【国等の委託研究の成果に係る記載事項】(出願人による申告)平成20年度文部科学省「原子スイッチを用いた次世代プログラマブル論理演算デバイスの開発」に関する委託研究、産業技術力強化法19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0039】
本発明の実施形態1に係る半導体装置では、半導体基板(
図1の1)上の多層配線層(
図1の2、3、4、5、7、15、16、17、18、19、21)の内部に抵抗変化素子(
図1の22)を有する半導体装置であって、前記抵抗変化素子(
図1の22)は、上部電極(
図1の10、11)と下部電極(
図1の5)との間に、抵抗が変化する抵抗変化素子膜(
図1の9)が介在した構成となっており、前記多層配線層は、少なくとも、前記下部電極(
図1の5)と電気的に接続された配線(
図1の1)と、前記上部電極(
図1の10、11)と電気的に接続されたプラグ(
図1の19)と、を備え、前記プラグ(
図1の19)の側面乃至底部は、バリアメタル(
図1の20)によって覆われており、前記上部電極の最上部(
図1の11)は、前記バリアメタル(
図1の20)と直接触しており、前記バリアメタルと同一材料、又は前記バリアメタルに含まれる成分と同一成分を含む材料で構成され、前記配線は、前記下部電極を兼ねるとともに、銅よりなり、前記抵抗変化素子膜の下面は、前記配線の上面の一部と接し、前記抵抗変化素子膜は、イオン伝導層であるとともに、前記配線から金属イオンが供給され
、前記半導体装置は、前記抵抗変化素子膜と前記上部電極の間に介在するとともに、前記抵抗変化素子膜における金属成分よりも酸化の自由エネルギーの絶対値の大きい金属の酸化物よりなる第2抵抗変化素子膜を備える。
本発明の実施形態2に係る半導体装置では、半導体基板(図1の1)上の多層配線層(図1の2、3、4、5、7、15、16、17、18、19、21)の内部に抵抗変化素子(図1の22)を有する半導体装置であって、前記抵抗変化素子(図1の22)は、上部電極(図1の10、11)と下部電極(図1の5)との間に、抵抗が変化する抵抗変化素子膜(図1の9)が介在した構成となっており、前記多層配線層は、少なくとも、前記下部電極(図1の5)と電気的に接続された配線(図1の1)と、前記上部電極(図1の10、11)と電気的に接続されたプラグ(図1の19)と、を備え、前記プラグ(図1の19)の側面乃至底部は、バリアメタル(図1の20)によって覆われており、前記上部電極の最上部(図1の11)は、前記バリアメタル(図1の20)と直接触しており、前記バリアメタルと同一材料、又は前記バリアメタルに含まれる成分と同一成分を含む材料で構成され、前記配線は、前記下部電極を兼ねるとともに、銅よりなり、前記抵抗変化素子膜の下面は、前記配線の上面の一部と接し、前記抵抗変化素子膜は、イオン伝導層であるとともに、前記配線から金属イオンが供給され、前記半導体装置は、前記抵抗変化素子膜と前記上部電極の間に介在するとともに、前記抵抗変化素子膜における金属成分よりも酸化の自由エネルギーの絶対値の大きい金属の酸化物よりなる第2抵抗変化素子膜と、前記下部電極と前記抵抗変化素子膜の間に介在するとともに、前記下部電極に係る金属の拡散バリア性を有する第2下部電極と、を備える。
本発明の実施形態
3に係る半導体装置では、半導体基板(
図1の1)上の多層配線層(
図1の2、3、4、5、7、15、16、17、18、19、21)の内部に抵抗変化素子(
図1の22)を有する半導体装置であって、前記抵抗変化素子(
図1の22)は、上部電極(
図1の10、11)と下部電極(
図1の5)との間に、抵抗が変化する抵抗変化素子膜(
図1の9)が介在した構成となっており、前記多層配線層は、少なくとも、前記下部電極(
図1の5)と電気的に接続された配線(
図1の1)と、前記上部電極(
図1の10、11)と電気的に接続されたプラグ(
図1の19)と、を備え、前記プラグ(
図1の19)の側面乃至底部は、バリアメタル(
図1の20)によって覆われており、前記上部電極の最上部(
図1の11)は、前記バリアメタル(
図1の20)と直接触しており、前記バリアメタルと同一材料、又は前記バリアメタルに含まれる成分と同一成分を含む材料で構成され、前記配線は、前記下部電極を兼ねるとともに、銅よりなり、前記下部電極と前記抵抗変化素子膜の間に絶縁性バリア膜(
図1の7)が介在し、前記絶縁性バリア膜は、開口部を有し、前記抵抗変化素子膜は、前記開口部において前記下部電極と接し、前記上部電極上にハードマスク膜(
図1の12)が配され、前記ハードマスク膜、前記上部電極、及び前記抵抗変化素子膜の積層体は、上面乃至側面が保護絶縁膜(
図1の14)で覆われ、前記保護絶縁膜は、前記ハードマスク膜、前記上部電極、及び前記抵抗変化素子膜の積層体の外周にて前記絶縁性バリア膜と接し、前記プラグは、前記保護絶縁膜及び前記ハードマスク膜に形成された下穴を通じて前記バリアメタルを介して前記上部電極に電気的に接続され
、前記半導体装置は、前記抵抗変化素子膜と前記上部電極の間に介在するとともに、前記抵抗変化素子膜における金属成分よりも酸化の自由エネルギーの絶対値の大きい金属の酸化物よりなる第2抵抗変化素子膜を備える。
本発明の実施形態4に係る半導体装置では、半導体基板(図1の1)上の多層配線層(図1の2、3、4、5、7、15、16、17、18、19、21)の内部に抵抗変化素子(図1の22)を有する半導体装置であって、前記抵抗変化素子(図1の22)は、上部電極(図1の10、11)と下部電極(図1の5)との間に、抵抗が変化する抵抗変化素子膜(図1の9)が介在した構成となっており、前記多層配線層は、少なくとも、前記下部電極(図1の5)と電気的に接続された配線(図1の1)と、前記上部電極(図1の10、11)と電気的に接続されたプラグ(図1の19)と、を備え、前記プラグ(図1の19)の側面乃至底部は、バリアメタル(図1の20)によって覆われており、前記上部電極の最上部(図1の11)は、前記バリアメタル(図1の20)と直接触しており、前記バリアメタルと同一材料、又は前記バリアメタルに含まれる成分と同一成分を含む材料で構成され、前記配線は、前記下部電極を兼ねるとともに、銅よりなり、前記下部電極と前記抵抗変化素子膜の間に絶縁性バリア膜(図1の7)が介在し、前記絶縁性バリア膜は、開口部を有し、前記抵抗変化素子膜は、前記開口部において前記下部電極と接し、前記上部電極上にハードマスク膜(図1の12)が配され、前記ハードマスク膜、前記上部電極、及び前記抵抗変化素子膜の積層体は、上面乃至側面が保護絶縁膜(図1の14)で覆われ、前記保護絶縁膜は、前記ハードマスク膜、前記上部電極、及び前記抵抗変化素子膜の積層体の外周にて前記絶縁性バリア膜と接し、前記プラグは、前記保護絶縁膜及び前記ハードマスク膜に形成された下穴を通じて前記バリアメタルを介して前記上部電極に電気的に接続され、前記半導体装置は、前記下部電極と前記抵抗変化素子膜の間に介在するとともに、前記下部電極に係る金属の拡散バリア性を有する第2下部電極を備える。
