を用いるか、水中で解繊した場合は水から有機溶媒に置換することが好ましい。この混合液中でモノマーを重合硬化もしくは、溶媒を除去した後にモノマーを重合硬化させることでセルロース繊維複合体を得ることができる。
【0098】
(i)微細繊維状セルロース含有スラリーと高分子溶液又は分散液(熱可塑性樹脂溶液又は分散液)を混合した後、溶媒を除去して複合化する方法としては、溶媒に可溶な高分子溶液又は分散液を用意し、微細繊維状セルローススラリーと混合する。この際、必要に応じてセルロース繊維の解繊は分散媒(溶媒)としてあらかじめ有機溶媒を用いるか、水中で解繊した場合は水から有機溶媒に置換することが好ましい。この混合液の溶媒を除去することでセルロース繊維複合体を得ることができる。
【0099】
上記の熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体には、適宜、連鎖移動剤、紫外線吸収剤、セルロース以外の充填剤、シランカップリング剤等を配合して、組成物(以下、「硬化性組成物」という。)としてもよい。
【0100】
硬化性組成物が連鎖移動剤を含むと、反応を均一に進行させることができる。連鎖移動剤としては、例えば、分子内に2個以上のチオール基を有する多官能メルカプタン化合物を用いることができる。多官能メルカプタン化合物を用いることにより硬化物に適度な靱性を付与することができる。
メルカプタン化合物としては、例えばペンタエリスリトールテトラキス(β−チオプロピオネート)、トリメチロールプロパントリス(β−チオプロピオネート)、トリス[2−(β−チオプロピオニルオキシエトキシ)エチル]トリイソシアヌレートなどの1種又は2種以上を用いることが好ましい。
硬化性組成物に連鎖移動剤を含有させる場合、連鎖移動剤は硬化性組成物中のラジカル重合可能な化合物の合計に対して、通常30質量%以下の割合で含有させる。
【0101】
硬化性組成物が紫外線吸収剤を含むと、着色を防止できる。紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤から選ばれ、その紫外線吸収剤は1種類を用いてもよいし、2種類以上を併用してもよい。
硬化性組成物に紫外線吸収剤を含有させる場合、紫外線吸収剤は硬化性組成物中のラジカル重合な可能化合物の合計100質量部に対して、通常0.01〜1質量部の割合で含有させる。
【0102】
充填剤としては、例えば、無機粒子や有機高分子などが挙げられる。具体的には、シリカ粒子、チタニア粒子、アルミナ粒子などの無機粒子、ゼオネックス(日本ゼオン社)やアートン(JSR社)などの透明シクロオレフィンポリマーの粒子、ポリカーボネートやポリメチルメタアクリレートなどの汎用熱可塑性ポリマーの粒子などが挙げられる。中でも、ナノサイズのシリカ粒子を用いると透明性を維持することができ好適である。また、紫外線硬化性モノマーと構造の似たポリマーの粒子を充填剤として用いると、高濃度までポリマーを溶解させることが可能であり、好適である。
【0103】
シランカップリング剤としては、例えば、γ−((メタ)アクリロキシプロピル)トリメトキシシラン、γ−((メタ)アクリロキシプロピル)メチルジメトキシシラン、γ−((メタ)アクリロキシプロピル)メチルジエトキシシラン、γ−((メタ)アクリロキシプロピル)トリエトキシシラン、γ−(アクリロキシプロピル)トリメトキシシラン等が挙げられる。これらは分子中に(メタ)アクリル基を有しており、他のモノマーと共重合することができるので好ましい。
硬化性組成物にシランカップリング剤を含有させる場合、シランカップリング剤は、硬化性組成物中のラジカル重合な可能化合物の合計に対して通常0.1〜50質量%、好ましくは1〜20質量%となるように含有させる。この配合量が少な過ぎると、これを含有させる効果が充分に得られず、また、多過ぎると、硬化物の透明性などの光学特性が損なわれる恐れがある。
【0104】
硬化性組成物は、公知の硬化方法で重合硬化させて、硬化物とすることができる。
硬化方法としては、例えば、熱硬化、又は放射線硬化等が挙げられ、好ましくは放射線硬化である。放射線としては、赤外線、可視光線、紫外線、電子線等が挙げられるが、好ましくは波長1〜1000nmの電磁波である光である。より好ましくは波長が200nm〜450nm程度の電磁波であり、さらに好ましくは波長が300〜400nmの紫外線である。
【0105】
具体的な硬化性組成物の硬化方法としては、予め硬化性組成物に加熱によりラジカルや酸を発生する熱重合開始剤を添加しておき、加熱して重合させる方法(以下「熱重合」という場合がある。)、予め硬化性組成物に紫外線等の放射線によりラジカルや酸を発生する光重合開始剤を添加しておき、放射線(好ましくは光)を照射して重合させる方法(以下「光重合」という場合がある。)、予め熱重合開始剤と光重合開始剤の両方を添加しておき、熱と光の組み合わせにより重合させる方法が挙げられる。
【0106】
放射線照射により重合硬化する場合、照射する放射線の量は、光重合開始剤がラジカルを発生させる範囲であれば任意である。しかし、極端に少ない場合は重合が不完全となるため硬化物の耐熱性、機械特性が充分に発現されず、一方、極端に過剰な場合は硬化物の黄変等の光による劣化を生じる。そのため、モノマーの組成及び光重合開始剤の種類、量に応じて、300〜450nmの紫外線を、好ましくは0.1〜200J/cm
2の範囲で、より好ましくは1〜20J/cm
