(58)【調査した分野】(Int.Cl.,DB名)
前記半導体封止用樹脂組成物を125℃、7分の条件で硬化させて得られる硬化物の、260℃における曲げ強度が、10MPa以上、100MPa以下である、請求項1に記載の半導体装置の製造方法。
前記半導体封止用樹脂組成物を125℃、7分の条件で硬化させて得られる硬化物のガラス転移温度(Tg)が、100℃以上、250℃以下である、請求項1に記載の半導体装置の製造方法。
前記半導体封止用樹脂組成物を125℃、7分の条件で硬化させて得られる硬化物の、25℃以上、ガラス転移温度(Tg)以下の領域におけるxy平面方向の線膨張係数(α1)が、3ppm/℃以上、15ppm/℃以下である、請求項1に記載の半導体装置の製造方法。
前記半導体封止用樹脂組成物を125℃、7分の条件で硬化させて得られる硬化物の、動的粘弾性測定器を用い、三点曲げモード、周波数10Hz、測定温度260℃で測定した際の貯蔵弾性率(E')が、5×102MPa以上、5×103MPa以下である、請求項1に記載の半導体装置の製造方法。
前記熱剥離性粘着層を剥離する前記工程の後における、前記半導体素子が露出している前記封止材層の一面の接触角が、ホルムアミドを用いた測定時において、70度以下である、請求項1に記載の半導体装置の製造方法。
【発明を実施するための形態】
【0009】
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
【0010】
図1は、本実施の形態における半導体装置100の断面図である。
図2〜
図5は、本実施の形態における半導体装置の製造手順を示す工程断面図である。
【0011】
図1に示すように、本実施の形態の半導体装置100は、半導体素子106、封止材層108、再配線用絶縁樹脂層110、ビア114、再配線回路116、ソルダーレジスト層118、半田ボール120及びパッド122を備える。
図1では、半導体装置100は単数の半導体素子106を有するが、これに限定されず、複数の半導体素子106を有していてもよい。半導体素子106の下面20には複数のパッド122が形成されている。半導体素子106の下面20は、再配線回路116との接続面となる。
【0012】
このような半導体素子106の下面20(接続面)上には、再配線用絶縁樹脂層110が形成されている。再配線用絶縁樹脂層110上にはソルダーレジスト層118が形成されている。ソルダーレジスト層118には、再配線回路116が形成されている。また、再配線用絶縁樹脂層110には、この再配線回路116とパッド122とを電気的に接続するビア114が形成されている。また、再配線回路116上には半田ボール120が形成されている。従って、半導体装置100は、外部端子用の半田ボール120を介して、インターポーザなどの実装基板に実装される。
【0013】
また、半導体素子106は封止材層108で封止されている。言い換えると、半導体素子106の側壁面上及び上面上には封止材層108が形成されている。このような封止材層108の下面30と、半導体素子106の下面20とは同一面を構成している。半導体装置100においては、このような半導体素子106の下面20に加えて、封止材層108の下面30上にも再配線回路116を形成することができる。したがって、上面視において、半導体素子106の下面20の領域の外側に形成された封止材層108の下面30上にも再配線回路116が形成できるので、自由に配線を設計できる。したがって、本実施の形態の半導体装置100によれば、配線の自由度が向上する。
【0014】
本実施の形態における半導体装置の製造方法の概要について説明する。また、本実施の形態の製造方法に用いる、半導体封止用樹脂組成物につい説明する。
本実施の形態における半導体装置の製造方法は、以下の工程を含む。
(チップマウント工程):基材(キャリア102)上に、熱剥離性粘着層(マウントフィルム104)を形成する工程、及び熱剥離性粘着層(マウントフィルム104)の主面10上に、複数の半導体素子106を配置する工程。
(封止材層108形成工程):半導体封止用樹脂組成物を用いて、マウントフィルム104の主面10上の複数の半導体素子106を封止する封止材層108を形成する工程。この封止材層108を形成することにより、半導体素子106及び封止材層108から構成される構造体(再配線用疑似ウエハ200)を形成する。
(再配線用疑似ウエハ200形成工程):マウントフィルム104を剥離することにより、キャリア102から再配線用疑似ウエハ200を分離する工程。これにより、封止材層108の下面30および半導体素子106の下面20が露出する。
また、本実施の形態における半導体装置の製造方法は、以下の工程を含む。
(再配線工程):熱剥離性粘着層(マウントフィルム104)を剥離する工程の後、封止材層108の下面上および半導体素子の下面上に、再配線用絶縁樹脂層110を形成する工程、及び再配線用絶縁樹脂層110上に、再配線回路116を形成する工程。
【0015】
本実施の形態の半導体装置の製造方法においては、封止材層108の封止材として、下記の本発明の半導体封止用樹脂組成物を用いている。この本発明の半導体封止用樹脂組成物は、1分子内に3個以上のエポキシ基を有するエポキシ樹脂(A)と、1分子内に3個以上のフェノール性水酸基を有する硬化剤(B)と、無機充填剤(C)と、を含む。
【0016】
従来の疑似ウエハを用いたパッケージ技術では、キャリア上に再剥離性マウントフィルムを貼り付け、その上に複数のチップを搭載する。複数のチップをエポキシ樹脂組成物を用いて封止して、構造体を得る。この後、当該構造体から、フィルムとともにキャリアを分離することにより、疑似ウエハを形成する。擬似ウエハは、複数のチップ及びエポキシ樹脂組成物の硬化物で構成されている。
【0017】
しかしながら、本発明者らが検討した結果、従来のエポキシ樹脂組成物の組成は、製造プロセスへの影響については特に意図せずに、最終製品の封止特性を求めて選択されているため、構造体からキャリアを分離したとき、疑似ウエハの上面と下面との間に残留応力の差が発生して、疑似ウエハに反りが発生することが判明した。
【0018】
このような反りが発生するメカニズムは、以下のように考えられる。すなわち、疑似ウエハの一面上には、樹脂組成物の硬化物からなる層(封止材層という)及びチップが形成されており、他面上には封止材層のみが形成されている。チップの線膨張係数は小さい。このため、熱処理により樹脂組成物を硬化する際、一面側は他面側に対して線膨張係数が小さいので、他面側は一面側よりも熱収縮する。また、熱履歴により、加熱減量が生じて、他面側の封止材層が熱変形していた。しかし、熱収縮の差や熱変形が起きているときは、疑似ウエハはキャリアと結合しているので、疑似ウエハに残留応力が残る。そして、キャリアが分離されると、残留応力の差により、疑似ウエハの一面側に反りが発生する。このような反りが発生した疑似ウエハの一面上に再配線材料を塗布すると、再配線材料の塗膜特性が低下することがあり得た。このため、従来の半導体装置の製造方法では、歩留まりが低下することがあった。
【0019】
本発明者らは、更に検討した結果、半導体封止用樹脂組成物として、1分子内に3個以上のエポキシ基を有するエポキシ樹脂(A)と、1分子内に3個以上のフェノール性水酸基を有する硬化剤(B)を含むものを採用することにより、再配線用疑似ウエハ200の一面側(半導体素子106が露出している面側)における反りが低減することを見出し、本発明を完成させた。
【0020】
このように再配線用疑似ウエハ200の反りが低減できるメカニズムは明確ではないが、次のように推察される。すなわち、エポキシ樹脂(A)及び硬化剤(B)は、それぞれ1分子内に3個以上の官能基(以下、多官能基と称することもある)として、エポキシ基、フェノール性水酸基を有している。これらの多官能基が反応することにより密度が高い架橋構造が構築される。このため、線膨張係数が低下する。また、反応性が高くなるので、低温における反応効率が向上する。また、架橋構造または低温反応特性により、Tgが向上するので、耐熱性も向上する。このため、高温収縮特性、低温硬化性、及び高温耐熱性のバランスに優れる半導体封止用樹脂組成物を実現できる。このような特性のバランスに優れた半導体封止用樹脂組成物の硬化物(封止材層108)は、硬化時や熱剥離性粘着層の除去時における熱履歴により、熱収縮が起きたり、熱変形したりすることが抑制される。したがって、半導体封止用樹脂組成物を硬化して得られた封止材層108を用いることにより、再配線用疑似ウエハ200において、熱収縮や熱変形に起因して発生していた残留応力の差の発生を低減できる。よって、再配線用疑似ウエハ200の反りを低減できる、と推察される。
【0021】
以下、本発明の半導体装置100の各製造工程について説明する。
【0022】
(チップマウント工程)
まず、
図2(a)に示すように、板状のキャリア102上に、熱剥離性粘着層(マウントフィルム104)を配置する。例えば、キャリア102の表面上に、フィルム状のマウントフィルム104を載置することができる。
キャリア102の形状および材料としては、特に限定されないが、例えば、上面視において円形形状または多角形形状の金属板またはシリコン基板を用いることができる。
また、マウントフィルム104は、好ましくは主剤と発泡剤とを含む。この主剤としては、特に制限はなく、例えば、アクリル系粘着剤、ゴム系粘着剤、スチレン・共役ジエンブロック共重合体であり、好ましくはアクリル系粘着剤である。また、発泡剤としては、特に制限はなく、例えば、無機系、有機系等の各種発泡剤である。マウントフィルム104の熱剥離性は、例えば粘着剤を発泡性のものとすることによって得られており、この粘着剤が発泡する温度まで加熱すると、粘着剤の接着力が実質的になくなるため、マウントフィルム104を被着体から容易に剥離することができる。