本発明の実施形態5に係る半導体装置では、半導体基板(図1の1)上の多層配線層(図1の2、3、4、5、7、15、16、17、18、19、21)の内部に抵抗変化素子(図1の22)を有する半導体装置であって、前記抵抗変化素子(図1の22)は、上部電極(図1の10、11)と下部電極(図1の5)との間に、抵抗が変化する抵抗変化素子膜(図1の9)が介在した構成となっており、前記多層配線層は、少なくとも、前記下部電極(図1の5)と電気的に接続された配線(図1の1)と、前記上部電極(図1の10、11)と電気的に接続されたプラグ(図1の19)と、を備え、前記プラグ(図1の19)の側面乃至底部は、バリアメタル(図1の20)によって覆われており、前記上部電極の最上部(図1の11)は、前記バリアメタル(図1の20)と直接触しており、前記バリアメタルと同一材料、又は前記バリアメタルに含まれる成分と同一成分を含む材料で構成され、前記配線は、前記下部電極を兼ねるとともに、銅よりなり、前記下部電極と前記抵抗変化素子膜の間に絶縁性バリア膜(図1の7)が介在し、前記絶縁性バリア膜は、開口部を有し、前記抵抗変化素子膜は、前記開口部において前記下部電極と接し、前記上部電極上にハードマスク膜(図1の12)が配され、前記ハードマスク膜、前記上部電極、及び前記抵抗変化素子膜の積層体は、上面乃至側面が保護絶縁膜(図1の14)で覆われ、前記保護絶縁膜は、前記ハードマスク膜、前記上部電極、及び前記抵抗変化素子膜の積層体の外周にて前記絶縁性バリア膜と接し、前記プラグは、前記保護絶縁膜及び前記ハードマスク膜に形成された下穴を通じて前記バリアメタルを介して前記上部電極に電気的に接続され、前記半導体装置は、前記抵抗変化素子膜と前記上部電極の間に介在するとともに、前記抵抗変化素子膜における金属成分よりも酸化の自由エネルギーの絶対値の大きい金属の酸化物よりなる第2抵抗変化素子膜と、前記下部電極と前記抵抗変化素子膜の間に介在するとともに、前記下部電極に係る金属の拡散バリア性を有する第2下部電極と、を備える。
【0040】
本発明の実施形態
3に係る半導体装置の製造方法では、半導体基板上の多層配線層の内部に抵抗変化素子を有する半導体装置の製造方法であって、下部電極上に抵抗変化素子膜、上部電極をこの順に形成する工程(
図3(C)、
図4(A))と、前記上部電極上にバリアメタルを形成する工程(
図1)と、前記バリアメタル上にプラグを形成する工程(
図1)と、を含み、前記バリアメタル(
図1の20)は、前記上部電極の最上部(
図1の11)と同一材料、又は前記上部電極の最上部に含まれる成分と同一成分を含む材料であ
り、前記配線は、銅よりなり、前記抵抗変化素子膜は、イオン伝導層であるとともに、前記配線から金属イオンが供給される。
【実施例1】
【0041】
本発明の実施例1に係る半導体装置について図面を用いて説明する。
図1は、本発明の実施例1に係る半導体装置の構成を模式的に示した部分断面図である。
【0042】
実施例1に係る半導体装置は、半導体基板1上の多層配線層の内部に抵抗変化素子22を有する装置である。
【0043】
多層配線層は、半導体基板1上にて、層間絶縁膜2、バリア絶縁膜3、層間絶縁膜4、絶縁性バリア膜7、保護絶縁膜14、層間絶縁膜15、エッチングストッパ膜16、層間絶縁膜17、及びバリア絶縁膜21の順に積層した絶縁積層体を有する。多層配線層は、層間絶縁膜4及びバリア絶縁膜3に形成された配線溝にバリアメタル6を介して第1配線5が埋め込まれている。多層配線層は、層間絶縁膜17及びエッチングストッパ膜16に形成された配線溝に第2配線18が埋め込まれており、層間絶縁膜15、保護絶縁膜14、及びハードマスク膜12に形成された下穴にプラグ19が埋め込まれており、第2配線18とプラグ19が一体となっており、第2配線及びプラグ19の側面と底面がバリアメタル20によって覆われている。
【0044】
多層配線層は、絶縁性バリア膜7に形成された開口部にて、下部電極となる第1配線5上に抵抗変化素子膜9、第1上部電極10、及び第2上部電極11の順に積層した抵抗変化素子22が形成されており、第2上部電極11上にハードマスク膜12が形成されており、抵抗変化素子膜9、第1上部電極10、第2上部電極11、及びハードマスク膜12の積層体の上面乃至側面が保護絶縁膜14で覆われている。第1配線5を抵抗変化素子22の下部電極とすることで、すなわち、第1配線5が抵抗変化素子22の下部電極を兼ねることで、工程数を簡略化しながら、電極抵抗を下げることができる。通常のCuダマシン配線プロセスに追加工程として、2PRのマスクセットを作成するだけで、抵抗変化素子を搭載することができ、素子の低抵抗化と低コスト化を同時に達成することができるようになる。
【0045】
抵抗変化素子22は、抵抗変化型不揮発素子であり、例えば、イオン伝導体中における金属イオン移動と電気化学反応とを利用したスイッチング素子とすることができる。抵抗変化素子22は、下部電極となる第1配線5と、プラグ19と電気的に接続された上部電極10、11と、の間に抵抗変化素子膜9が介在した構成となっている。抵抗変化素子22は、絶縁性バリア膜7に形成された開口部の領域にて抵抗変化素子膜9と第1配線5が直接接しており、第2上部電極11上にてプラグ19と第2上部電極11とがバリアメタル20を介して接続されている。抵抗変化素子22は、抵抗変化素子膜9中への第1配線5に係る金属の電界拡散を利用してON/OFFの制御を行う。第2上部電極11及びバリアメタル20は、同一の材料で構成されている。このようにすることで、プラグ19のバリアメタル20と抵抗変化素子22の第2上部電極11とが一体化し、接触抵抗を低減し、かつ、密着性の向上による信頼性の向上を実現することができる。
【0046】
半導体基板1は、半導体素子が形成された基板である。半導体基板1には、例えば、シリコン基板、単結晶基板、SOI(Silicon on Insulator)基板、TFT(Thin Film Transistor)基板、液晶製造用基板等の基板を用いることができる。
【0047】
層間絶縁膜2は、半導体基板1上に形成された絶縁膜である。層間絶縁膜2には、例えば、シリコン酸化膜、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。層間絶縁膜2は、複数の絶縁膜を積層したものであってもよい。
【0048】
バリア絶縁膜3は、層間絶縁膜2、4間に介在したバリア性を有する絶縁膜である。バリア絶縁膜3は、第1配線5用の配線溝の加工時にエッチングストップ層としての役割を有する。バリア絶縁膜3には、例えば、SiN膜、SiC膜、SiCN膜等を用いることができる。バリア絶縁膜3には、第1配線5を埋め込むための配線溝が形成されており、当該配線溝にバリアメタル6を介して第1配線5が埋め込まれている。バリア絶縁膜3は、配線溝のエッチング条件の選択によっては削除することもできる。
【0049】
層間絶縁膜4は、バリア絶縁膜3上に形成された絶縁膜である。層間絶縁膜4には、例えば、シリコン酸化膜、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。層間絶縁膜4は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜4には、第1配線5を埋め込むための配線溝が形成されており、当該配線溝にバリアメタル6を介して第1配線5が埋め込まれている。
【0050】
第1配線5は、層間絶縁膜4及びバリア絶縁膜3に形成された配線溝にバリアメタル6を介して埋め込まれた配線である。第1配線5は、抵抗変化素子22の下部電極ともなり、抵抗変化素子膜9と直接接している。第1配線5には、抵抗変化素子膜9において拡散、イオン電導可能な金属が用いられ、例えば、Cu等を用いることができる。第1配線5は、表面にCuSiが被覆されていてもよい。
【0051】
バリアメタル6は、第1配線5に係る金属が層間絶縁膜4や下層へ拡散することを防止するために、配線の側面乃至底面を被覆する、バリア性を有する導電性膜である。バリアメタル6には、例えば、第1配線5がCuを主成分とする金属元素からなる場合には、タンタル(Ta)、窒化タンタル(TaN)、窒化チタン(TiN)、炭窒化タングステン(WCN)のような高融点金属やその窒化物等、またはそれらの積層膜を用いることができる。
【0052】
絶縁性バリア膜7は、第1配線5を含む層間絶縁膜4上に形成され、第1配線5に係る金属(例えば、Cu)の酸化を防いだり、層間絶縁膜15中への第1配線5に係る金属の拡散を防いだり、上部電極11、10、及び抵抗変化素子膜9の加工時にエッチングストップ層としての役割を有する。絶縁性バリア膜7には、例えば、SiC膜、SiCN膜、SiN膜、及びそれらの積層構造等を用いることができる。絶縁性バリア膜7は、保護絶縁膜14及びハードマスク膜12と同一材料であることが好ましい。