2の範囲で照射する。
また、放射線を複数回に分割して照射すると、さらに好ましい。すなわち1回目に全照射量の1/20〜1/3程度を照射し、2回目以降に必要残量を照射すると、複屈折のより小さな硬化物が得られる。
放射線照射に使用するランプの具体例としては、メタルハライドランプ、高圧水銀灯ランプ、紫外線LEDランプ、無電極水銀ランプ等を挙げることができる。
【0107】
重合硬化をすみやかに完了させるために、光重合と熱重合を同時に行ってもよい。この場合には、放射線照射と同時に硬化性組成物を30〜300℃の範囲で加熱して硬化を行う。また、硬化性組成物には、重合を完結するために熱重合開始剤を添加してもよいが、大量に添加すると硬化物の複屈折の増大と色相の悪化をもたらす。そのため、熱重合開始剤の添加量は、硬化性モノマー成分の合計に対して0.1〜2質量%であることが好ましく、0.3〜1質量%であることがより好ましい。
【0108】
熱重合に使用する熱重合開始剤としては、例えば、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシカーボネート、パーオキシケタール、ケトンパーオキサイド等が挙げられる。具体的にはベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、t−ブチルパーオキシ(2−エチルヘキサノエート)ジクミルパーオキサイド、ジt−ブチルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルハイドロパーキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等を用いることができる。これらの重合開始剤は単独で用いても、2種以上を併用してもよい。
光照射時に熱重合が開始されると、重合を制御することが難しくなるので、熱重合開始剤は好ましくは1分半減期温度が120℃以上であることがよい。
【0109】
光重合に使用する光重合開始剤としては、通常、光ラジカル発生剤又は光カチオン重合開始剤が用いられる。光重合開始剤は単独で用いても、2種以上を併用してもよい。
【0110】
光ラジカル発生剤としては、この用途に用い得ることが知られている公知の化合物を用いることができる。例えば、ベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2,6−ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6−トリメチルベンゾイルジフェニルホシフィンオキシド等が挙げられる。これらの中でも、ベンゾフェノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドが好ましい。
【0111】
光カチオン重合開始剤とは、紫外線や電子線などの放射線の照射によりカチオン重合を開始させる化合物であり、次のようなものが挙げられる。
【0112】
例えば、芳香族スルホニウム塩として、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロボレート、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル−4−(フェニルチオ)フェニルスルフォニウムヘキサフルオロ、ジフェニル−4−(フェニルチオ)フェニルスルフォニウムヘキサフルオロアンチモネート、ジフェニル−4−(フェニルチオ)フェニルスルフォニウムテトラフルオロボレート、ジフェニル−4−(フェニルチオ)フェニルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドテトラフルオロボレート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
【0113】
芳香族ヨードニウム塩としては、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムヘキサフルオロボレート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
【0114】
芳香族ジアゾニウム塩としては、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
【0115】
芳香族アンモニウム塩としては、1−ベンジル−2−シアノピリジニウムヘキサフルオロホスフェート、1−ベンジル−2−シアノピリジニウムヘキサフルオロアンチモネート、1−ベンジル−2−シアノピリジニウムテトラフルオロボレート、1−ベンジル−2−シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1−(ナフチルメチル)−2−シアノピリジニウムヘキサフルオロホスフェート、1−(ナフチルメチル)−2−シアノピリジニウムヘキサフルオロアンチモネート、1−(ナフチルメチル)−2−シアノピリジニウムテトラフルオロボレート、1−(ナフチルメチル)−2−シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−鉄塩としては、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−鉄(II)ヘキサフルオロホスフェート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−鉄(II)ヘキサフルオロアンチモネート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−鉄(II)テトラフルオロボレート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−鉄(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