【0023】
続いて、
図2(b)に示すように、平面視において、マウントフィルム104の主面10上に、複数の半導体素子106を離間して配置する。例えば、半導体素子106は、平面視において、縦横方向における配置数が同一でも異なってもよく、密度の向上や単位半導体チップ当たりの端子面積を確保する等の各種の観点から、点対称や格子状等に配置されてもよい。また、この半導体素子106のチップサイズや、隣接する半導体素子106間の離間部の距離においては、特に限定されないが、マウントフィルム104の載置面積を効率的に使用するよう決定される。半導体素子106の接続面(下面20)がマウントフィルム104の主面10に接するように、マウントフィルム104を介してキャリア102及び半導体素子106を接着固定する。
【0024】
(封止材層108形成工程)
続いて、
図3(a)に示すように、マウントフィルム104の主面10上に載置された複数の半導体素子106を、封止材層108で封止する。すなわち、半導体素子106の側壁上および上面上に封止材層108を形成するとともに、半導体素子106の離間部を埋め込むように封止材層108を形成する。このため、半導体素子106の下面20(接続面)と封止材層108の下面30(マウントフィルム104剥離面)とは同一面を構成している。本実施の形態において、同一面とは、連続した面であり、かつ凹凸の高低差が好ましくは1mm以下、より好ましくは100μm以下のものを指す。このような封止材層108は、本発明に係る半導体封止用樹脂組成物を硬化することにより形成している。例えば、封止材層108は、顆粒の半導体封止用樹脂組成物を用い、圧縮成形を行うことによって形成することができる。
【0025】
[半導体封止用樹脂組成物]
ここで、本発明に係る半導体封止用樹脂組成物の各成分等について説明する。
本発明に係る半導体封止用樹脂組成物は、少なくともエポキシ樹脂(A)と、硬化剤(B)と、無機充填剤(C)と、を含む。
【0026】
[エポキシ樹脂(A)]
まず、エポキシ樹脂(A)について説明する。このエポキシ樹脂(A)としては、1分子内に3個以上のエポキシ基を有するものであれば、特に分子量や構造は限定されるものではない。例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ヒドロキシナフタレン又はジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド化合物と、を酸触媒下において反応させて得られるノボラック型ナフトール樹脂をエポキシ化して得られる樹脂等のナフトール型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂等のエポキシ樹脂、脂環式エポキシ等の脂肪族エポキシ樹脂が挙げられる。具体的には、メトキシナフタレン・クレゾール・ホルムアルデヒド共縮合型エポキシ樹脂(例えば、DIC株式会社製、EXA−7320)、トリフェニルメタン型エポキシ樹脂、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂(例えば、JER株式会社製、E−1032H60)、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタン等のナフトール型エポキシ樹脂(例えば、DIC株式会社製、HP−4700)、ビフェニルアラルキル型エポキシ樹脂(例えば、日本化薬株式会社製、NC−3000)が挙げられる。これらは単独でも2種以上混合して使用しても良い。
【0027】
また、エポキシ樹脂(A)は、前記エポキシ樹脂の他に、1分子内に1個または2個のエポキシ基を有する化合物(A−1)をさらに含有していてもよい。化合物(A−1)としては、グリシドキシフェニルエーテル、グリシドキシナフチルエーテルなどの1分子内に1個のエポキシ基を有する化合物、ビフェノール型エポキシ樹脂(例えば、JER株式会社製、YL6677)、ジヒドロキシアントラセン型エポキシ樹脂(1,4−ジヒドロ−9,10−アントラセンジオール・1−クロロ−2,3−エポキシプロパン重縮合物、JER株式会社製、YL−7310)、(テトラメチル有)ビフェニル型エポキシ(例えば、JER株式会社製、YX−4000シリーズ)、テトラメチルビスフェノールF型エポキシ(例えば、東都化成株式会社製、YSLV−80XY)、ビスフェノールA型エポキシ(例えば、JER株式会社製、YL6810)などの1分子内に2個のエポキシ基を有する化合物が挙げられる。
エポキシ樹脂(A)全体に占める、化合物(A−1)の含有量は、ゲルパーミエーションクロマトグラフ(GPC)の面積法により求められる含有量で、50面積%以下が好ましく、より好ましくは40面積%以下である。1〜2核体の合計量を上記上限値以下とすることにより、本発明の半導体封止用樹脂組成物の耐熱性の低下を抑制することができる。
また、エポキシ樹脂(A)と化合物(A−1)は、それぞれを個別に本発明の半導体封止用樹脂組成物の配合時に混合しても、あらかじめエポキシ樹脂(A)と化合物(A−1)を溶融混合、粉体での混合、溶媒による混合等を施して配合してもよい。
本発明におけるゲルパーミエーションクロマトグラフィー(GPC)測定は次のように行なわれる。GPC装置は、ポンプ、インジェクター、ガードカラム、カラム及び検出器から構成され、溶媒にはテトラヒドロフラン(THF)を用いる。ポンプの流速は0.5ml/分にて測定を行なう。これよりも高い流速では目的の分子量の検出精度が低くなるため好ましくない。また、上記の流速で精度よく測定を行なうためには流量精度のよいポンプを使用することが必要であり、流量精度は0.10%以下が好ましい。ガードカラムには市販のガードカラム(例えば、東ソー(株)製TSK GUARDCOLUMN HHR−L:径6.0mm、管長40mm)、カラムには市販のポリスチレンジェルカラム(東ソー(株)製TSK−GEL GMHHR−L:径7.8mm、管長30mm)を複数本直列接続させる。検出器には示差屈折率計(RI検出器。例えば、WATERS社製示差屈折率(RI)検出器W2414)を用いる。測定に先立ち、ガードカラム、カラム及び検出器内部は40℃に安定させておく。試料には、濃度3〜4mg/mlに調整したエポキシ樹脂(A)のTHF溶液を用意し、これを約50〜150μlインジェクターより注入して測定を行なう。試料の解析にあたっては、単分散ポリスチレン(以下PS)標準試料により作成した検量線を用いる。検量線はPSの分子量の対数値とPSのピーク検出時間(保持時間)をプロットし、3次式に回帰したものを用いる。検量線作成用の標準PS試料としては、昭和電工(株)製ShodexスタンダードSL−105シリーズの品番S−1.0(ピーク分子量1060)、S−1.3(ピーク分子量1310)、S−2.0(ピーク分子量1990)、S−3.0(ピーク分子量2970)、S−4.5(ピーク分子量4490)、S−5.0(ピーク分子量5030)、S−6.9(ピーク分子量6930)、S−11(ピーク分子量10700)、S−20(ピーク分子量19900)を使用する。
【0028】
エポキシ樹脂(A)の含有量の下限値は、半導体封止用樹脂組成物の合計値100質量%に対して、とくに限定されないが、好ましくは1質量%以上30質量%以下、より好ましくは5質量%以上20質量%以下である。
【0029】
[硬化剤(B)]
次に、硬化剤(B)について説明する。硬化剤(B)は、特に限定されないが、1分子内に3個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂が挙げられる。これらは、1種類を単独で用いても2種類以上を併用してもよい。具体的には、2−ヒドロキシベンズアルデヒドとホルムアルデヒドとフェノールの反応生成物(例えば、エア・ウォーター株式会社製、HE910−20)、トリフェニルメタン型硬化剤(例えば、明和化成株式会社製、MEH−7500シリーズ)、1−ナフトール・1,4−ベンゼンジメタノール(又は1,4−ビス(メトキシメチル)ベンゼン)の重縮合物(例えば、新日鐵化学株式会社製、SN−485)、ビフェニレン骨格フェノールアラルキル型硬化剤、ビフェニルアラルキル型硬化剤(例えば、明和化成株式会社製、MEH−7851シリーズ/又は、日本化薬株式会社製、GPH−65)、フェノールノボラック型硬化剤(例えば、住友ベークライト株式会社製、PRシリーズ:PR−HF−3)が挙げられる。このようなフェノール樹脂系硬化剤により、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスが良好となる。特に、硬化性の点から、たとえばフェノール樹脂系硬化剤の水酸基当量は、90g/eq以上、250g/eq以下とすることができる。
【0030】
さらに、併用できる硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤等を挙げることができる。
【0031】
重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。
【0032】
触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)などの3級アミン化合物;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。
【0033】
縮合型の硬化剤としては、例えば、メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。