【0053】
抵抗変化素子膜9は、抵抗が変化する膜である。抵抗変化素子膜9は、第1配線5(下部電極)に係る金属の作用(拡散、イオン伝動など)により抵抗が変化する材料を用いることができ、抵抗変化素子22の抵抗変化を金属イオンの析出によって行う場合には、イオン伝導可能な膜が用いられ、例えば、Taを含む酸化物絶縁膜であって、Ta
2O
5、TaSiO等を用いることができる。
【0054】
第1上部電極10は、抵抗変化素子22の上部電極における下層側の電極であり、抵抗変化素子膜9と直接接している。第1上部電極10には、第1配線5に係る金属よりもイオン化しにくく、抵抗変化素子膜9において拡散、イオン電導しにくい金属が用いられ、抵抗変化素子膜9に係る金属成分(Ta)よりも酸化の自由エネルギーの絶対値が小さい金属材料とすることが好ましい。第1上部電極10には、例えば、Pt、Ru等を用いることができる。第1上部電極10は、抵抗変化素子膜9と直接接することが抵抗変化特性には不可欠である。また、第1上部電極10には、Pt、Ru等の金属材料を主成分として酸素を添加してもよく、また酸素を添加した層との積層構造にしてもよい。
【0055】
第2上部電極11は、抵抗変化素子22の上部電極における上層側の電極であり、第1上部電極10上に形成されている。第2上部電極11は、第1上部電極10を保護する役割を有する。第2上部電極11には、例えば、Ta、Ti、Wあるいはそれらの窒化物等を用いることができる。第2上部電極11は、バリアメタル20と同一材料であることが好ましい。
【0056】
ハードマスク膜12は、第2上部電極11、第1上部電極10、及び抵抗変化素子膜9をエッチングする際のハードマスクとなる膜である。ハードマスク膜12には、例えば、SiN膜等を用いることができる。ハードマスク膜12は、保護絶縁膜14、および絶縁性バリア膜7と同一材料であることが好ましい。すなわち、抵抗変化素子22の周囲を全て同一材料で囲むことで材料界面が一体化され、外部からの水分などの浸入を防ぐとともに、抵抗変化素子22自身からの脱離を防ぐことができるようになる。
【0057】
保護絶縁膜14は、抵抗変化素子22にダメージを与えることなく、さらに抵抗変化素子膜9からの酸素の脱離を防ぐ機能を有する絶縁膜である。保護絶縁膜14には、例えば、SiN膜、SiCN膜等を用いることができる。保護絶縁膜14は、ハードマスク膜12及び絶縁性バリア膜7と同一材料であることが好ましい。同一材料である場合には、保護絶縁膜14と絶縁性バリア膜7及びハードマスク膜12とが一体化して、界面の密着性が向上する。
【0058】
層間絶縁膜15は、保護絶縁膜14上に形成された絶縁膜である。層間絶縁膜15には、例えば、シリコン酸化膜、SiOC膜、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)などを用いることができる。層間絶縁膜15は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜15は、層間絶縁膜17と同一材料としてもよい。層間絶縁膜15には、プラグ19を埋め込むための下穴が形成されており、当該下穴にバリアメタル20を介してプラグ19が埋め込まれている。
【0059】
エッチングストッパ膜16は、層間絶縁膜15、17間に介在した絶縁膜である。エッチングストッパ膜16は、第2配線18用の配線溝の加工時にエッチングストップ層としての役割を有する。エッチングストッパ膜16には、例えば、SiN膜、SiC膜、SiCN膜等を用いることができる。エッチングストッパ膜16には、第2配線18を埋め込むための配線溝が形成されており、当該配線溝にバリアメタル20を介して第2配線18が埋め込まれている。エッチングストッパ膜16は、配線溝のエッチング条件の選択によっては削除することもできる。
【0060】
層間絶縁膜17は、エッチングストッパ膜16上に形成された絶縁膜である。層間絶縁膜17には、例えば、シリコン酸化膜、SiOC膜、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)などを用いることができる。層間絶縁膜17は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜17は、層間絶縁膜15と同一材料としてもよい。層間絶縁膜17には、第2配線18を埋め込むための配線溝が形成されており、当該配線溝にバリアメタル20を介して第2配線18が埋め込まれている。
【0061】
第2配線18は、層間絶縁膜17及びエッチングストッパ膜16に形成された配線溝にバリアメタル20を介して埋め込まれた配線である。第2配線18は、プラグ19と一体になっている。プラグ19は、層間絶縁膜15、保護絶縁膜14、及びハードマスク膜12に形成された下穴にバリアメタル20を介して埋め込まれている。プラグ19は、バリアメタル20を介して第2上部電極11と電気的に接続されている。第2配線18及びプラグ19には、例えば、Cuを用いることができる。
【0062】
バリアメタル20は、第2配線18(プラグ19を含む)に係る金属が層間絶縁膜15、17や下層へ拡散することを防止するために、第2配線18及びプラグ19の側面乃至底面を被覆する、バリア性を有する導電性膜である。バリアメタル20には、例えば、第2配線18及びプラグ19がCuを主成分とする金属元素からなる場合には、タンタル(Ta)、窒化タンタル(TaN)、窒化チタン(TiN)、炭窒化タングステン(WCN)のような高融点金属やその窒化物等、またはそれらの積層膜を用いることができる。バリアメタル20は、第2上部電極11と同一材料であることが好ましい。例えば、バリアメタル20がTaN(下層)/Ta(上層)の積層構造である場合には、下層材料であるTaNを第2上部電極11に用いることが好ましい。あるいは、バリアメタル20がTi(下層)/Ru(上層)である場合は、下層材料であるTiを第2上部電極11に用いることが好ましい。
【0063】
バリア絶縁膜21は、第2配線10を含む層間絶縁膜17上に形成され、第2配線10に係る金属(例えば、Cu)の酸化を防いだり、上層への第2配線10に係る金属の拡散を防ぐ役割を有する絶縁膜である。バリア絶縁膜21には、例えば、SiC膜、SiCN膜、SiN膜、及びそれらの積層構造等を用いることができる。
【0064】
次に、本発明の実施例1に係る半導体装置の製造方法について図面を用いて説明する。
図2〜
図5は、本発明の実施例1に係る半導体装置の製造方法を模式的に示した工程断面図である。
【0065】
まず、半導体基板1(例えば、半導体素子が形成された基板)上に層間絶縁膜2(例えば、シリコン酸化膜、膜厚300nm)を堆積し、その後、層間絶縁膜2上にバリア絶縁膜3(例えば、SiN膜、膜厚50nm)を堆積し、その後、バリア絶縁膜3上に層間絶縁膜4(例えば、シリコン酸化膜、膜厚300nm)を堆積し、その後、リソグラフィ法(フォトレジスト形成、ドライエッチング、フォトレジスト除去を含む)を用いて、層間絶縁膜4及びバリア絶縁膜3に配線溝を形成し、その後、当該配線溝にバリアメタル6(例えば、TaN/Ta、膜厚5nm/5nm)を介して第1配線5(例えば、銅)を埋め込む(ステップA1;
図2(A)参照)。
【0066】
ステップA1において、層間絶縁膜2、4は、プラズマCVD法によって形成することができる。ここで、プラズマCVD(Chemical Vapor Deposition)法とは、例えば、気体原料、あるいは液体原料を気化させることで減圧下の反応室に連続的に供給し、プラズマエネルギーによって、分子を励起状態にし、気相反応、あるいは基板表面反応などによって基板上に連続膜を形成する手法である。
【0067】