【0116】
これらの光カチオン重合開始剤の市販品としては、例えば、ユニオンカーバイド社製のUVI6990、UVI6979、ADEKA社製のSP−150、SP−170、SP−172、チバガイギー社製のイルガキュア261、イルガキュア250、ローディア社製のRHODORSIL PI2074、JMF−2456、三新化学工業社製のサンエイドSI−60L、SI−80L、SI−100L、SI−110L、SI−180L、SI−100L等が挙げられる。
【0117】
さらに、光カチオン重合開始剤の他にも、カチオン重合性モノマーを硬化させるための硬化剤を添加してもよい。硬化剤としては、例えば、アミン化合物、アミン化合物から合成されるポリアミノアミド化合物等の化合物、3級アミン化合物、イミダゾール化合物、ヒドラジド化合物、メラミン化合物、酸無水物、フェノール化合物、熱潜在性カチオン重合触媒、ジシアンアミド及びその誘導体等が挙げられる。これらの硬化剤は、単独で用いられてもよく、2種以上が併用されてもよい。これらのうち、熱潜在性カチオン重合触媒としては、アデカオプトン CP−66、CP−77((株)ADEKA社製)、サンエイド SI−15、SI−20、SI−25、SI−40、SI−45、SI−47、SI−60、SI−80、SI−100、SI−100L、SI−110L、SI−145、SI−150、SI−160、SI−180L(三新化学工業(株)社製)などが挙げられる。
【0118】
また、光増感剤を添加することもできる。具体的にはピレン、ペリレン、アクリジンオレンジ、チオキサントン、2−クロロチオキサントン及びベンゾフラビン等が挙げられる。市販の光増感剤としては、アデカイプトマーSP−100((株)ADEKA社製)などが挙げられる。
【0119】
光重合開始剤の成分量は、硬化性組成物中の重合可能な化合物の合計を100質量部としたとき、0.001質量部以上であることが好ましく、0.01質量部以上であることがより好ましく、0.05質量部以上であることがさらに好ましい。その上限は、5質量部以下であることが好ましく、2質量部以下であることがより好ましく、0.1質量部以下であることがさらに好ましい。
ただし、光重合開始剤が光カチオン重合開始剤である場合には、カチオン重合性モノマーの総量100質量部に対して、0.01質量部以上、好ましくは0.1質量部以上、さらに好ましくは0.5質量部以上である。その上限は、通常10質量部以下、好ましくは5質量部以下、さらに好ましくは1質量部以下である。
光重合開始剤の添加量が多すぎると、重合が急激に進行し、得られる硬化物の複屈折を大きくするだけでなく色相を悪化させる。例えば、光重合開始剤の濃度を5質量部とした場合、光重合開始剤の吸収により、紫外線の照射と反対側に光が到達できずに未硬化の部分が生ずる。また、黄色く着色し色相の劣化が著しい。一方、少なすぎると紫外線照射を行っても重合が充分に進行しないおそれがある。
【0120】
複合体の製造において、本発明の不織布とマトリックス材料とを複合化する場合には、マトリックス材料の複合化の前に、不織布に対して、上述した化学修飾処理を施すことが好ましい。
不織布の微細繊維状セルロースに化学修飾を施す場合には、不織布をアルコール等の有機溶媒で置換し、乾燥した後に化学修飾を行ってもよいし、乾燥せずに化学修飾を行ってもよいが、乾燥後の方が化学修飾の反応速度が速くなるため好ましい。乾燥は送風乾燥でもよいし、減圧乾燥でもよいし、加圧乾燥でもよい。また、加熱しても構わない。
【0121】
不織布に化学修飾を行った場合、化学修飾後、反応を終結させるために充分に洗浄することが好ましい。未反応の化学修飾剤が残留していると、後で着色の原因になったり、樹脂と複合化する際に問題になったりするので好ましくない。また、充分に洗浄した後、さらにアルコール等の有機溶媒で置換することが好ましい。この場合、不織布をアルコール等の有機溶媒に浸漬しておくことで容易に置換することができる。
【0122】
また、不織布に化学修飾を行った場合、通常は、化学修飾後に不織布を乾燥する。この乾燥は送風乾燥であってもよいし、減圧乾燥であってもよいし、加圧乾燥であってもよいし、加熱乾燥であってもよい。
乾燥の際に加熱する場合、温度は50℃以上が好ましく、80℃以上がより好ましく、また、250℃以下が好ましく、150℃以下がより好ましい。加熱温度が低すぎると乾燥に時間がかかったり、乾燥が不充分になる可能性があり、加熱温度が高すぎると不織布が着色したり、分解したりする可能性がある。
また、加圧する場合、圧力(ゲージ圧)は0.01MPa以上が好ましく、0.1MPa以上がより好ましく、また、5MPa以下が好ましく、1MPa以下がより好ましい。圧力が低すぎると乾燥が不充分になる可能性があり、圧力が高すぎると不織布がつぶれたり分解する可能性がある。
【0123】
(複合体の物性)
次に、本発明の複合体の物性について説明する。