【0034】
このような他の硬化剤を併用する場合において、フェノール樹脂系硬化剤の含有量の下限値としては、全硬化剤(B)に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。配合割合が上記範囲内であると、耐燃性、耐半田性を保持しつつ、良好な流動性を発現させることができる。また、フェノール樹脂系硬化剤の含有量の上限値としては、特に限定されないが、全硬化剤(B)に対して、100質量%以下であることが好ましい。
【0035】
本発明の半導体封止用樹脂組成物に対する硬化剤(B)の含有量の合計値の下限値については、特に限定されるものではないが、半導体封止用樹脂組成物の合計値100質量%に対して、0.8質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、良好な硬化性を得ることができる。また、本発明の半導体封止用樹脂組成物に対する硬化剤(B)の含有量の合計値の上限値についても、特に限定されるものではないが、全半導体封止用樹脂組成物の合計値100質量%に対して、12質量%以下であることが好ましく、10質量%以下であることがより好ましい。硬化剤(B)の含有量の上限値が上記範囲内であると、良好な耐半田性を得ることができる。
【0036】
なお、硬化剤(B)としてのフェノール樹脂と、エポキシ樹脂(A)とは、全エポキシ樹脂(A)のエポキシ基数(EP)と、全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、0.8以上、1.3以下となるように配合することが好ましい。当量比が上記範囲内であると、得られる半導体封止用樹脂組成物を成形する際、十分な硬化特性を得ることができる。
【0037】
[無機充填剤(C)]
本発明の半導体封止用樹脂組成物に用いられる無機充填剤(C)としては、半導体封止用樹脂組成物の技術分野で一般的に用いられる無機充填剤を使用することができる。例えば、溶融シリカ、球状シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機充填剤の粒径は、金型キャビティへの充填性の観点から、0.01μm以上、150μm以下であることが望ましい。
【0038】
無機充填剤(C)の含有量は、半導体封止用樹脂組成物の合計値100質量%に対して、好ましくは80質量%以上であり、より好ましくは83質量%以上であり、さらに好ましくは86質量%以上である。下限値が上記範囲内であると、得られる半導体封止用樹脂組成物の硬化に伴う吸湿量の増加や、強度の低下が低減できる。これにより、良好な耐半田クラック性を有する硬化物を得ることができる。また、無機充填剤(C)の量は、半導体封止用樹脂組成物の合計値100質量%に対して、好ましくは95質量%以下であり、より好ましくは93質量%以下であり、さらに好ましくは91質量%以下である。上限値が上記範囲内であると、得られる半導体封止用樹脂組成物は良好な流動性を有するとともに、良好な成形性を備える。
【0039】
また、無機充填剤と、後述するような水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物や、硼酸亜鉛、モリブデン酸亜鉛、三酸化アンチモン等の無機系難燃剤とを併用する場合には、これらの無機系難燃剤と上記無機充填剤の合計量は、上記無機充填剤(C)の含有量の範囲内とすることが望ましい。
【0040】
[その他の成分]
本発明の半導体封止用樹脂組成物は、硬化促進剤(D)を含んでもよい。硬化促進剤(D)は、エポキシ樹脂のエポキシ基とフェノール樹脂系硬化剤(B)の水酸基との反応を促進するものであればよく、一般に使用される硬化促進剤(D)を用いることができる。
【0041】
硬化促進剤(D)の具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8−ジアザビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、2−メチルイミダゾール等の窒素原子含有化合物が挙げられる。これらのうち、硬化性の観点からはリン原子含有化合物が好ましく、流動性と硬化性のバランスの観点からは、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有する触媒がより好ましい。流動性という点を考慮するとテトラ置換ホスホニウム化合物が特に好ましく、また耐半田性の観点では、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が特に好ましく、また潜伏的硬化性という点を考慮すると、ホスホニウム化合物とシラン化合物との付加物が特に好ましい。また、連続成形性の観点では、テトラ置換ホスホニウム化合物が好ましい。これらの中で、ノリ残り低減の観点から、有機ホスフィン、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物等のリン原子含有化合物が特に好ましい。
【0042】
本発明の半導体封止用樹脂組成物で用いることができる有機ホスフィンとしては、例えば、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
【0043】
本発明の半導体封止用樹脂組成物で用いることができるホスホベタイン化合物としては、例えば下記一般式(9)で表される化合物等が挙げられる。
【0045】
一般式(9)において、X1は炭素数1〜3のアルキル基を表し、Y1はヒドロキシル基を表し、fは0〜5の整数であり、gは0〜4の整数である。
【0046】
一般式(9)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。
【0047】
本発明の半導体封止用樹脂組成物で用いることができるホスフィン化合物とキノン化合物との付加物としては、例えば下記一般式(10)で表される化合物等が挙げられる。
【0049】
一般式(10)において、Pはリン原子を表し、R21、R22及びR23は、互いに独立して、炭素数1〜12のアルキル基又は炭素数6〜12のアリール基を表し、R24、R25及びR26は、互いに独立して、水素原子又は炭素数1〜12の炭化水素基を表し、R24とR25は互いに結合して環を形成していてもよい。
【0050】
ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換又はアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基等の置換基としては1〜6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
【0051】
またホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o−ベンゾキノン、p−ベンゾキノン、アントラキノン類が挙げられ、中でもp−ベンゾキノンが保存安定性の点から好ましい。
【0052】
ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
【0053】
一般式(10)で表される化合物において、リン原子に結合するR21、R22及びR23がフェニル基であり、かつR24、R25及びR26が水素原子である化合物、すなわち1,4−ベンゾキノンとトリフェニルホスフィンを付加させた化合物が半導体封止用樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。
【0054】
本発明の半導体封止用樹脂組成物に用いることができる硬化促進剤(D)の含有量の下限値は、全半導体封止用樹脂組成物の合計値100質量%に対して、0.1質量%以上であることが好ましい。硬化促進剤(D)の含有量の下限値が、上記範囲内であると、充分な硬化性を得ることができる。また、硬化促進剤(D)の含有量の上限値は、全半導体封止用樹脂組成物の合計値100質量%に対して、1質量%以下であることが好ましい。硬化促進剤(D)の含有量の上限値が上記範囲内であると、充分な流動性を得ることができる。
【0055】
本発明では、さらに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)(以下、単に「化合物(E)」と称することもある)を用いることができる。芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)は、これを用いることにより、エポキシ樹脂(A)とフェノール樹脂系硬化剤(B)との架橋反応を促進させる硬化促進剤(D)として、潜伏性を有しないリン原子含有硬化促進剤を用いた場合であっても、半導体封止用樹脂組成物の溶融混練中での反応を抑えることができ、安定して半導体封止用樹脂組成物を得ることができる。また、化合物(E)は、半導体封止用樹脂組成物の溶融粘度を下げ、流動性を向上させる効果も有するものである。化合物(E)としては、下記一般式(12)で表される単環式化合物、又は下記一般式(13)で表される多環式化合物等を用いることができ、これらの化合物は水酸基以外の置換基を有していてもよい。
【0057】
一般式(12)において、R31及びR35のいずれか一方が水酸基であり、他方は水素原子、水酸基又は水酸基以外の置換基であり、R32、R33及びR34は、水素原子、水酸基又は水酸基以外の置換基である。
【0059】
一般式(13)において、R36及びR42のいずれか一方が水酸基であり、他方は水素原子、水酸基又は水酸基以外の置換基であり、R37、R38、R39、R40及びR41は、水素原子、水酸基又は水酸基以外の置換基である。