また、ステップA1において、第1配線5は、例えば、PVD法によってバリアメタル6(例えば、TaN/Taの積層膜)を形成し、PVD法によるCuシードの形成後、電解めっき法によって銅を配線溝内に埋設し、200℃以上の温度で熱処理処理後、CMP法によって配線溝内以外の余剰の銅を除去することで形成することができる。このような一連の銅配線の形成方法は、当該技術分野における一般的な手法を用いることができる。ここで、CMP(Chemical Mechanical Polishing)法とは、多層配線形成プロセス中に生じるウェハ表面の凹凸を、研磨液をウェハ表面に流しながら回転させた研磨パッドに接触させて研磨することによって平坦化する方法である。溝に埋め込まれた余剰の銅を研磨することによって埋め込み配線(ダマシン配線)を形成したり、層間絶縁膜を研磨することで平坦化を行う。
【0068】
次に、第1配線5を含む層間絶縁膜4上に絶縁性バリア膜7(例えば、SiN膜、膜厚50nm)を形成する(ステップA2;
図2(B)参照)。ここで、絶縁性バリア膜7は、プラズマCVD法によって形成することができる。絶縁性バリア膜7の膜厚は、10nm〜50nm程度であることが好ましい。
【0069】
次に、絶縁性バリア膜7上にハードマスク膜8(例えば、シリコン酸化膜)を形成する(ステップA3;
図2(C)参照)。このとき、ハードマスク膜8は、ドライエッチング加工におけるエッチング選択比を大きく保つ観点から、絶縁性バリア膜7とは異なる材料であることが好ましく、絶縁膜であっても導電膜であってもよい。ハードマスク膜8には、例えば、シリコン酸化膜、TiN、Ti、Ta、TaN等を用いることができる。
【0070】
次に、ハードマスク膜8上にフォトレジスト(図示せず)を用いて開口部をパターニングし、フォトレジストをマスクとしてドライエッチングすることによりハードマスク膜8に開口部パターンを形成し、その後、酸素プラズマアッシング等によってフォトレジストを剥離する(ステップA4;
図3(A)参照)。このとき、ドライエッチングは必ずしも絶縁性バリア膜7の上面で停止している必要はなく、絶縁性バリア膜7の内部にまで到達していてもよい。
【0071】
次に、ハードマスク膜(
図3(A)の8)をマスクとしてハードマスク膜8の開口部から露出する絶縁性バリア膜7をエッチバック(ドライエッチング)することにより、絶縁性バリア膜7において第1配線5に通ずる開口部を形成し、その後、アミン系の剥離液などで有機剥離処理を行うことで、第1配線5の露出面に形成された酸化銅を除去するとともに、エッチバック時に発生したエッチング複生成物などを除去する(ステップA5;
図3(B)参照)。このとき、ハードマスク膜(
図3(A)の8)は、エッチバック中に完全に除去されることが好ましいが、絶縁材料である場合にはそのまま残存してもよい。また、絶縁性バリア膜7の開口部の形状は円形とし、円の直径は30nmから500nmとすることができる。
【0072】
次に、第1配線5を含む絶縁性バリア膜7上に抵抗変化素子膜9(例えば、Ta
2O
5、膜厚15nm)を堆積する(ステップA6;
図3(C)参照)。ここで、抵抗変化素子膜9は、PVD法やCVD法を用いて形成することができる。
【0073】
ステップA6では、絶縁性バリア膜7の開口部はステップA5の有機剥離処理によって水分などが付着しているため、抵抗変化素子膜9の堆積前に350℃程度の温度にて、減圧下で熱処理を加えて脱ガスしておくことが好ましい。この際、銅表面を再度酸化させないよう、真空下、あるいは窒素雰囲気などにするなどの注意が必要である。
【0074】
また、ステップA6では、抵抗変化素子膜9の堆積前に、絶縁性バリア膜7の開口部から露出する第1配線5に対して、350℃程度の減圧下でSiH
4ガスを照射してもよく、このようにすることで、第1配線5の表面をシリサイド化してプロセス中の第1配線5に係る金属(例えば、銅)の拡散を抑制することができるようになる。あるいは、第1配線5を形成する際に、Cuシード層に1atm%程度のAlを添加しておくことで、Cu電界めっき膜のアニール中にAlをCu内部へ拡散させることで、銅を合金化することができるようになる。このような銅の合金化、あるいはシリサイド化は、抵抗変化素子膜9と接する銅自身の物質移動を抑制(銅を安定化)させる効果があり、高温で動作させる場合の信頼性を向上させることができるようになる。
【0075】
また、ステップA6では、抵抗変化素子膜9として、イオン伝導層を用いたタイプではなく、遷移金属酸化物を用いた抵抗変化素子膜を用いる場合には、抵抗変化素子膜9を堆積する前に、第2下部電極(図示せず;
図12の5aに相当)を成膜してもよい。第2下部電極には、例えば、Ti、TiN、W、WN、Ta、TaN、Ru、RuO
x等を用いることができ、それらの積層構造(例えば、TaN(下層)/Ru(上層))であってもよい。
【0076】
次に、抵抗変化素子膜9上に第1上部電極10(例えば、Ru、膜厚10nm)及び第2上部電極11(例えば、Ta、膜厚50nm)をこの順に形成する(ステップA7;
図4(A)参照)。
【0077】
次に、第2上部電極11上にハードマスク膜12(例えば、SiN膜、膜厚30nm)、およびハードマスク膜13(例えば、SiO
2膜、膜厚200nm)をこの順に積層する(ステップA8;
図4(B)参照)。
【0078】
ステップA8において、ハードマスク膜12及びハードマスク膜13は、プラズマCVD法を用いて成膜することができる。ハードマスク膜12、13は当該技術分野における一般的なプラズマCVD法を用いて形成することができる。また、ハードマスク膜12とハードマスク膜13とは、異なる種類の膜であることが好ましく、例えば、ハードマスク膜12をSiN膜とし、ハードマスク膜13をSiO
2膜とすることができる。このとき、ハードマスク膜12は、後述する保護絶縁膜14、および絶縁性バリア膜7と同一材料であることが好ましい。すなわち、抵抗変化素子の周囲を全て同一材料で囲むこと材料界面を一体化し、外部からの水分などの浸入を防ぐとともに、抵抗変化素子自身からの脱離防ぐことができるようになる。
【0079】
次に、ハードマスク膜13上に抵抗変化素子部をパターニングするためのフォトレジスト(図示せず)を形成し、その後、当該フォトレジストをマスクとして、ハードマスク膜12が表れるまでハードマスク膜13をドライエッチングし、その後、酸素プラズマアッシングと有機剥離を用いてフォトレジストを除去する(ステップA9;
図4(C)参照)。
【0080】
次に、ハードマスク膜(
図4(C)の13)をマスクとして、ハードマスク膜12、第2上部電極11、第1上部電極10、抵抗変化素子膜9を連続的にドライエッチングする(ステップA10;
図5(A)参照)。このとき、ハードマスク膜(
図4(C)の13)は、エッチバック中に完全に除去されることが好ましいが、そのまま残存してもよい。
【0081】
ステップA10において、例えば、第2上部電極11がTaの場合にはCl
2系のRIEで加工することができ、第1上部電極10がRuの場合にはCl
2/O
2の混合ガスでRIE加工することができる。また、抵抗変化素子膜9のエッチングでは、下面の絶縁性バリア膜7上でドライエッチングを停止させる必要がある。抵抗変化素子膜9がTaを含む酸化物であり、絶縁性バリア膜7がSiN膜やSiCN膜である場合には、CF
4系、CF
4/Cl
2系、CF
4/Cl
2/Ar系などの混合ガスでエッチング条件を調節することでRIE加工することができる。このようなハードマスクRIE法を用いることで、抵抗変化素子部をレジスト除去のための酸素プラズマアッシングに曝すことなく、抵抗変化素子部を加工をすることができる。また、加工後に酸素プラズマによって酸化処理する場合には、レジストの剥離時間に依存することなく酸化プラズマ処理を照射することができるようになる。
【0082】
次に、ハードマスク膜12、第2上部電極11、第1上部電極10、及び抵抗変化素子膜9を含む絶縁性バリア膜7上に保護絶縁膜14(例えば、SiN膜、30nm)を堆積する(ステップA11;