【0124】
本発明の複合体は、厚み100μmの繊維複合体について、190℃で酸素分圧0.006MPa以下で1時間加熱した後に、JIS規格K7105に準拠して測定した黄色度(YI値)が30以下であることが好ましい。この黄色度は25以下であることがより好ましい。
複合体の黄色度は例えば、スガ試験機製カラーコンピューターを用いて測定することができる。
なお、複合体の黄色度は、セルロース繊維を化学修飾したり、透明性の高いマトリックス材料を用いたりすることにより、小さくすることができる。
【0125】
本発明の複合体では、可視光の波長よりも細い繊維径の繊維を用いているから、マトリックス材料に透明性の高いものを用いれば、透明性の高い、すなわちヘーズの小さい複合体とすることができる。複合体のヘーズ値は、厚み100μmの複合体について、JIS規格K7136に従って測定した値において、5以下であることが好ましく、3以下であることがより好ましく、2以下であることがより好ましく、1以下であることが特に好ましい。
複合体のヘーズは、例えばスガ試験機製ヘーズメータで測定することができ、C光の値を用いる。
【0126】
本発明の複合体は、吸水率が低いものとなるが、厚み100μmのものにおいて、JIS規格K7209(D法)に準拠して測定した吸水率が1%以下であることが好ましく、0.8%以下であることがより好ましく、0.5%以下であることがさらに好ましく、0.3%以下であることが特に好ましい。吸水率が1%を超えると、加工プロセス上で脱水した複合体が空気中に放置された際、空気中の水分を吸収して伸び、寸法変形を起こすため、好ましくない。
【0127】
本発明の複合体は、厚み100μmのものにおいて、その厚み方向にJIS規格K7105に準拠して測定された全光線透過率が好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは82%以上、より好ましくは84%以上、さらに好ましくは86%以上、特に好ましくは88%以上、とりわけ好ましくは90%以上である。この全光線透過率が60%未満であると半透明又は不透明となり、透明性が要求される用途への使用が困難となる場合がある。全光線透過率は例えば、スガ試験機製ヘーズメータを用いて測定することができ、C光の値を用いる。
【0128】
本発明の複合体は、厚み100μmのものにおいて、その厚み方向にJIS規格K7105に準拠して測定された平行光線透過率が57%以上、さらには70%以上、特に80%以上、とりわけ89%以上であることが好ましい。この平行光線透過率が57%未満であると散乱光が多く、ヘーズが大きくなり、例えば有機EL素子用途等において、画素が不明瞭となり、色がぼやけたりにじんだりする。平行光線透過率は例えば、スガ試験機製ヘーズメータを用いて測定することができ、C光の値を用いる。
【0129】
本発明の複合体は、線熱膨張率を容易に低くできるが、複合体線熱膨張率が1〜50ppm/K以下であることが好ましい。本発明の複合体の線熱膨張率は30ppm/K以下であることがさらに好ましく、20ppm/K以下であることが特に好ましい。また、線熱膨張率は1ppm/K以上であることが好ましく、5ppm/K以上であることがより好ましい。例えば、基板用途においては、無機の薄膜トランジスタの線熱膨張率が15ppm/K程度であるため、複合体の線熱膨張率が50ppm/Kを超えると無機膜との積層複合化の際に、二層の線熱膨張率差が大きくなり、クラック等が発生する。なお、線熱膨張率は、後述の実施例の項に記載される方法により測定される。
【0130】
本発明の複合体においては、微細繊維状セルロース同士の空隙にマトリックス材料が充填されているが、不織布を用いた場合には、不織布の空隙にマトリックス材料が充填されている。よって、マトリックス材料充填部の体積割合は不織布の空隙率と略同等となる。
【0131】
本発明の複合体は、引張強度が、好ましくは40MPa以上であり、より好ましくは100MPa以上である。引張強度が40MPaより低いと、充分な強度が得られず、構造材料等、力の加わる用途への使用に影響を与えることがある。
【0132】
本発明の複合体は、引張弾性率が、好ましくは0.2〜100GPaであり、より好ましくは、1〜100GPaである。引張弾性率が0.2GPaより低いと、充分な強度が得られず、構造材料等、力の加わる用途への使用に影響を与えることがある。
特に、ディスプレイ用基板用途において、基板の引張弾性率には好適範囲が存在し、基板の引張弾性率が低いと基板は自重で曲がってしまい、平滑な面を形成することが難しくなる。そのため、トランジスタやその他の素子を精度よく形成することができなくなる。一方、引張弾性率が高すぎると硬く脆くなり、基板自体が割れるなど不都合が生じる。
【0133】
本発明の複合体は、低線熱膨張率、高弾性、高強度のものとなる。その特性を活かして本発明の複合体を構造材としても用いることができる。特に、グレージング、内装材、外板、バンパー等の自動車材料やパソコンの筐体、家電部品、包装用資材、建築資材、土木資材、水産資材、その他工業用資材等として好適に用いられる。