【0060】
一般式(12)で表される単環式化合物の具体例としては、例えば、カテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、一般式(13)で表される多環式化合物の具体例としては、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びこれらの誘導体が挙げられる。これらのうち、流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(E)を、具体的には、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びその誘導体等のナフタレン環を有する化合物とすることができる。これらの化合物(E)は1種類を単独で用いても2種以上を併用してもよい。
【0061】
化合物(E)の含有量の下限値は、全半導体封止用樹脂組成物の合計値100質量%に対して、0.01質量%以上であることが好ましく、より好ましくは0.03質量%以上、特に好ましくは0.05質量%以上である。化合物(E)の含有量の下限値が上記範囲内であると、半導体封止用樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、化合物(E)の含有量の上限値は、全半導体封止用樹脂組成物の合計値100質量%に対して、1質量%以下であることが好ましく、より好ましくは0.8質量%以下、特に好ましくは0.5質量%以下である。化合物(E)の含有量の上限値が上記範囲内であると、半導体封止用樹脂組成物の硬化性の低下や硬化物の物性の低下を引き起こす恐れが少ない。
【0062】
本発明の半導体封止用樹脂組成物においては、エポキシ樹脂(A)と無機充填剤(C)との密着性を向上させるため、シランカップリング剤等のカップリング剤(F)を添加することができる。カップリング剤(F)としては、エポキシ樹脂(A)と無機充填剤(C)との間で反応し、エポキシ樹脂(A)と無機充填剤(C)の界面強度を向上させるものであればよく、特に限定されるものではないが、例えばエポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等が挙げられる。また、カップリング剤(F)は、前述の化合物(E)と併用することで、半導体封止用樹脂組成物の溶融粘度を下げ、流動性を向上させるという化合物(E)の効果を高めることもできるものである。
【0063】
エポキシシランとしては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。また、アミノシランとしては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナン等が挙げられる。また、ウレイドシランとしては、例えば、γ−ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられる。アミノシランの1級アミノ部位をケトン又はアルデヒドを反応させて保護した潜在性アミノシランカップリング剤として用いてもよい。また、アミノシランとしては、2級アミノ基を有してもよい。また、メルカプトシランとしては、例えば、γ−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシランのほか、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィドのような熱分解することによってメルカプトシランカップリング剤と同様の機能を発現するシランカップリング剤など、が挙げられる。またこれらのシランカップリング剤は予め加水分解反応させたものを配合してもよい。これらのシランカップリング剤は1種類を単独で用いても2種類以上を併用してもよい。
【0064】
耐半田性と連続成形性のバランスという観点では、メルカプトシランが好ましく、流動性の観点では、アミノシランが好ましく、シリコンチップ表面のポリイミドや基板表面のソルダーレジストなどの有機部材への密着性という観点ではエポキシシランが好ましい。
【0065】
本発明の半導体封止用樹脂組成物に用いることができるシランカップリング剤等のカップリング剤(F)の含有量の下限値としては、全半導体封止用樹脂組成物の合計値100質量%に対して、0.01質量%以上が好ましく、より好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。シランカップリング剤等のカップリング剤(F)の含有量の下限値が上記範囲内であれば、エポキシ樹脂(A)と無機充填剤(C)との界面強度が低下することがなく、半導体装置における良好な耐半田クラック性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の含有量の上限値としては、全半導体封止用樹脂組成物の合計値100質量%に対して、1質量%以下が好ましく、より好ましくは0.8質量%以下、特に好ましくは0.6質量%以下である。シランカップリング剤等のカップリング剤(F)の含有量の上限値が上記範囲内であれば、エポキシ樹脂(A)と無機充填剤(C)との界面強度が低下することがなく、半導体装置における良好な耐半田クラック性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の含有量が上記範囲内であれば、半導体封止用樹脂組成物の硬化物の吸水性が増大することがなく、半導体装置における良好な耐半田クラック性を得ることができる。
【0066】
本発明の半導体封止用樹脂組成物においては、難燃性を向上させるために無機難燃剤(G)を添加することができる。なかでも燃焼時に脱水、吸熱することによって燃焼反応を阻害する金属水酸化物、又は複合金属水酸化物が燃焼時間を短縮することができる点で好ましい。金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化ジルコニアを挙げることができる。複合金属水酸化物としては、2種以上の金属元素を含むハイドロタルサイト化合物であって、少なくとも一つの金属元素がマグネシウムであり、かつ、その他の金属元素がカルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅、又は亜鉛から選ばれる金属元素であればよく、そのような複合金属水酸化物としては、水酸化マグネシウム・亜鉛固溶体が市販品で入手が容易である。なかでも、耐半田性と連続成形性のバランスの観点からは水酸化アルミニウム、水酸化マグネシウム・亜鉛固溶体が好ましい。無機難燃剤(G)は、単独で用いても、2種以上用いてもよい。また、連続成形性への影響を低減する目的から、シランカップリング剤などの珪素化合物やワックスなどの脂肪族系化合物などで表面処理を行って用いてもよい。
【0067】
本発明の半導体封止用樹脂組成物では、前述した成分以外に、カーボンブラック、ベンガラ、酸化チタン等の着色剤;カルナバワックス等の天然ワックス;ポリエチレンワックス等の合成ワックス;ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;シリコーンオイル、シリコーンゴム等の低応力添加剤を適宜配合してもよい。
【0068】
本発明の半導体封止用樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)及び無機充填剤(C)、ならびに上述のその他の添加剤等を、例えば、ミキサー等を用いて常温で均一に混合し、その後、必要に応じて、加熱ロール、ニーダー又は押出機等の混練機を用いて溶融混練し、続いて必要に応じて冷却、粉砕することにより、所望の分散度や流動性等に調整することができる。
【0069】
また、本発明に係る半導体封止用樹脂組成物においては、誘電分析装置を用いて、測定温度125℃、測定周波数100Hzの条件で測定した際の、半導体封止用樹脂組成物の飽和イオン粘度に到達する時刻が、測定開始から、好ましくは100秒以上、より好ましくは180秒以上、さらに好ましくは300秒以上であり、一方、好ましくは900秒以下、より好ましくは800秒以下、さらに好ましくは700秒以下である。飽和イオン粘度に達する時刻とは、例えばイオン粘度の増加が停止した時刻をいう。半導体封止用樹脂組成物の飽和イオン粘度に到達する時刻が上記範囲内とすることにより、低温成形性に優れた半導体封止用樹脂組成物が得られる。
【0070】
また、本発明に係る半導体封止用樹脂組成物においては、誘電分析装置を用いて、測定温度125℃、測定周波数100Hzの条件で測定した際の、半導体封止用樹脂組成物の最低イオン粘度(Log Ion Viscosity)が、好ましくは6以上8以下であり、かつ、測定開始からの経過時間が600秒後のイオン粘度が、好ましくは9以上11以下である。最低イオン粘度の出現時刻は樹脂系としての溶け易さを表すものであり、最低イオン粘度の値は樹脂系として最低粘度を表すものである。半導体封止用樹脂組成物の最低イオン粘度を上記範囲内とすることにより、低温成形性に優れた半導体封止用樹脂組成物が得られる。
【0071】
また、本発明に係る半導体封止用樹脂組成物においては、高化式粘度測定装置(島津製作所(株)製、CFT500)を用いて、ノズル径0.5mmφ、長さ1mmのノズルを使用して、測定温度125℃、荷重40kgで測定した際の、半導体封止用樹脂組成物の高化式粘度が、好ましくは20Pa・s以上200Pa・s以下であり、より好ましくは30Pa・s以上180Pa・s以下である。半導体封止用樹脂組成物の高化式粘度を上記範囲内とすることにより、低温成形性に優れた半導体封止用樹脂組成物が得られる。