図5(B)参照)。
【0083】
ステップA11において、保護絶縁膜14は、プラズマCVD法によって形成することができるが、成膜前には反応室内で減圧化に維持する必要があり、このとき抵抗変化素子膜9の側面から酸素が脱離し、イオン伝導層のリーク電流が増加するという問題が生じる。それらを抑制するためには、保護絶縁膜14の成膜温度を250℃以下とすることが好ましい。さらに、成膜前に減圧化で成膜ガスに曝されるため、還元性のガスを用いないことが好ましい。例えば、SiH
4/N
2の混合ガスを高密度プラズマによって、基板温度200℃で形成したSiN膜などを用いることが好ましい。
【0084】
次に、保護絶縁膜14上に、層間絶縁膜15(例えば、シリコン酸化膜)、エッチングストッパ膜16(例えば、SiN膜)、層間絶縁膜17(例えば、シリコン酸化膜)をこの順に堆積し、その後、第2配線18用の配線溝、およびプラグ19用の下穴を形成し、銅デュアルダマシン配線プロセスを用いて、当該配線溝及び当該下穴内にバリアメタル20(例えば、TaN/Ta)を介して第2配線18(例えば、Cu)及びプラグ19(例えば、Cu)を同時に形成し、その後、第2配線18を含む層間絶縁膜17上に絶縁性バリア膜21(例えば、SiN膜)を堆積する(ステップA12;
図1参照)。
【0085】
ステップA12において、第2配線18の形成は、下層配線形成と同様のプロセスを用いることができる。このとき、バリアメタル20と第2上部電極11を同一材料とすることでプラグ19と第2上部電極11の間の接触抵抗を低減し、素子性能を向上(ON時の抵抗変化素子22の抵抗を低減)させることができるようになる。
【0086】
また、ステップA12において、層間絶縁膜15及び層間絶縁膜17はプラズマCVD法で形成することができる。
【0087】
また、ステップA12において、抵抗変化素子22によって形成される段差を解消するため、層間絶縁膜15を厚く堆積し、CMPによって層間絶縁膜15を削り込んで平坦化し、層間絶縁膜15を所望の膜厚としてもよい。
【0088】
実施例1によれば、上部電極10、11の最上部(第2上部電極11)、及びバリアメタル20を同一材料で構成することで、プラグ19のバリアメタル20と抵抗変化素子22の第2上部電極11とが一体化し、接触抵抗を低減し、かつ、密着性の向上による信頼性の向上を実現することができる。また、第1配線5を抵抗変化素子22の下部電極とすることで、すなわち、第1配線5が抵抗変化素子22の下部電極を兼ねることで、抵抗変化素子22の小型化による高密度化を実現するとともに、工程数を簡略化することができる。通常のCuダマシン配線プロセスに追加工程として、2PRのマスクセットを作成するだけで、抵抗変化素子22を搭載することができ、装置の低コスト化を同時に達成することができるようになる。さらに、銅配線によって構成される最先端のデバイスの内部にも抵抗変化素子22を搭載して、装置の性能を向上させることができる。
【実施例2】
【0089】
本発明の実施例2に係る半導体装置について図面を用いて説明する。
図6は、本発明の実施例2に係る半導体装置の構成を模式的に示した部分断面図である。
【0090】
実施例1(
図1参照)では、抵抗変化素子膜(
図1の9)、第1上部電極(
図1の10)、第2上部電極(
図1の11)、及びハードマスク膜(
図1の12)の積層体の上面乃至側面が保護絶縁膜(
図1の14)で覆われた構成となっているが、実施例2では、抵抗変化素子膜9、第1上部電極10、第2上部電極11、及びハードマスク膜12の積層体上に厚膜のハードマスク膜23が形成されており、抵抗変化素子膜9、第1上部電極10、第2上部電極11、ハードマスク膜12、及びハードマスク膜23の側面が保護絶縁膜24で覆われた構成となっている。保護絶縁膜24は、ハードマスク膜23上には形成されていないが、絶縁性バリア膜7上には形成されている。その他の構成は、実施例1と同様である。
【0091】
ハードマスク膜23は、ハードマスク膜12をエッチングする際のハードマスクとなる膜である。ハードマスク膜23は、ハードマスク膜12と異なる種類の膜であることが好ましく、例えば、ハードマスク膜12がSiN膜であれば、ハードマスク膜23をSiO
2膜とすることができる。
【0092】
保護絶縁膜24は、抵抗変化素子25にダメージを与えることなく、さらに抵抗変化素子膜9からの酸素の脱離を防ぐ機能を有する絶縁膜である。保護絶縁膜24には、例えば、SiN膜、SiCN膜等を用いることができる。保護絶縁膜24は、ハードマスク膜12及び絶縁性バリア膜7と同一材料であることが好ましい。同一材料である場合には、保護絶縁膜24と絶縁性バリア膜7及びハードマスク膜12が一体化して、界面の密着性が向上する。
【0093】
次に、本発明の実施例2に係る半導体装置の製造方法について図面を用いて説明する。
図7〜
図10は、本発明の実施例2に係る半導体装置の製造方法を模式的に示した工程断面図である。
【0094】
まず、半導体基板1(例えば、半導体素子が形成された基板)上に層間絶縁膜2(例えば、シリコン酸化膜、膜厚300nm)を堆積し、その後、層間絶縁膜2上にバリア絶縁膜3(例えば、SiN膜、膜厚50nm)を堆積し、その後、バリア絶縁膜3上に層間絶縁膜4(例えば、シリコン酸化膜、膜厚300nm)を堆積し、その後、リソグラフィ法(フォトレジスト形成、ドライエッチング、フォトレジスト除去を含む)を用いて、層間絶縁膜4及びバリア絶縁膜3に配線溝を形成し、その後、当該配線溝にバリアメタル6(例えば、TaN/Ta、膜厚5nm/5nm)を介して第1配線5(例えば、銅)を埋め込み、その後、第1配線5を含む層間絶縁膜4上に絶縁性バリア膜7(例えば、SiN膜、膜厚50nm)を形成し、その後、絶縁性バリア膜7上にハードマスク膜(図示せず、
図2(C)の8に相当;例えば、シリコン酸化膜)を形成し、その後、ハードマスク膜(
図2(C)の8に相当)上にフォトレジスト(図示せず)を用いて開口部をパターニングし、フォトレジストをマスクとしてドライエッチングすることによりハードマスク膜(
図3(A)の8に相当)に開口部パターンを形成し、その後、酸素プラズマアッシング等によってフォトレジストを剥離し、その後、ハードマスク膜(
図3(A)の8に相当)をマスクとしてハードマスク膜(
図3(A)の8に相当)の開口部から露出する絶縁性バリア膜7をエッチバック(ドライエッチング)することにより、絶縁性バリア膜7において第1配線5に通ずる開口部を形成し、その後、アミン系の剥離液などで有機剥離処理を行うことで、第1配線5の露出面に形成された酸化銅を除去するとともに、エッチバック時に発生したエッチング複生成物などを除去する(ステップB1;
図7(A)参照)。ステップB1は、実施例1のステップA1(
図2(A)参照)〜ステップA5(
図3(B)参照)と同様である。
【0095】
次に、第1配線5を含む絶縁性バリア膜7上に抵抗変化素子膜9(例えば、Ta
0.8Si
0.2O
x、膜厚15nm)をRF(Radio Frequency;高周波)スパッタリング法によって堆積し、その後、抵抗変化素子膜9上に第1上部電極10(例えば、Ru、膜厚10nm)及び第2上部電極11(例えば、Ta、膜厚50nm)をこの順に形成する(ステップB2;
図7(B)参照)。
【0096】
ステップB2において、抵抗変化素子膜9のRFスパッタリングでは、Siを20%含む酸化タンタル(Ta
0.8Si
0.2O
x)をターゲットとし、RF電力2KW、室温、Ar/O
2の混合ガス、4mTorrの条件で堆積することができる。
【0097】
また、ステップB2において、第1上部電極10は、DC(Direct Current;直流)スパッタリングによりRuをターゲットとしてDCパワー0.2kW、Arガス、2mTorrの条件で堆積することができる。また、第2上部電極11は、同じくDCスパッタリングによりTaをターゲットとして同条件で堆積することができる。いずれの上部電極10、11も減圧下での堆積であるため、抵抗変化素子膜9からの酸素の脱離を抑制するため、室温で堆積している。