また、本発明の複合体のうち、透明性が高く、高強度、低吸水性でヘーズの小さいものは光学特性に優れるため、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイや基板やパネルとして好適である。また、シリコン系太陽電池、色素増感太陽電池などの太陽電池用基板に好適である。基板としての用途において、バリア膜、ITO、TFT等と積層してもよい。また、自動車用の窓材、鉄道車両用の窓材、住宅用の窓材、オフィスや工場などの窓材などに好適に使われる。窓材としては、必要に応じてフッ素皮膜、ハードコート膜等の膜や耐衝撃性、耐光性の素材を積層してもよい。
【実施例】
【0134】
以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、勿論、本発明はこれらの実施例に限定されるものではない。また、例中の部、及び%は特に断らない限り、それぞれ質量部及び質量%を示す。
【0135】
(実施例1)
リン酸二水素ナトリウム二水和物10.14g、リン酸水素二ナトリウム1.79gを19.27gの水に溶解させ、リン酸系化合物の水溶液(以下、「リン酸化試薬A」という。)を得た。このリン酸化試薬AのpHは25℃で4.73であった。
針葉樹晒クラフトパルプ(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)700ml)を濃度4%になるように水を加えて、ダブルディスクリファイナーで変則CSF(平織り80メッシュ、パルプ採取量を0.3gとした以外はJIS P8121に準ずる)が250ml、長さ平均繊維長が0.68mmになるまで叩解し、パルプスラリーを得た。得られたパルプスラリーを絶乾質量で3g分取し、イオン交換水で0.3%に希釈した後、抄紙法により脱水し、パルプシートを得た。得られたパルプシートの含水率は90%、厚みは200μmであった。このパルプシートを前記リン酸化試薬A31.2g(乾燥パルプ100質量部に対してリン元素量として80.2質量部)に浸漬させ、170℃の送風乾燥機(ヤマト科学株式会社 DKM400)で2時間半加熱処理し、セルロースにリンオキソ酸基を導入した。
次いで、リンオキソ酸基を導入したセルロースに500mlのイオン交換水を加え、攪拌洗浄後、濾過脱水して、脱水シートを得た。得られた脱水シートを300mlのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液5mlを少しずつ添加し、pHが12〜13のパルプスラリーを得た。その後、このパルプスラリーを脱水し、500mlのイオン交換水を加えて洗浄を行った。この脱水洗浄をさらに2回繰り返して、リンオキソ酸導入セルロースの脱水シートを得た。
洗浄脱水後に得られたリンオキソ酸導入セルロースの脱水シートにイオン交換水を添加後、攪拌し、0.5質量%のスラリーにした。このスラリーを、解繊処理装置(エムテクニック社製、クレアミックス−2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊パルプスラリーを得た。
解繊パルプスラリーを下記記載([遠心分離後の上澄み収率の測定]中の遠心分離)に準じて遠心分離を行い、上澄み分を下記記載([透過型電子顕微鏡観察])の方法に準じて観察測定した。これにより、幅4nm程度の微細繊維状セルロースになっていることが確認された(
図1)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT−IRによる赤外線吸収スペクトルの測定により、1230〜1290cm
−1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。よって、得られたリン酸オキソ酸導入セルロースは、セルロースのヒドロキシ基の一部が下記構造式(2)の官能基で置換されたものであった。
【0136】
【化3】
【0137】
(実施例2)
実施例1において、リン酸化試薬Aの25℃におけるpHを、1Nの水酸化ナトリウム水溶液でpH6.0に調整した以外は、実施例1と同様にして解繊パルプスラリーを得た。
解繊パルプスラリーを実施例1と同様に、遠心分離を行い、上澄み分を透過型電子顕微鏡により観察し、測定した。幅4nm程度の微細繊維状セルロースになっていることが確認された(図示せず)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT−IRによる赤外線吸収スペクトルの測定により、1230〜1290cm
−1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。
【0138】
(実施例3)
実施例2において、パルプシートを105℃で1時間、次いで150℃で1時間送風乾燥機(ヤマト科学株式会社 DKM400)にて加熱処理をした以外は、実施例2と同様にして解繊パルプスラリーを得た。
解繊パルプスラリーを実施例1と同様に、遠心分離を行い、上澄み分を透過型電子顕微鏡により観察し、測定した。幅4nm程度の微細繊維状セルロースになっていることが確認された(
図2)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT−IRによる赤外線吸収スペクトルの測定により、1230〜1290cm
−1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。
【0139】
(実施例4)
実施例3において、リン酸二水素ナトリウム二水和物を0.51g、リン酸水素二ナトリウム0.09gを30.6gの水に溶解させ、リン酸系化合物の水溶液(以下、「リン酸化試薬B」という)を調製した。このリン酸化試薬Bを用いてセルロースにリンオキソ酸基を導入した以外は実施例3と同様にして解繊パルプスラリーを得た。