【0072】
このように、本実施の形態において、例えば、硬化促進剤(D)を適切に選択すること、又はトリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能型エポキシ樹脂、ならびに、トリフェノールメタン型フェノール樹脂、トリフェノールプロパン型フェノール樹脂、アルキル変性トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂を使用することにより、低温成形性に優れた半導体封止用樹脂組成物が得られる。
【0073】
このような低温成形性に優れた半導体封止用樹脂組成物を用いることにより、封止材層108を形成する工程(圧縮成形工程)は、好ましくは100℃以上150℃以下、より好ましくは115℃以上135℃以下、更に好ましくは120℃以上130℃以下の温度条件で硬化処理を行うことができる。
【0074】
ここで、本発明者らは、メカニズムは不明だが、半導体封止用樹脂組成物の成形温度を低くするとノリ残り面積が低減することを見出した。したがって、半導体封止用樹脂組成物の硬化処理を上記温度範囲内とすることにより、すなわち、硬化温度を低減することにより、マウントフィルム104のノリ残り面積を低減させることができる。従って、封止材層108を形成する工程における成形温度を上記上限値以下とすることにより、ノリ残りを低減させることができる。一方、成形温度を上記下限値以上とすることにより、封止材層108の成形性を向上させることができる。とくに、成形温度をより好ましい範囲内とすることにより、ノリ残りの低減と封止材層108の成形性とのバランスに優れた半導体装置を実現することができる。
【0075】
ノリ残り面積は、例えば、次の手法により得られる。まず、成形品(封止材層108の下面30)に残ったノリ面積をデジタルマイクロスコープで測定する。ノリ面積を封止材層108の下面30(ただし、半導体素子106の下面20の面積を除く)の面積で割って、その割合(%)を算出する。なお、ほぼ全面にノリが残っている場合は測定が困難となり得る。この場合は詳細な算出を行わずに例えば、ノリ残り面積は80%以上と判断しても良い。
【0076】
成形品のサンプルの作成条件としては、例えば、次の通りである。まず、金属板(アルミ板等)に熱剥離性粘着層(例えば、リバアルファ(登録商標))を貼る(熱剥離性粘着層の面積を50×50mmとする)。半導体封止用樹脂組成物を金型に充填して、圧縮成型(125℃で7分硬化)する。その後、ポストキュア(150℃、1時間)する。室温まで冷やしてから、180℃のホットプレート上で金属板から硬化物を剥がす。その後、180℃で、半導体封止用樹脂組成物の硬化物からリバアルファを剥がすことにより、成形品のサンプルを得る。
【0077】
上記ノリ残り面積としては、好ましくは0%以上10%以下であり、より好ましくは8%以下であり、さらに好ましくは5%以下である。ノリ残り面積を上限値以下とすることにより、封止材層108の下面30上における再配線材料の塗膜特性を向上させることができるので、歩留まりに優れた半導体装置が得られる。
【0078】
[本発明に係る顆粒状の半導体封止用樹脂組成物の製造方法]
次に、本発明の顆粒状の半導体封止用樹脂組成物を得る方法について説明する。
本発明に係る顆粒状の半導体封止用樹脂組成物を得る方法としては、本発明の粒度分布や顆粒密度を満足すれば特に限定されるものではないが、例えば、複数の小孔を有する円筒状外周部と円盤状の底面から構成される回転子の内側に、溶融混練された樹脂組成物を供給し、その半導体封止用樹脂組成物を、回転子を回転させて得られる遠心力によって小孔を通過させて得る方法(以下、「遠心製粉法」とも言う。);各原料成分をミキサーで予備混合後、ロール、ニーダー又は押出機等の混練機により加熱混練後、冷却、粉砕工程を経て粉砕物としたものを、篩を用いて粗粒と微紛の除去を行って得る方法(以下、「粉砕篩分法」とも言う。);各原料成分をミキサーで予備混合後、スクリュー先端部に小径を複数配置したダイを設置した押出機を用いて、加熱混練を行うとともに、ダイに配置された小孔からストランド状に押し出されてくる溶融樹脂をダイ面に略平行に摺動回転するカッターで切断して得る方法(以下、「ホットカット法」とも言う。)等が挙げられる。いずれの方法でも混練条件、遠心条件、篩分条件、切断条件等を選ぶことにより本発明の粒度分布や顆粒密度を得ることができる。特に好ましい製法としては、遠心製粉法であり、これにより得られる顆粒状の半導体封止用樹脂組成物は、本発明の粒度分布や顆粒密度を安定して発現させることができるため、搬送路上での搬送性や固着防止に対して好ましい。また、遠心製粉法では、粒子表面をある程度滑らかにすることができるため、粒子同士が引っかかったり、搬送路面との摩擦抵抗が大きくなったりすることもなく、搬送路への供給口でのブリッジ(詰まり)の防止、搬送路上での滞留の防止に対しても好ましい。また、遠心製粉法では、溶融した状態から遠心力を用いて形成させるため、粒子内に空隙がある程度含まれた状態となり、顆粒密度をある程度低くできるため、圧縮成形における搬送性に関して有利である。
【0079】
一方、粉砕篩分法は、篩分により発生する多量の微粉及び粗粒の処理方法を検討する必要はあるものの、篩分装置等は半導体封止用樹脂組成物の既存製造ラインで使用されているものであるため、従来の製造ラインをそのまま使用できる点で好ましい。また、粉砕篩分法は、粉砕前に溶融樹脂をシート化する際のシート厚の選択、粉砕時の粉砕条件やスクリーンの選択、篩分時の篩の選択等、本発明の粒度分布を発現させるための独立して制御可能な因子が多いため、所望の粒度分布に調整するための手段の選択肢が多い点で好ましい。また、ホットカット法も、例えば、押出機の先端にホットカット機構を付加する程度で、従来の製造ラインをそのまま利用できる点で好ましい。
【0080】
次に、本発明に係る顆粒状の半導体封止用樹脂組成物を得るための製法の一例である遠心製粉法について、図面を用いてより詳細に説明する。
図6に顆粒状の半導体封止用樹脂組成物を得るための、半導体封止用樹脂組成物の溶融混練から顆粒状の半導体封止用樹脂組成物の捕集までの一実施例の概略図を、
図7に回転子及び回転子の円筒状外周部を加熱するための励磁コイルの一実施例の断面図を、
図8に溶融混練された半導体封止用樹脂組成物を回転子に供給する2重管式円筒体の一実施例の断面図を、それぞれ示す。
【0081】
二軸押出機309で溶融混練された半導体封止用樹脂組成物は、内壁と外壁の間に冷媒を通し冷却された2重管式円筒体305を通して回転子301の内側に供給される。この時、2重管式円筒体305は、溶融混練された半導体封止用樹脂組成物が2重管式円筒体305の壁に付着しないよう、冷媒を用いて冷却されていることが好ましい。2重管式円筒体305を通して、半導体封止用樹脂組成物を回転子301に供給することにより、半導体封止用樹脂組成物が連続した糸状で供給された場合でもあっても、回転子301が高速回転していることにより、半導体封止用樹脂組成物が回転子301から溢れ出すことなく安定した供給が可能となる。尚、二軸押出機309における混練条件により溶融樹脂の吐出温度等を制御することにより、顆粒状の半導体封止用樹脂組成物の粒子形状や粒度分布を調整することができる。また、二軸押出機309に脱気装置を組み込むことにより、粒子中の気泡の巻き込みを制御させることもできる。
【0082】
回転子301はモーター310と接続されており、任意の回転数で回転させることができ、回転数を適宜選択することにより、顆粒状の半導体封止用樹脂組成物の粒子形状や粒度分布を調整することができる。回転子301の外周上に設置した複数の小孔を有する円筒状外周部302は磁性材料303を備えており、その近傍に備えられた励磁コイル304に交流電源発生装置306により発生させた交流電源を通電させることによって発生する交番磁束の通過に伴う、渦電流損やヒステリシス損により加熱される。なお、この磁性材料303としては、例えば鉄材や珪素鋼等が挙げられ、1種類又は2種類以上の磁性材料303を複合して使用することができる。複数の小孔を有する円筒状外周部302の小孔付近は、磁性材料303と同一の材質で形成されていなくてもよく、たとえば熱伝導率の高い非磁性材料をもって形成され、その上下に磁性材料303を備えることにより、加熱された磁性材料303を熱源として熱伝導により円筒状外周部302の小孔付近を加熱することもできる。非磁性材料としては銅やアルミ等が挙げられ、1種類又は2種類以上の非磁性材料を複合して使用することができる。半導体封止用樹脂組成物は回転子301の内側に供給された後、モーター310により回転子301を回転させて得られる遠心力によって、加熱された円筒状外周部302に飛行移動する。
【0083】
加熱された複数の小孔を有する円筒状外周部302に接触した半導体封止用樹脂組成物は、溶融粘度が上昇することなく、容易に円筒状外周部302の小孔を通過し吐出される。加熱する温度は、適用する半導体封止用樹脂組成物の特性により任意に設定することができる。加熱温度を適宜選択することによって、顆粒状の半導体封止用樹脂組成物の粒子形状や粒度分布を調整することができる。一般的には、加熱温度を上げすぎると樹脂組成物の硬化が進み、流動性が低下したり、円筒状外周部302の小孔に詰まったりすることがあるが、適切な温度条件の場合においては、半導体封止用樹脂組成物と円筒状外周部302の接触時間が極めて短いために流動性への影響は極めて少ない。また、複数の小孔を有する円筒状外周部302は均一に加熱されているため、局所的な流動性の変化は極めて少ない。また、円筒状外周部302の複数の小孔は、孔径を適宜選択することによって、顆粒状の半導体封止用樹脂組成物の粒子形状や粒度分布を調整することができる。