【0098】
次に、第2上部電極11上にハードマスク膜12(例えば、SiN膜、膜厚30nm)、およびハードマスク膜23(例えば、SiO
2膜、膜厚200nm)をこの順に積層する(ステップB3;
図8(A)参照)。ここで、ハードマスク膜12及びハードマスク膜23は、プラズマCVD法を用いて成膜することができる。ハードマスク膜12、23は当該技術分野における一般的なプラズマCVD法を用いて形成することができる。
【0099】
次に、ハードマスク膜23上に抵抗変化素子部をパターニングするためのフォトレジスト(図示せず)を形成し、その後、当該フォトレジストをマスクとして、ハードマスク膜12が表れるまでハードマスク膜23をドライエッチングし、その後、酸素プラズマアッシングと有機剥離を用いてフォトレジストを除去する(ステップB4;
図8(B)参照)。ここで、ハードマスク膜23のドライエッチングは、一般的な平行平板型のドライエッチング装置を用いることができる。
【0100】
次に、ハードマスク膜23をマスクとして、ハードマスク膜12、第2上部電極11、第1上部電極10、抵抗変化素子膜9を連続的にドライエッチングする(ステップB5;
図9(A)参照)。
【0101】
ステップB5において、ハードマスク膜12(例えば、SiN膜)のエッチングは、CF
4/Ar=25/50sccm、4mTorr、ソース400W、基板バイアス90Wの条件で行うことができる。また、第2上部電極11(例えば、Ta)のエッチングは、Cl
2=50sccmにて4mTorr、ソース400W、基板バイアス60Wの条件で行うことができる。また、第1上部電極10(例えば、Ru)のエッチングは、Cl
2/O
2=5/40sccmにて4mTorr、ソース900W、基板バイアス100Wの条件で行うことができる。また、抵抗変化素子膜9(例えば、Ta
0.8Si
0.2O
x)のエッチングは、Cl
2/CF
4/Ar=45/15/15sccm、10mTorr、ソース800W、基板バイアス60Wの条件で行うことができる。このような条件を用いることで、サブトレンチなどの発生を抑制しながら加工をすることができる。このとき、ハードマスク膜23、ハードマスク膜12、第2上部電極11、第1上部電極10、及び抵抗変化素子膜9の平面形状は円形とし、直径は50〜550nmとし、絶縁性バリア膜7の開口部の直径よりも大きい寸法することが好ましい。
【0102】
次に、ハードマスク膜23をマスク、ハードマスク膜12、第2上部電極11、第1上部電極10、及び抵抗変化素子膜9を含む絶縁性バリア膜7上に保護絶縁膜24(例えば、SiN膜、30nm)を堆積する(ステップB6;
図9(B)参照)。
【0103】
ステップB6において、保護絶縁膜24は、SiH
4とN
2を原料ガスとし、基板温度200℃にて、高密度プラズマを用いて形成することができる。NH
3やH
2などの還元系のガスを用いないため、成膜直前の成膜ガス安定化工程において、抵抗変化素子膜9(例えば、Ta
0.8Si
0.2O
x)の還元を抑制することができる。このとき、第1配線5上の絶縁性バリア膜7、保護絶縁膜24、およびハードマスク膜12はSiN膜で同一材料であるため、抵抗変化素子の周囲を一体化して保護することで界面の密着性が向上し、吸湿性や耐水性、および酸素脱離耐性向上し、素子の歩留まりと信頼性を向上することができるようになる。
【0104】
次に、保護絶縁膜24上に、プラズマCVD法を用いて層間絶縁膜15(例えば、シリコン酸化膜、膜厚500nm)を堆積する(ステップB7;
図10(A)参照)。
【0105】
次に、CMPを用いて、層間絶縁膜15を平坦化する(ステップB8;
図10(B)参照)。ここで、層間絶縁膜15の平坦化では、層間絶縁膜15の頂面から約350nmを削り取り、残膜を約150nmとすることができる。このとき、層間絶縁膜15のCMPでは、一般的な、コロイダルシリカ、あるいはセリア系のスラリーを用いて研磨することができる。なお、実施例2では、層間絶縁膜15の平坦化によって、ハードマスク膜23が露出し、ハードマスク膜23及び保護絶縁膜24も平坦化される。
【0106】
次に、ハードマスク膜23及び保護絶縁膜24を含む層間絶縁膜15上に、エッチングストッパ膜16(例えば、SiN膜、膜厚50nm)、層間絶縁膜17(例えば、シリコン酸化膜;膜厚300nm)をこの順に堆積し、その後、第2配線18用の配線溝、およびプラグ19用の下穴を形成し、銅デュアルダマシン配線プロセスを用いて、当該配線溝及び当該下穴内にバリアメタル20(例えば、Ta、膜厚5nm)を介して第2配線18(例えば、Cu)及びプラグ19(例えば、Cu)を同時に形成し、その後、第2配線18を含む層間絶縁膜17上に絶縁性バリア膜21(例えば、SiN膜)を堆積する(ステップB9;
図6参照)。
【0107】
ステップB9において、エッチングストッパ膜16及び層間絶縁膜17は、プラズマCVD法を用いて堆積することができる。
【0108】
また、ステップB9において、第2配線18の形成は、下層配線形成と同様のプロセスを用いることができる。このとき、バリアメタル20と第2上部電極11を同一材料とすることでプラグ19と第2上部電極11の間の接触抵抗を低減し、素子性能を向上(ON時の抵抗変化素子25の抵抗を低減)させることができるようになる。
【0109】
このようにして形成した抵抗変化素子25の上部電極10側に−5Vの電圧を印加することでフォーミングし、100Ωに(低抵抗化)した。逆方向に0.5V電圧を印加することで1GΩに(高抵抗化)なることを確認した。
【0110】
実施例2によれば、実施例1と同様な効果を奏するとともに、抵抗変化素子25に加えて、抵抗変化素子25に接続するプラグ19の外周部もハードマスク膜23(例えば、シリコン酸化膜)を介して保護絶縁膜24(例えば、SiN膜)で覆われるため、プラグ19と抵抗変化素子25の接続部が十分に保護され、信頼性を向上させることができる。
【実施例3】
【0111】
本発明の実施例3に係る半導体装置について図面を用いて説明する。
図11は、本発明の実施例3に係る半導体装置の構成を模式的に示した部分断面図である。
【0112】
実施例2(
図6参照)では、抵抗変化素子(
図6の25)に接続するプラグ(
図6の19)の外周部がハードマスク膜(
図6の23;例えば、シリコン酸化膜)を介して保護絶縁膜(
図6の24;例えば、SiN膜)で覆われた構成となっているが、実施例3では、ハードマスク膜28(例えば、シリコン酸化膜)の膜厚をハードマスク膜(
図6の23)の膜厚よりも薄くし、ハードマスク膜28上に保護絶縁膜29(例えば、SiN膜)が配され、保護絶縁膜29上に層間絶縁膜15が配され、抵抗変化素子30に接続するプラグ19がバリアメタル20を介して層間絶縁膜15、保護絶縁膜29、ハードマスク膜28、及びハードマスク膜12に形成された下穴に埋め込まれている。その他の構成は、実施例2と同様である。
【0113】
ハードマスク膜28は、ハードマスク膜12をエッチングする際のハードマスクとなる膜である。ハードマスク膜28は、ハードマスク膜12と異なる種類の膜であることが好ましく、例えば、ハードマスク膜12がSiN膜であれば、ハードマスク膜28をSiO
2膜とすることができる。
【0114】
保護絶縁膜29は、抵抗変化素子30にダメージを与えることなく、さらに抵抗変化素子膜9からの酸素の脱離を防ぐ機能を有する絶縁膜である。保護絶縁膜29には、例えば、SiN膜、SiCN膜等を用いることができる。保護絶縁膜29は、ハードマスク膜12及び絶縁性バリア膜7と同一材料であることが好ましい。同一材料である場合には、保護絶縁膜29と絶縁性バリア膜7及びハードマスク膜12が一体化して、界面の密着性が向上する。
【0115】
なお、実施例3に係る半導体装置の製造方法については、実施例2のステップB3(