解繊パルプスラリーを実施例1と同様に、遠心分離を行い、上澄み分を透過型電子顕微鏡により観察し、測定した。これにより、幅4nm程度の微細繊維状セルロースになっていることが確認された(図示せず)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT−IRによる赤外線吸収スペクトルの測定により、1230〜1290cm
−1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。
【0140】
(実施例5)
アルカリ処理工程を省略した以外は、実施例3と同様にして解繊パルプスラリーを得た。
【0141】
(実施例6)
リン酸二水素ナトリウム二水和物6.75g、リン酸水素二ナトリウム4.83gを19.62gの水に溶解させ、リン酸系化合物の水溶液(以下、「リン酸化試薬C」という。)を得た。このリン酸化試薬CのpHは25℃で6.0であった。
針葉樹未晒クラフトパルプ(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)700ml)を濃度4%になるように水を加えて、ダブルディスクリファイナーで変則CSF(平織り80メッシュ、パルプ採取量を0.3gとした以外はJIS P8121に準ずる)が200ml、長さ平均繊維長が0.66mmになるまで叩解し、パルプスラリーを得た。得られたパルプスラリーを絶乾質量で3g分取し、イオン交換水で0.3%に希釈した後、抄紙法により脱水し、パルプシートを得た。得られたパルプシートの含水率は90%、厚みは200μmであった。
このパルプシートを前記リン酸化試薬C31.2g(乾燥パルプ100質量部に対してリン元素量として80.2質量部)に浸漬させ、105℃の送風乾燥機(ヤマト科学株式会社 DKM400)で1時間加熱後、さらに150℃で1時間加熱処理し、セルロースにリンオキソ酸基を導入した。
次いで、リンオキソ酸基を導入したセルロースに500mlのイオン交換水を加え、攪拌洗浄後、濾過脱水して、脱水シートを得た。得られた脱水シートを300mlのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液5mlを少しずつ添加し、pHが12〜13のパルプスラリーを得た。その後、このパルプスラリーを脱水し、500mlのイオン交換水を加えて洗浄を行った。この脱水洗浄をさらに2回繰り返して、リンオキソ酸導入セルロースの脱水シートを得た。
洗浄脱水後に得られたリンオキソ酸導入セルロースの脱水シートにイオン交換水を添加後、攪拌し、0.5質量%のスラリーにした。このスラリーを、解繊処理装置(エムテクニック社製、クレアミックス−2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊パルプスラリーを得た。
解繊パルプスラリーを下記記載([遠心分離後の上澄み収率の測定]中の遠心分離)に準じて遠心分離を行い、上澄み分を下記記載([透過型電子顕微鏡観察])の方法に準じて観察測定した。これにより、幅4nm程度の微細繊維状セルロースになっていることが確認された(図示せず)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT−IRによる赤外線吸収スペクトルの測定により、1230〜1290cm
−1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。
【0142】
(実施例7)
針葉樹晒クラフトパルプ(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)700ml)を濃度4%になるように水を加えて、ダブルディスクリファイナーで変則CSF(平織り80メッシュ、パルプ採取量を0.3gとした以外はJIS P8121に準ずる)が200ml、長さ平均繊維長が0.66mmになるまで叩解し、パルプスラリーを得た。得られたパルプスラリーを遠心脱水機で固形分13%まで濃縮した。濃縮したパルプスラリー1000gを、蒸気加温ジャケット容器を備えた二軸混練ニーダーの容器に入れ、ついでリン酸二水素ナトリウム二水和物72.04g、リン酸水素二ナトリウム53.58gを粉末のまま加え(乾燥パルプ100質量部に対してリン元素量として20質量部)、15分間混合した。混合した後、ジャケットに蒸気を導入し、内温70℃の状態で固形分99%となるまで乾燥させた。得られた乾燥物を150℃の送風乾燥機(ヤマト科学株式会社 DKM400)で1時間加熱処理して、セルロースにリンオキソ酸基を導入した。
次いで、リンオキソ酸基を導入したセルロース3gを分取し、500mlのイオン交換水を加え、攪拌洗浄後、濾過脱水して、脱水シートを得た。得られた脱水シートを300mlのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液5mlを少しずつ添加し、pHが12〜13のパルプスラリーを得た。その後、このパルプスラリーを脱水し、500mlのイオン交換水を加えて洗浄を行った。この脱水洗浄をさらに2回繰り返して、リンオキソ酸導入セルロースの脱水シートを得た。