【0084】
円筒状外周部302の小孔を通過し吐出された顆粒状の半導体封止用樹脂組成物は、例えば、回転子301の周囲に設置した外槽308で捕集される。外槽308は顆粒状の半導体封止用樹脂組成物の内壁への付着、顆粒状の半導体封止用樹脂組成物同士の融着を防止するために、円筒状外周部302の小孔を通過して飛行してくる顆粒状の半導体封止用樹脂組成物が衝突する衝突面が、顆粒状の半導体封止用樹脂組成物の飛行方向に対して10〜80度、好ましくは25〜65度の傾斜をもって設置されていることが好ましい。半導体封止用樹脂組成物の飛行方向に対する衝突面の傾斜が上記上限値以下であると、顆粒状の半導体封止用樹脂組成物の衝突エネルギーを充分分散させることができ、壁面への付着を生じる恐れが少ない。また、樹脂組成物の飛行方向に対する衝突面の傾斜が上記下限値以上であると、顆粒状の半導体封止用樹脂組成物の飛行速度を充分に減少させることができるため、外槽壁面に2次衝突した場合でもその外装壁面に付着する恐れが少ない。
【0085】
また、顆粒状の半導体封止用樹脂組成物が衝突する衝突面の温度が高くなると、顆粒状の半導体封止用樹脂組成物が付着しやすくなるため、衝突面外周には冷却ジャケット307を設けて、衝突面を冷却することが好ましい。外槽308の内径は、顆粒状の半導体封止用樹脂組成物が充分に冷却され、顆粒状の半導体封止用樹脂組成物の内壁への付着や、顆粒状の半導体封止用樹脂組成物同士の融着が生じない程度の大きさとすることが望ましい。一般には、回転子301の回転により空気の流れが生じ、冷却効果が得られるが、必要に応じて冷風を導入しても良い。外槽308の大きさは処理する樹脂量にもよるが、例えば回転子301の直径が20cmの場合、外槽308の内径は100cm程度あれば付着や融着を防ぐことができる。
【0086】
(再配線用疑似ウエハ200形成工程)
続いて、
図3(b)に示すように、封止材層108の下面30および半導体素子106の下面20から、マウントフィルム104を剥離する。例えば、加熱処理によりマウントフィルム104を熱分解することにより、かかるマウントフィルム104を分離することができる。また、加熱処理の他に、電子線や紫外線などの照射処理を実施してもよい。このようにして、キャリア102、マウントフィルム104、半導体素子106及び封止材層108から構成される構造体から、マウントフィルム104及びキャリア102を分離できる。これにより、
図3(b)に示す再配線用疑似ウエハ200が得られる。再配線用疑似ウエハ200は、半導体素子106及び封止材層108を有する。封止材層108の下面30と同一面上において、複数の半導体素子106の下面20(接続面)が露出している。一方、複数の半導体素子106の上面を連続して覆うように、封止材層108が形成されている。言い換えると、断面視において、再配線用疑似ウエハ200の一面(再配線形成面)側には、封止材層108及び半導体素子106が形成され、一方、他面(封止面)側には封止材層108のみが形成される。再配線用疑似ウエハ200は、例えば、板状である。再配線用疑似ウエハ200は、平面視において、円形状でもよく、矩形形状でもよい。
【0087】
また、再配線用疑似ウエハ200は、複数の半導体素子106及び封止材層108で構成される。再配線用疑似ウエハ200の一面50には、半導体素子106の下面20及び封止材層108の下面30が露出している。すなわち、一面50は、下面20及び下面30により構成される。一方、再配線用疑似ウエハ200の他面60には、封止材層108の上面40のみが露出している。このような再配線用疑似ウエハ200において、封止材層108は、高温収縮特性、低温硬化性、及び高温耐熱性のバランスに優れる半導体封止用樹脂組成物を硬化させることにより得られるものである。このような封止材層108は、硬化時や熱剥離性粘着層の除去時における熱履歴により、熱収縮が起きたり、熱変形したりすることが抑制される。この封止材層108を用いることにより、再配線用疑似ウエハ200において、一面50と他面60との間に発生する残留応力の差を低減できる。このため、再配線用疑似ウエハ200の一面50の反りを低減できる。これにより、一面50上において、再配線用絶縁樹脂層110の塗膜特性を向上させるとともに、接続信頼性を向上させることができる。したがって、歩留まりに優れた半導体装置100が得られる。
【0088】
本実施の形態に係るマウントフィルム104を剥離する工程の際、下記の測定条件下における封止材層108とマウントフィルム104とピール強度が、好ましくは1N/m以上10N/m以下であり、より好ましくは2N/m以上9N/m以下である。
ピール強度の測定条件としては、測定温度180℃、引き剥がし速度50mm/minである。ピール強度を上記範囲にすることにより、マウントフィルム104のノリ残りを低減させることができる。このため、液状の再配線材料が封止材層108面上に形成されにくくなることを抑制することができる。ピール強度の低減は、例えば、半導体封止用樹脂組成物の材料や硬化温度を適切に選択することにより実現できる。
【0089】
また、本実施の形態の半導体装置の製造方法においては、マウントフィルム104を剥離する工程後、かつ再配線工程前における、封止材層108の下面の接触角が、ホルムアミドを用いた測定時において、70度以下で特定される。
【0090】
本発明者らが、検討した結果、封止材層108の下面30(マウントフィルム104を剥離した剥離面)において、再配線材料で測定した接触角により、下面30上においてノリ残りが低減したことを評価できることを見出した。すなわち、下面30の接触角を小さくすることにより、ノリ残りを低減できることを見出した。封止材層108の下面30において、再配線材料の濡れ性が向上した結果、再配線材料の塗膜特性が向上すると考えられた。
上記実験事実に基づき、次の仮説を立てた。
(i)再配線材料の濡れ性の傾向を示す、接触角を測定する測定標準物質が存在すること。
(ii)(i)の測定標準物質により、かかる再配線材料の濡れ性を定性的に評価できること。
(iii)(i)の測定標準物質により測定された接触角を適切に制御することにより、再配線材料の濡れ性を改善できること。
こうした仮説に基づき、本発明者らは、再配線材料の濡れ性の傾向を示す測定標準物質を見出し、その測定標準物質による接触角を適切な値に制御することを検討した。
【0091】
そして、種々の実験結果から、測定標準物質として、ホルムアミドを用いることが好適であるとの結論を得た。すなわち、ホルムアミドを用いて測定された封止材層108の下面30を70度以下に制御することにより、かかる下面30上でのノリのこりを低減できることを見出し、本発明を完成させた。なお、このホルムアミドは、接触角の分野において一般的に用いられる測定標準物質である。
【0092】
以上のように、本実施の形態においては、ホルムアミドにより特定される封止材層108の下面30の接触角を小さくすることにより、その下面30上でのノリ残りを低減している。このため、封止材層108の下面30は、再配線用絶縁樹脂層110を構成する材料に対しての濡れ性が高くなる。これにより、再配線用絶縁樹脂層110を構成する材料が、均一に濡れ広がりやすくなるので、再配線用絶縁樹脂層110の塗膜特性が向上する。したがって、歩留まりに優れた半導体装置100が得られる。
【0093】
本実施の形態の半導体装置の製造方法においては、マウントフィルム104を剥離する工程後における、封止材層108の下面の接触角の上限値としては、ホルムアミドを用いた測定時において、好ましくは70度以下であり、より好ましくは65度以下であり、さらに好ましくは60度以下である。一方、接触角の下限値としては、特に限定されないが、例えば、0度であり、好ましくは5度以上であり、より好ましくは10度以上である。
ここで、本実施の形態において、接触角としては、例えば、測定開始から所定の測定時間後における平均値、最小値または最大値のいずれでもよいが、平均値がより好ましい。所定時間としては、特に限定されないが、例えば、10秒間とする。具体的にはマウントフィルム104を剥離した後、25℃において液滴を静置し、10秒後の値を計測することを3回繰り返し、その平均値を取る方法が挙げられる。
【0094】
このホルムアミドは、一般的な接触角の測定において、標準液として使用されている。
本実施の形態においては、測定温度:25℃、測定装置:Dropmaster500(協和科学(株)製)により測定する。
【0095】
本実施の形態においては、例えば、主剤や硬化剤を適切に選択し、または硬化促進剤(D)を適切に選択することにより、接触角を低減することができる。ホルムアミドを用いて測定した接触角が低減していることは、再配線用材料の接触角が低減していることを示す。このため、本実施の形態に係る接触角を上記範囲内とすることにより、マウントフィルム104のノリ残りが低減されるので、液状の再配線材料が、再配線用疑似ウエハ200の表面において濡れ拡がりにくくなることが抑制される。したがって、本実施の形態においては、歩留まりに優れた半導体装置100が得られる。
【0096】
(ポストキュア)
マウントフィルム104を剥離する前、及び/又は、マウントフィルム104を剥離した後に、再配線用疑似ウエハ200中の封止材層108に対してポストキュアを実施してもよい。ポストキュアとしては、例えば、150℃以上200℃以下、より好ましくは160℃以上190℃以下の温度範囲で、10分から8時間行う。ポストキュアの実施をマウントフィルム104の剥離後に行うことにより、マウントフィルム104のノリ残りを抑制することができる。