図8(A)参照)にてハードマスク膜28(
図8(A)の23に相当)の膜厚を薄くする点、及び、ステップB8(
図10(B)参照)にてCMPを用いて層間絶縁膜15を平坦化する際に保護絶縁膜29(
図10(B)の24)が露出しないようにする点以外は、実施例2と同様である。
【0116】
実施例3によれば、実施例1と同様な効果を奏するとともに、ハードマスク膜28の膜厚を薄くし、かつ、保護絶縁膜29によって囲まれるエリアが実施例2よりも小さくすることで、層間絶縁膜の薄い最先端のデバイスにも適用することができるようになる。
【実施例4】
【0117】
本発明の実施例4に係る半導体装置について図面を用いて説明する。
図12は、本発明の実施例4に係る半導体装置の構成を模式的に示した部分断面図である。
【0118】
実施例1(
図1参照)では、抵抗変化素子膜(
図1の9)が下部にて第1配線(
図1の5)と直接接し、抵抗変化素子膜(
図1の9)が上部にて第1上部電極(
図1の10)と直接接した構成となっているが、実施例4では、抵抗変化素子膜9が下部にてTaN/Ru積層下部電極5aを介して第1配線5と電気的に接続され、上部にて上部抵抗変化素子膜9aを介して第1上部電極10と電気的に接続された構成となっている。その他の構成は、実施例1と同様である。
【0119】
TaN/Ru積層下部電極5aは、抵抗変化素子31において第1配線5と抵抗変化素子膜9の間に介在した電極膜であり、TaN(下部)/Ru(上部)が積層したものである。ここで、抵抗変化素子膜9において抵抗変化特性に銅を必要とせず、遷移金属層内に形成されるフィラメントを利用してON/OFFを実現する場合、抵抗変化素子膜9と第1配線5の間には、銅バリア性のある材料で分断しておく必要がある。したがって、第1配線5(下部電極)に係る金属(例えば、銅)の拡散バリア性と、抵抗変化素子31のスイッチング特性を考慮し、TaN/Ru積層下部電極5aを抵抗変化素子膜9と第1配線5の間に配置した。TaNは抵抗変化素子中への銅の拡散を防ぎ、Ruは酸化の自由エネルギーが小さいため、スイッチング特性に有利である。
【0120】
上部抵抗変化素子膜9aは、抵抗変化素子膜9の上部に配された抵抗変化素子膜である。上部抵抗変化素子膜9aは、抵抗変化素子膜9(例えば、Ta
2O
5)における金属成分(例えば、タンタル)よりも酸化の自由エネルギーの絶対値の大きい金属の酸化物からなる。上部抵抗変化素子膜9aには、例えば、Ti、あるいはNi等の遷移金属酸化物を用いることができる。上部抵抗変化素子膜9aには、例えば、スパッタリング法を用いた膜厚3nmのTiO膜を用いることができる。この場合、第1上部電極10をRuとし、第2上部電極11をTaとすることができる。上部抵抗変化素子膜9aは、電圧印加したり、電流を流したりすることで、酸化物内部に導電性のパスを形成することで、ON/OFFの制御をすることができる。
【0121】
なお、実施例4に係る半導体装置の製造方法については、実施例1のステップA6(
図3(C)参照)において第1配線5を含む絶縁性バリア膜7上にTaN/Ru積層下部電極5a、抵抗変化素子膜9をこの順に形成し、ステップA7(
図4(A)参照)において抵抗変化素子膜9上に上部抵抗変化素子膜9a、第1上部電極10、及び第2上部電極11をこの順に形成し、ステップA10(
図5(A)参照)においてハードマスク膜(
図4(C)の13)をマスクとして、ハードマスク膜12、第2上部電極11、第1上部電極10、上部抵抗変化素子膜9a、抵抗変化素子膜9、TaN/Ru積層下部電極5aを連続的にドライエッチングする点以外は、実施例1と同様である。
【0122】
実施例4によれば、実施例1と同様な効果を奏するとともに、抵抗変化素子膜9において抵抗変化特性に銅を必要とせず、遷移金属層内に形成されるフィラメントを利用してON/OFFを実現する場合にも適用することができる。
【実施例5】
【0123】
本発明の実施例5に係る半導体装置について図面を用いて説明する。
図13は、本発明の実施例5に係る半導体装置の構成を模式的に示した部分断面図である。
図14は、本発明の実施例5に係る半導体装置の構成を模式的に示した
図13の領域Rの拡大断面図である。
【0124】
実施例5では、半導体基板1上に半導体素子として選択トランジスタ70(MOSFET)が形成され、選択トランジスタ70を含む半導体基板1上に多層配線層(2〜8、15〜21、32〜68)が形成され、多層配線層(2〜7、14〜21、32〜68)の内部に実施例1と同様な抵抗変化素子22を組み込んだものである。抵抗変化素子22の周辺の構成は、実施例1と同様である。
【0125】
多層配線層(2〜8、15〜21、32〜68)は、半導体基板1上にて、層間絶縁膜2、バリア絶縁膜3、層間絶縁膜4、絶縁性バリア膜7、保護絶縁膜14、層間絶縁膜15、エッチングストッパ膜16、層間絶縁膜17、バリア絶縁膜21、層間絶縁膜32、エッチングストッパ膜33、層間絶縁膜34、バリア絶縁膜37、層間絶縁膜38、エッチングストッパ膜39、層間絶縁膜40、バリア絶縁膜43、層間絶縁膜44、エッチングストッパ膜45、層間絶縁膜46、バリア絶縁膜49、層間絶縁膜50、エッチングストッパ膜51、層間絶縁膜52、バリア絶縁膜55、層間絶縁膜56、エッチングストッパ膜57、層間絶縁膜58、バリア絶縁膜61、層間絶縁膜62、及び保護絶縁膜63の順に積層した絶縁積層体を有する。
【0126】
多層配線層は、バリア絶縁膜3に形成された下穴にバリアメタル68を介してプラグ67が埋め込まれている。多層配線層は、層間絶縁膜4及びバリア絶縁膜3に形成された配線溝にバリアメタル6を介して第1配線5が埋め込まれている。多層配線層は、エッチングストッパ膜16及び層間絶縁膜17に形成された配線溝に第2配線18が埋め込まれており、層間絶縁膜15、保護絶縁膜14、及びハードマスク膜12に形成された下穴にプラグ19´が埋め込まれており、第2配線18とプラグ19´が一体となっており、第2配線及びプラグ19´の側面と底面がバリアメタル20によって覆われている。多層配線層は、層間絶縁膜32及びバリア絶縁膜21に形成された下穴、及び、層間絶縁膜34及びエッチングストッパ膜33に形成された配線溝にバリアメタル36を介して配線35が埋め込まれている。多層配線層は、層間絶縁膜38及びバリア絶縁膜37に形成された下穴、及び、層間絶縁膜40及びエッチングストッパ膜39に形成された配線溝にバリアメタル42を介して配線41が埋め込まれている。多層配線層は、層間絶縁膜44及びバリア絶縁膜43に形成された下穴、及び、層間絶縁膜46及びエッチングストッパ膜45に形成された配線溝にバリアメタル48を介して配線47が埋め込まれている。多層配線層は、層間絶縁膜50及びバリア絶縁膜49に形成された下穴、及び、層間絶縁膜52及びエッチングストッパ膜51に形成された配線溝にバリアメタル54を介して配線53が埋め込まれている。多層配線層は、層間絶縁膜56及びバリア絶縁膜55に形成された下穴、及び、層間絶縁膜58及びエッチングストッパ膜57に形成された配線溝にバリアメタル60を介して配線59が埋め込まれている。多層配線層は、層間絶縁膜62及びバリア絶縁膜61に形成された下穴にバリアメタル65を介して配線64が埋め込まれており、層間絶縁膜62上にバリアメタル65を介して配線64が形成されており、配線64上にバリアメタル66が形成されており、バリアメタル66、配線64、及びバリアメタル65を含む層間絶縁膜62上に保護絶縁膜63が形成されている。
【0127】
選択トランジスタ70のソース/ドレイン電極は、対応するプラグ67、第1配線5、プラグ19´、第2配線18、配線35、41、47、53、59を介して最上部の配線64に電気的に接続されている。
【0128】