洗浄脱水後に得られたリンオキソ酸導入セルロースの脱水シートにイオン交換水を添加後、攪拌し、0.5質量%のスラリーにした。このスラリーを、解繊処理装置(エムテクニック社製、クレアミックス−2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊パルプスラリーを得た。
解繊パルプスラリーを下記記載([遠心分離後の上澄み収率の測定]中の遠心分離)に準じて遠心分離を行い、上澄み分を下記記載([透過型電子顕微鏡観察])の方法に準じて観察測定した。これにより、幅4nm程度の微細繊維状セルロースになっていることが確認された(図示せず)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT−IRによる赤外線吸収スペクトルの測定により、1230〜1290cm
−1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。
【0143】
(実施例8)
リン酸二水素ナトリウム二水和物1.69g、リン酸水素二ナトリウム1.21gを3.39gの水に溶解させ、リン酸系化合物の水溶液(以下、「リン酸化試薬D」という。)を得た。このリン酸化試薬DのpHは25℃で6.0であった。
針葉樹晒クラフトパルプ(王子製紙社製、水分50%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)700ml)を含水率80%になるようイオン交換水で希釈し、パルプスラリーを得た。このパルプスラリー15gに前記リン酸化試薬D6.29g(乾燥パルプ100質量部に対してリン元素量として20質量部)を加え、105℃の送風乾燥機(ヤマト科学株式会社 DKM400)で15分に一度混練しながら質量が恒量となるまで乾燥させた。ついで150℃の送風乾燥機で1時間加熱処理して、セルロースにリンオキソ酸基を導入した。
次いで、リンオキソ酸基を導入したセルロースに500mlのイオン交換水を加え、攪拌洗浄後、脱水した。脱水後のパルプを300mlのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液5mlを少しずつ添加し、pHが12〜13のパルプスラリーを得た。その後、このパルプスラリーを脱水し、500mlのイオン交換水を加えて洗浄を行った。この脱水洗浄をさらに2回繰り返した。
洗浄脱水後に得られたパルプにイオン交換水を添加後、攪拌し、0.5質量%のスラリーにした。このパルプスラリーを、解繊処理装置(エムテクニック社製、クレアミックス−2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊パルプスラリーを得た。
解繊パルプスラリーを下記記載([遠心分離後の上澄み収率の測定]中の遠心分離)に準じて遠心分離を行い、上澄み分を下記記載([透過型電子顕微鏡観察])の方法に準じて観察測定した。これにより、幅4nm程度の微細繊維状セルロースになっていることが確認された(図示せず)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT−IRによる赤外線吸収スペクトルの測定により、1230〜1290cm
−1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。
【0144】
(比較例1)
実施例1において、リン酸化試薬Aを加えずに加熱し、アルカリ処理した後に解繊処理した以外は、実施例1と同様にして、解繊パルプスラリーを得た。
【0145】
(比較例2)
実施例2において、リン酸化試薬Aを加えずに加熱し、アルカリ処理を省略した以外は、実施例2と同様にして解繊パルプスラリーを得た。
【0146】
(比較例3)
実施例6において、リン酸化試薬Cを加えずに加熱し、アルカリ処理した後に解繊処理した以外は、実施例6と同様にして解繊パルプスラリーを得た。
【0147】
<評価>
上記実施例1〜8および比較例1〜3の解繊パルプスラリーについて、遠心分離した後の上澄み収率を以下に記載の方法により測定した。測定結果を表1に示す。なお、遠心分離後の上澄み収率は、微細繊維状セルロースの収率の指標となり、上澄み収率が高い程、微細繊維状セルロースの収率が高い。
また、セルロースへのリン酸基またはポリリン酸基導入量を上述した方法により測定した。その結果も表1に示す。
【0148】
[遠心分離後の上澄み収率の測定]
解繊パルプスラリーにイオン交換水を添加してスラリー固形分濃度0.2質量%に調整し、冷却高速遠心分離機(コクサン社、H−2000B)を用い、12000G×10minの条件で遠心分離し、得られた上澄み液を回収し、上澄み液の固形分濃度を測定した。下記式に基づいて、微細繊維状セルロースの収率を求めた。
微細繊維状セルロースの収率(%)=上澄み液の固形分濃度/0.2質量%×100
【0149】
[透過型電子顕微鏡観察]
解繊パルプスラリーの上澄み液を濃度0.01〜0.1質量%に水で希釈し、親水化処理したカーボングリッド膜に滴下した。乾燥後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL−2000EX)により観察した。
【0150】
【表1】
【0151】
パルプをリンオキソ酸基含有化合物で処理した後に解繊処理を施した実施例1〜8では、遠心分離後の上澄み収率が高く、微細繊維状セルロース収率が高かった。
リンオキソ酸基含有化合物による処理を省略した比較例1〜3では、遠心分離後の上澄み収率が低く、微細繊維状セルロース収率が低かった。