【0097】
(再配線工程)
続いて、マウントフィルム104を剥離する工程後、
図4(a)に示すように、封止材層108の下面30上および半導体素子106の下面20上に再配線用絶縁樹脂層110を形成する。言い換えると、再配線用疑似ウエハ200の一面(半導体素子106の接続面を有する面)上に、再配線用絶縁樹脂層110を形成する。
【0098】
続いて、
図4(b)に示すように、半導体素子106の接続面上のパッド122の表面を露出する開口部112を再配線用絶縁樹脂層110に形成する。例えば、フォトリソグラフィー法等を用いて、再配線用絶縁樹脂層110にパターンを形成して硬化処理を行う。硬化処理の条件としては、例えば、例えば、150℃以上300℃以下の温度範囲で、10分から5時間行う。また、再配線用疑似ウエハ200上に直接再配線用絶縁樹脂層110を形成してもよいが、これらの間に、不図示のパッシベーション層を形成してもよい。
【0099】
また、再配線用絶縁樹脂層110としては、特に限定されないが、耐熱性及び信頼性の観点から、ポリイミド樹脂、ポリベンゾオキサイド樹脂、ベンゾシクロブテン樹脂などが用いられる。
【0100】
続いて、
図5(a)に示すように、再配線用疑似ウエハ200の全面に給電層をスパッタ等の方法で形成した後、給電層の上にレジスト層を形成し、所定のパターンに露光、現像後、電解銅メッキにてビア114および再配線回路116を形成する。再配線回路116を形成した後、レジスト層を剥離し、給電層をエッチングする。
【0101】
また、本実施の形態に係る再配線用疑似ウエハ200において、125℃、10分の条件で硬化させた後の封止材層108のショアD硬度は、好ましくは70以上100以下であり、より好ましく80以上95以下である。ショアD硬度を上記範囲内とすることにより、半導体素子106周りの封止材層108において、安定した形状のサンプルを作成でき、凹み等の表面形状の変形の発生を抑制できるので、再配線用絶縁樹脂層110および再配線回路116の形成を精度よく行うことができる。
【0102】
また、本実施の形態に係る再配線用疑似ウエハ200において、260℃における、封止材層108の曲げ強度は、好ましくは10MPa以上100MPa以下であり、よりこのましくは20MPa以上80MPa以下である。曲げ強度を上記範囲内とすることにより、半導体素子106周りの封止材層108において、安定した形状のサンプルを作成でき、凹み等の表面形状の変形の発生を抑制できるので、再配線用絶縁樹脂層110および再配線回路116の形成を精度よく行うことができる。
【0103】
また、本実施の形態に係る再配線用疑似ウエハ200において、260℃における、封止材層108の曲げ弾性率は、好ましくは5×10
2MPa以上3×10
3MPa以下であり、より好ましくは7×10
2MPa以上2.8×10
3MPa以下である。曲げ弾性率を上記範囲内とすることにより、半導体素子106周りの封止材層108において、安定した形状のサンプルを作成でき、凹みの等の表面形状の変形の発生を抑制できるので、再配線用絶縁樹脂層110および再配線回路116の形成を精度よく行うことができる。
【0104】
また、本実施の形態に係る再配線用疑似ウエハ200において、動的粘弾性測定器を用い、三点曲げモード、周波数10Hz、測定温度260℃で測定した際の、封止材層108の貯蔵弾性率(E')は、好ましくは5×10
2MPa以上5×10
3MPa以下であり、より好ましくは8×10
2MPa以上4×10
3MPa以下である。貯蔵弾性率(E')を上記範囲内とすることにより、半導体素子106周りの封止材層108において、安定した形状のサンプルを作成でき、凹み等の表面形状の変形の発生を抑制できるので、再配線用絶縁樹脂層110および再配線回路116の形成を精度よく行うことができる。
【0105】
また、本実施の形態に係る再配線用疑似ウエハ200において、25℃以上、ガラス転移温度(Tg)以下の領域における、封止材層108のxy平面方向の線膨張係数(α1)は、好ましくは3ppm/℃以上15ppm/℃以下であり、より好ましくは4ppm/℃以上11ppm/℃以下である。例えば、多官能のエポキシ樹脂(A)や多官能の硬化剤(B)を用いることにより、線膨張係数(α1)を上記範囲内とすることができる。線膨張係数(α1)を上記範囲内とすることにより、半導体素子106周りの封止材層108において、半導体素子106の配置面側に対して、対向面側が反ることを抑制できるので、再配線用絶縁樹脂層110および再配線回路116の形成を精度よく行うことができる。
【0106】
このように、本実施の形態において、例えば、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能型エポキシ樹脂、ならびに、トリフェノールメタン型フェノール樹脂、トリフェノールプロパン型フェノール樹脂、アルキル変性トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂を適切に選択して使用することにより、又は成形時に硬化を促進させること若しくは成形後の後硬化により、樹脂の硬化を更に進めることが可能となり、安定した形状の半導体封止用樹脂組成物の硬化物(封止材層108)が得られる。したがって、本実施の形態の半導体装置100の歩留まりが向上する。
【0107】
また、本実施の形態に係る再配線用疑似ウエハ200において、封止材層108のガラス転移温度(Tg)が、好ましくは100℃以上250℃以下であり、より好ましくは110℃以上220℃以下である。例えば、多官能のエポキシ樹脂(A)や多官能の硬化剤(B)を用いることにより又は硬化反応を促進させることにより、ガラス転移温度(Tg)を上記範囲内とすることができる。ガラス転移温度(Tg)を上記範囲内とすることにより、再配線用絶縁樹脂層110を硬化する際に、封止材層108の加熱減量が低くなり、再配線用絶縁樹脂層110の表面に発生ガスに起因するボイドが発生して、再配線回路116が形成しにくくなることを抑制することができる。
【0108】
また、本実施の形態に係る再配線用疑似ウエハ200において、再配線用絶縁樹脂層110を250℃、90分で硬化させたとき、再配線用絶縁樹脂層110の硬化処理前と硬化処理後との封止材層108の質量差が、好ましくは5質量%以内である。これにより、上述のとおり、再配線用絶縁樹脂層110の表面に発生ガスに起因するボイドが発生して、再配線回路116が形成しにくくなることを抑制することができる。
【0109】
続いて、配線パターン(再配線回路116)上に設けたランドにフラックスを塗布する。次いで、半田ボール120を搭載したのち加熱溶融することにより、半田ボール120をランドに取り付ける。また、再配線回路116及び半田ボール120の一部を覆うようにソルダーレジスト層118が形成される。塗布されるフラックスは、樹脂系や水溶系のものを使用することができる。加熱溶融方法としては、リフロー、熱板(ホットプレート)等が使用できる。これにより、ウエハレベルパッケージ210が得られる。
この後、ダイシング等の方法により、ウエハレベルパッケージ210を、例えば半導体素子106毎に個片化する。これにより、本実施の形態の半導体装置100を得ることができる。なお、複数の半導体チップ108単位で分割することにより、一つの半導体装置100に複数の機能を有する半導体素子106を配置することができる。このようにして得られた半導体装置100は、基板(インターポーザ132)に実装してもよい。実装をするには、例えば、半導体装置100の半田ボール120とインターポーザの上に形成された配線回路とバンプを介して電気的に接続する。積層パッケージが得られる。
【実施例】
【0110】
以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例の記載に何ら限定されるものではない。
【0111】
後述する実施例、参考例及び比較例で得られた半導体封止用樹脂組成物に用いられる各成分について説明する。なお、特に記載しない限り、各成分の配合量は、質量部とする。
【0112】
(実施例1)
<半導体封止用樹脂組成物の配合(質量部)>
エポキシ樹脂1:下記式(1)で表されるトリフェニルメタン骨格を有するエポキシ樹脂を主成分とするエポキシ樹脂(JER(株)製、商品名YL6677、エポキシ当量163)
6.95質量部
【化5】
フェノール樹脂系硬化剤1:下記式(2)で表されるトリフェニルメタン骨格を有するフェノール樹脂(エア・ウオーター(株)製、商品名HE910−20、軟化点88℃、水酸基当量101)
4.30質量部
【化6】
溶融球状シリカ1:(平均粒径24μm、比表面積3.5m
2/g) 73質量部
溶融球状シリカ2:(平均粒径0.5μm、比表面積5.9m
2/g) 15質量部
硬化促進剤1:トリフェニルホスフィン(ケイ・アイ化成(株)製、商品名PP−360)
0.1質量部
着色剤:カーボンブラック(比表面積29m
2/g、DBP吸収量71cm
3/100g)
0.3質量部
カップリング剤:N−フェニルγ−アミノプロピルトリメトキシシラン(信越化学(株)製、商品名KBM−573)
0.2質量部
離型剤:モンタン酸エステル系ワックス(クラリアントジャパン(株)製、商品名リコルブWE−4)
0.15質量部
【0113】
<マスターバッチの準備>
上記配合の樹脂組成物の原材料をスーパーミキサーにより5分間粉砕混合したのち、この混合原料を準備した。
【0114】
<顆粒状の樹脂組成物の製造>