多層配線層は、絶縁性バリア膜7に形成された開口部にて、下部電極となる第1配線5上に抵抗変化素子膜9、第1上部電極10、及び第2上部電極11の順に積層した抵抗変化素子22が形成されており、第2上部電極11上にハードマスク膜12が形成されており、抵抗変化素子膜9、第1上部電極10、第2上部電極11、及びハードマスク膜12の積層体の上面乃至側面が保護絶縁膜14で覆われている。
【0129】
抵抗変化素子22は、下部電極となる第1配線5と、プラグ19を介して第2配線18と電気的に接続された上部電極10、11と、の間に抵抗変化素子膜9が介在した構成となっている。抵抗変化素子22は、絶縁性バリア膜7に形成された開口部の領域にて抵抗変化素子膜9と第1配線5が直接接しており、第2上部電極11上にてプラグ19と第2上部電極11とがバリアメタル20を介して接続されている。プラグ19は、層間絶縁膜15、保護絶縁膜14、及びハードマスク膜12に形成された下穴にバリアメタル20を介して埋め込まれている。
【0130】
配線(プラグを含む;5、18、19、19´、35、41、47、53、59)には銅を用いることができる。最上層の配線64にはAlを用いることができる。プラグ67にはタングステンを用いることができる。バリアメタル(6、20、36、42、48、54、60)にはTa/TaN積層体を用いることができる。バリアメタル65、66にはTi/TiN積層体を用いることができる。バリアメタル68にはTiNを用いることができる。層間絶縁膜(2、4、15、17、32、34、38、40、44、46、50、52、56、58)には比誘電率3以下のSiOCH膜を用いることができる。層間絶縁膜62にはシリコン酸化膜を用いることができる。保護絶縁膜63にはシリコン窒化酸化膜を用いることができる。第1配線5上の絶縁性バリア膜7にはSiNを用い、絶縁性バリア膜7以外の絶縁性バリア膜(バリア絶縁膜、エッチングストッパ膜を含む;3、16、21、33、37、43、49、55、61)には比誘電率の低いSiCN膜を用いることができる。
【0131】
抵抗変化素子22において、下部電極となる第1配線5には銅を用い、抵抗変化素子膜9にはTaSiOを用い、第1上部電極10にはRuを用い、第2上部電極11にはTaNを用い、第2上部電極11上のハードマスク膜12にはSiN膜を用い、ハードマスク膜12を含む抵抗変化素子22を覆う保護絶縁膜14には高密度プラズマCVDにより形成したSiN膜を用いることができる。
【0132】
実施例5に係る半導体装置の製造方法は、抵抗変化素子22の周辺については実施例1と同様な製造方法により作成することができ、その他の部分については当該技術分野における一般的な手法を用いることができる。
【0133】
なお、実施例5では、実施例1に係る半導体装置と同様な構成の抵抗変化素子22を適用した例を説明したが、これに限定されるものではなく、実施例2〜4に係る半導体装置と同様な構成の抵抗変化素子を適用することもできる。
【0134】
実施例5によれば、実施例1と同様な効果を奏するとともに、抵抗変化素子22上のプラグ(
図14の19)と、抵抗変化素子22の領域外の同一層のプラグ(
図13の19´)とを同時に形成することで、工程の簡略化を図ることができる。また、実施例5のような構造とすることで、最先端のULSI(Ultra-Large Scale Integration)ロジック内部に抵抗変化素子を搭載することができるようになる。
【実施例6】
【0135】
本発明の実施例6に係る半導体装置について説明する。
【0136】
実施例6では、実施例1〜5に係る半導体装置における第2上部電極11及びバリアメタル20に用いる材料を置換したものである。その他の構成は、実施例1〜5と同様である。
【0137】
例えば、
図1を参照すると、上部電極の最上部となる第2上部電極11を窒化チタン(TiN)とし、バリアメタル20を窒化タンタル(TaN)とする。この場合、密着性に優れ、かつ、接続抵抗を低減させることができる。これは、第2上部電極11に含まれる成分がTiNであるのに対し、バリアメタル20に含まれる成分が第2上部電極11と同一成分である窒素(N)を含むTaNであることから、接続抵抗が低減されたためである。
【0138】
また、
図1を参照すると、上部電極の最上部となる第2上部電極11をタンタル(Ta)とし、バリアメタル20を窒化タンタル(TaN)とする。この場合、密着性に優れ、かつ、接続抵抗を低減させることができる。これは、第2上部電極11に含まれる成分がTaであるのに対し、バリアメタル20に含まれる成分が第2上部電極11と同一成分であるTaを含むTaNであることから、接続抵抗が低減されたためである。
【0139】
以上から、)バリアメタル20と直接触する上部電極の最上部(第2上部電極11)は、バリアメタル20に含まれる成分と同一成分を含む材料で構成されていることが好ましい。
【0140】
なお、本発明は、銅多層配線層内に抵抗変化素子を形成する場合、低抵抗かつ高信頼な素子の形成に関するものであれば、あらゆるものに適用することが可能であり、その利用の可能性において何ら限定するものではない。また、抵抗変化素子の構造は、他の膜との積層構造を用いることによっても本発明はなんら限定されることはない。本発明の構成は、銅配線が抵抗変化素子の下部電極、あるいは下部電極と一体化し、かつ抵抗変化素子の上面は銅プラグによって接続されていることである。
【0141】
また、幾つかの好適な実施例に関連付けして本発明を説明したが、これら実施例は単に実例を挙げて発明を説明するためのものであって、限定することを意味するものではないことが理解できる。
【0142】
また、例えば、本発明者によってなされた発明の背景となった利用分野であるCMOS回路を有する半導体製造装置技術に関して詳しく説明し、半導体基板上の銅配線上部に抵抗変化素子を形勢する例について説明したが、本発明はそれに限定されるものではなく、例えば、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、FRAM(Ferro Electric Random Access Memory)、MRAM(Magnetic Random Access Memory)、抵抗変化型メモリ、バイポーラトランジスタ等のようなメモリ回路を有する半導体製品、マイクロプロセッサなどの論理回路を有する半導体製品、あるいはそれらを同時に掲載したボードやパッケージの銅配線上へも適用することができる。また、本発明は半導体装置への、電子回路装置、光回路装置、量子回路装置、マイクロマシン、MEMSなどの接合にも適用することができる。また、本発明ではスイッチ機能での実施例を中心に説明したが、不揮発性と抵抗変化特性の双方を利用したメモリ素子などに用いることもできる。
【0143】
また、できあがりからも本発明による基板の接合方法を確認することができる。具体的には、デバイスの断面をTEM(Transmission Electron Microscope;透過型電子顕微鏡)観察することで、多層配線層に銅配線が用いられていることを確認し、抵抗変化素子が搭載されている場合には、抵抗変化素子の下面が銅配線であり、上部が銅プラグであるかを観察することで確認することができる。さらにTEMに加えEDX(Energy Dispersive X-ray Spectroscopy;エネルギー分散型X線分光法)、EELS(Electron Energy-Loss Spectroscopy;電子エネルギー損失分光法)などによる元素分析を行うことで、第2上部電極とプラグのバリアメタルが同一材料であるかを確認することができる。さらに、同じく組成分析を行うことで、銅配線上の絶縁性バリア膜と抵抗変化素子の保護膜が同一材料であるかを特定することができる。
【0144】
さらに、本明細書を読んだ後であれば、当業者にとって等価な構成要素や技術による数多くの変更および置換が容易であることが明白であるが、このような変更および置換は、添付の請求項の真の範囲および精神に該当するものであることは明白である。