【0152】
<不織布の製造>
(実施例9)
実施例3で得られた微細繊維状セルロース含有スラリーをセルロース濃度0.127質量%になるように水で希釈して、150mlに調整し、液の上方から30mlのイソプロピルアルコール(IPA)を静かに加え、減圧濾過を行った。濾過器としてはアドバンテック社製KG−90を用い、ガラスフィルターの上にアドバンテック社製の1.0μm孔径のPTFE製メンブランフィルターを載せた。有効濾過面積は48cm
2であった。減圧度−0.09MPa(絶対真空度10kPa)にて減圧濾過したところ、PTFE製メンブランフィルターの上にセルロース繊維の堆積物が得られた。このセルロース堆積物を120℃に加熱したプレス機にて0.15MPaの圧力で5分間プレス乾燥して多孔性の不織布を得た。
【0153】
(実施例10)
実施例3で得られた微細繊維状セルロース含有スラリーの遠心分離後の上澄み分を用いた以外は実施例9と同様にして不織布を得た。
【0154】
【表2】
【0155】
(評価)
上記実施例9〜10の不織布について、セルロースの化学修飾率、空隙率、黄色度を以下に記載の方法により測定した。測定結果を表2に示す。
【0156】
[不織布の空隙率]
不織布の面積、厚み、質量から、下記式によって求めた。
空隙率(vol%)={(1−B/(M×A×t)}×100
ここで、Aは不織布の面積(cm
2)、t(cm)は厚み、Bは不織布の質量(g)、Mはセルロースの密度であり、本発明ではM=1.5g/cm
3と仮定した。不織布の膜厚は、膜厚計(Mitutoyo(株)製 IP65)を用いて、不織布の種々な位置について10点の測定を行い、その平均値を採用した。
【0157】
[不織布の黄色度]
得られた不織布を190℃、真空下(酸素分圧0.006MPa)で1時間加熱した後、JIS規格K7105に準拠し、スガ試験機製カラーコンピューターを用いて黄色度を測定した。
【0158】
実施例9〜10の不織布はいずれも、適度な空隙率を有し、黄色度が小さかった。
【0159】
(実施例11)
<樹脂マトリックス材料との複合化>
実施例9で得られた不織布を、1,10−デカンジオールジアクリレート100質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(BASF社製「ルシリンTPO」)0.02質量部、およびベンゾフェノン0.01質量部を混合した溶液に含浸させ、減圧下で一晩放置した。得られた樹脂溶液を含浸させたセルロース繊維集合体を2枚のガラス板に挟み、無電極水銀灯ランプ(フュージョンUVシステムズ社製「Dバルブ」)を用いて、紫外線硬化させた。紫外線硬化の条件は、波長365nmでの照射強度400mW/cm
2、ライン速度7m/minに表裏計2回通して半硬化させ、次いで、波長365nmでの照射強度1900mW/cm
2、ライン速度2m/minで表裏各2回(計4回)通して完全硬化させる条件で行った。紫外線照射終了後、ガラス板よりはずし、190℃の真空オーブン中で1時間加熱して厚み51μmのセルロース繊維複合体を得た。
なお、紫外線の放射照度は、オーク製作所製紫外線照度計「UV−M02」で、アタッチメント「UV−35」を用いて、320〜390nmの紫外線の照度を23℃で測定した。
【0160】
(実施例12)
実施例10で得られた不織布を用いた以外は、実施例11と同様にして、厚み84μmのセルロース繊維複合体を得た。
【0161】
(比較例4)
<樹脂のみで構成された硬化物>
実施例12において、不織布を用いず、光硬化性樹脂のみを同様の条件で硬化させて、厚み83μmの樹脂単独の硬化物を作製した。
【0162】
(評価)
上記実施例11〜12の複合体および比較例4の樹脂硬化物について、引張弾性率、黄色度、ヘーズ、全光線透過率、平行光線透過率、ガラス転移温度、線熱膨張率を以下に記載の方法により測定した。測定結果を表3に示す。
【0163】
[複合体の引張弾性率]
得られた複合体をレーザーカッターにより、10mm幅×40mm長に切断した。これを、SII社製DMS6100を用いて引っ張りモードでチャック間20mm、周波数10Hz、2℃/min.で−100℃から250℃まで測定し、23℃における貯蔵弾性率E’(単位:GPa)より引張弾性率を求めた。
【0164】
[複合体又は樹脂硬化物のヘーズ]
JIS規格K7136に準拠し、スガ試験機製ヘーズメータを用いてC光によるヘーズ値を測定した。
【0165】
[複合体又は樹脂硬化物の全光線透過率]
JIS規格K7105に準拠し、スガ試験機製ヘーズメータを用いてC光による全光線透過率を測定した。
【0166】
[複合体又は樹脂硬化物の平行光線透過率]
JIS規格K7105に準拠し、スガ試験機製ヘーズメータを用いてC光による平行光線透過率を測定した。
【0167】
[複合体又は樹脂硬化物の線熱膨張率]
得られた複合体をレーザーカッターにより、3mm幅×30mm長に切断した。これを、SII製TMA120を用いて引っ張りモードでチャック間20mm、荷重10g、窒素雰囲気下、室温から180℃まで5℃/min.で昇温、180℃から25℃まで5℃/min.で降温、25℃から180℃まで5℃/min.で昇温した際の2度目の昇温時の60℃から100℃の測定値から線熱膨張率を求めた。
【0168】
【表3】
【0169】
実施例11〜12の複合体は透明性が高く、強度が強く、線熱膨張率が低かった。