図6に示す円筒状外周部302の素材として孔径2.5mmの小孔を有している鉄製の打ち抜き金網を使用した。直径20cmの回転子301の外周上に円筒状に加工した高さ25mm、厚さ1.5mmの打ち抜き金網を取り付け、円筒状外周部302を形成した。回転子301を3000RPMで回転させ、円筒状外周部302を励磁コイルで115℃に加熱した。回転子301の回転数と、円筒状外周部302の温度が定常状態になった後、脱気装置により脱気しつつ二軸押出機309により上記マスターバッチを溶融混練して得られた溶融物を、回転子301の上方より2重管式円筒体305を通して2kg/hrの割合で回転子301の内側に供給して、回転子301を回転させて得られる遠心力によって円筒状外周部302の複数の小孔を通過させることで、顆粒状の半導体封止用樹脂組成物を得た。
【0115】
<半導体装置の製造>
マウントフィルム(日東電工(株)製:リバアルファ(登録商標))上に、25個の半導体素子(アルテクス社製、製品番号AS8R、縦10mm×横10mm、厚み0.725mm)を、互いに平行、かつ0.5cm離間して配置した。これらの正方形の半導体素子は、平面視において、縦に5つ、横に5つ配置されている。続いて、上記顆粒状の半導体封止用樹脂組成物を用いて圧縮成形を行い、マウントフィルム上の半導体素子を封止した。圧縮成形の条件としては、成形温度125℃、硬化時間7分であった。この後、ポストキュアを150℃、1時間で行った後、マウントフィルムを剥離し、更にポストキュアを175℃、4時間で行った。このようにして、正方形の再配線用疑似ウエハ(縦10cm×横10cm、厚み0.15cm)を得た。
【0116】
続いて、半導体素子の接続面側における封止材層の一面に再配線用材料(住友ベークライト(株)製、CRC−8902)を塗布して、250℃、90分で硬化処理を行った。引き続き、再配線用絶縁樹脂層上に、再配線回路を形成して、半導体装置を得た。
【0117】
(実施例2〜6、参考例1〜4、比較例1)
表1及び表2の配合に従い、実施例1と同様にして顆粒状の樹脂組成物を製造したのち、実施例1と同様にして半導体装置を製造した。
実施例1以外で用いた原材料を以下に示す。
エポキシ樹脂2:下記式(3)で表されるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、商品名NC3000P、軟化点58℃、エポキシ当量273)
【化7】
エポキシ樹脂3:一般名 ビスフェノールA型エポキシ樹脂(化学品名:4,4'−イソプロピリデンジフェノールと1−クロロ−2,3−エポキシプロパンの重縮合物、JER(株)製、商品名YL6810、エポキシ当量172)
フェノール樹脂系硬化剤2:下記式(4)で表されるビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、商品名MEH−7851SS、軟化点107℃、水酸基当量204)
【化8】
硬化促進剤2:4−ヒドロキシ−2−(トリフェニルホスホニウム)フェノラート(ケイ・アイ化成(株)製、商品名TPP−BQ)
硬化促進剤3:テトラフェニルホスホニウム・ビス(ナフタレン−2,3−ジオキシ)フェニルシリケート(住友ベークライト(株)製)
硬化促進剤4:テトラフェニルホスホニウム・4,4'−スルフォニルジフェノラート(住友ベークライト(株)製)
硬化促進剤5:テトラフェニルホスホニウム・2,3'−ジヒドロキシナフタレート(住友ベークライト(株)製)
硬化促進剤6:2−(トリフェニルホスホニウム)フェノラート(エア・ウオーター(株)製、商品名PB−7)
硬化促進剤7:2−メチルイミダゾール(四国化成工業(株)製、キュアゾール2MZ−P)
【0118】
(評価方法)
各評価については、下記の条件に従って行った。
【0119】
・反り量(μm)
実施例および参考例の半導体装置の製造工程において、マウントフィルムを剥離した後、かつポストキュア前の構造体について、接触式表面粗さ計(株式会社東京精密社製Surfcom−480A)を用いて、反り量の測定を実施した。結果を表1に示す。
以下、条件を列記する。
測定長さ:90mm
測定位置:平面視において、正方形の構造体は、2つの直交する中心線を有している。これらの縦方向の中心線(1カ所目)および横方向の中心線(2カ所目)のそれぞれに沿って測定した。
測定面:半導体素子が露出している面
なお、反り量の値(μm)は、2か所の平均値(縦方向の反り量と横方向の反り量の合計値を測定箇所数2で割ったもの)を示す。また、反り量の測定は、マウントフィルム剥離後、常温になった構造体に対して行った。
【0120】
・イオン粘度
誘電分析装置本体としてNETZSCH社製のDEA231/1 cure analyzerを使用し、プレスとしてNETZSCH社製のMP235 Mini−Pressを使用して、ASTM E2039に準拠して、測定温度125℃、測定周波数100Hzの条件にて、実施例および参考例で得られた顆粒状の樹脂組成物を粉末状にした試料約3gをプレス内の電極部上面に導入した後、プレスして測定した。得られた粘度プロファイルから、最低イオン粘度、600秒経過後のイオン粘度、及び飽和イオン粘度に達した時間を求めた。最低イオン粘度、600秒経過後のイオン粘度の単位は無し、飽和イオン粘度に達した時間の単位は秒(sec.)。測定結果を表3に示す。
【0121】
・高化式粘度(40kg)
実施例および参考例で得られた顆粒状の樹脂組成物について、高化式フローテスター((株)島津製作所・製CFT−500)を用いて、125℃、圧力40kgf/cm
2、キャピラリー径0.5mmの条件で高化式粘度を測定した。単位はPa・s。測定結果を表3に示す。
【0122】
・ショアD硬度
実施例および参考例で得られた顆粒状の樹脂組成物を用いてトランスファー成形を行い、長さ800mm、幅10mm、厚さ4mmの試験片を成形した。トランスファー成形の条件は、成形温度125℃、硬化時間10分とした。成形時、型開き10秒後、ショアD硬度計を用いて試験片のショアD硬度を測定した。測定結果を表3に示す。
【0123】
・曲げ強度および曲げ弾性率(125℃成形品)
実施例および参考例で得られた顆粒状の樹脂組成物を用いてトランスファー成形を行い、JIS曲げ試験片を得た。トランスファー成形の条件は、成形温度125℃、硬化時間7分とした。得られた試験片の260℃における曲げ強度および曲げ弾性率を、JIS K 6911に準じて測定した。単位はppm/℃。測定結果を表3に示す。
【0124】
・TMA測定によるガラス転移温度(Tg)と線膨張係数(α1)(125℃成形品)
実施例および参考例で得られた顆粒状の樹脂組成物を用いてトランスファー成形を行い、長さ15mm、幅4mm、厚さ3mmの試験片を得た。トランスファー成形の条件は、成形温度125℃、硬化時間7分とした。得られた試験片を、熱膨張計(セイコーインスツルメント社製TMA−120)を用い、室温(25℃)から5℃/分の昇温速度で昇温して、試験片の伸び率が急激に変化する温度をガラス転移温度として求めた。単位は℃である。また、室温(25℃)からTg−30℃の間での平均の線膨張係数を求め、α1とした。単位はMPa。測定結果を表3に示す。
【0125】
・DMA測定による貯蔵弾性率(E')(125℃成形品)
実施例および参考例で得られた顆粒状の樹脂組成物を用いてトランスファー成形を行い、幅4mm、長さ20mm、厚み0.1mmの試験片を得た。トランスファー成形の条件は、成形温度125℃、硬化時間7分とした。得られた試験片を、三点曲げモード、周波数10Hz、測定温度260℃の条件で、DMA(Dynamic mechanical analysis/動的粘弾性測定器)を用いて測定した際の、260℃における貯蔵弾性率(E')を求めた。単位はMPa。測定結果を表3に示す。
【0126】
・ピール強度
実施例および参考例の半導体装置の製造工程において、マウントフィルムを剥離する際に、測定温度180℃、引き剥がし速度50mm/minの条件で、封止材層とマウントフィルムとを引き剥がし、ピール強度を求めた。単位はN/m。測定結果を表3に示す。
【0127】
・ホルムアミドを用いて測定した接触角
実施例および参考例の半導体装置の製造工程において、マウントを剥離した後の封止材層下面とホルムアミドとの接触角を、Dropmaster500(協和科学(株)製)を用いて、25℃において液滴を静置し、10秒後の値を計測することを3回繰り返し、その平均値を取った。単位は°(度)。結果を表3に示す。
【0128】
・再配線材料を用いて測定した接触角
実施例および参考例の半導体装置の製造工程において、マウントフィルムを剥離した後の封止材層下面と再配線材料(住友ベークライト(株)製、CRC−8902)との接触角を、Dropmaster500(協和科学(株)製)を用いて、25℃において液滴を静置し、10秒後の値を計測することを3回繰り返し、その平均値を取った。単位は°(度)。結果を表3に示す。
【0129】
【表1】
【0130】
【表2】
【0131】
【表3】
【0132】
実施例1〜5は、比較例1と比べて、反りが低減していることが分かった。
実施例1〜6については、ホルムアミドの接触角が、参考例1〜4より低減しているため、ノリ残りが抑制されていることが分かった。このため、実施例1〜6については、再配線材料の接触角も、参考例より低減しており、問題なく塗布できることが分かった。
【0133】
なお、当然ながら、上述した実施の形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態および変形例では、各部の構造などを具体的に説明したが、その構造などは本願発明を満足する範囲で各種に変更することができる。