【実施例】
【0028】
上記本実施形態に基づいて実際に作製した酸化物スパッタリングターゲットおよびその製造方法の実施例について、評価を行った結果を説明する。
[実施例1]
酸化ジルコニウム(純度:3N、平均粒径:10μm)、酸化インジウム(純度:3N、平均粒径:6μm)、酸化亜鉛(純度:3N、平均粒径:1.4μm)、酸化ガリウム(純度:4N、平均粒径:0.5μm)の各原料粉末を、含有金属の比率がZr:In:Zn:Ga=40.0:20.0:20.0:20.0(原子%)になるように秤量した。
この秤量した原料粉末とその3倍量(重量比)のジルコニアボール(直径5mm)とをポリ容器に入れ、ボールミル装置にて18時間湿式混合する。なお、この際の溶媒には、アルコールを用いた。次に、得られた混合粉末を乾燥後、目開き:500μmの篩にかけ、1050℃にて3時間、350kgf/cm
2の圧力にて真空ホットプレスし、実施例1のスパッタリングターゲットを得た。
【0029】
[実施例2]
実施例1と同様の原料粉であって、酸化インジウム、酸化亜鉛、酸化ガリウムの各原料粉末を、含有金属の比率がIn:Zn:Ga=1:1:1(原子比)になるように秤量した。
この秤量した原料粉末とその3倍量(重量比)のジルコニアボール(直径5mm)とをポリ容器に入れ、ボールミル装置にて18時間湿式混合する。なお、この際の溶媒には、アルコールを用いた。次に、得られた混合粉末を乾燥後、目開き:500μmの篩にかけ、1000℃にて3時間焼成し、仮焼粉の一次混合粉末とした。
【0030】
さらに、得られた一次混合粉末に酸化ジルコニウムを原子比にてZr:In:Zn:Ga=40.0:20.0:20.0:20.0(原子%)になるように加え、この混合粉末とその5倍量(重量比)のジルコニアボール(直径5mm)とをポリ容器に入れ、ボールミル装置にて24時間湿式混合して二次混合粉末とした。なお、この際の溶媒には、アルコールを用いた。得られた二次混合粉末を乾燥後、目開き:500μmの篩にかけ、1050℃にて3時間、350kgf/cm
2の圧力にて真空ホットプレスし、実施例2のスパッタリングターゲットを得た。
【0031】
実施例1と同様の原料粉であって、酸化インジウム、酸化亜鉛、酸化ガリウムの各原料粉末を、含有金属の比率がZr:In:Zn:Ga=20.0:9.1:39.9:31.0(原子%)になるように秤量し、実施例1と同様の方法で実施例3のスパッタリングターゲットを得た。
【0032】
実施例1と同様の原料粉であって、酸化インジウム、酸化亜鉛、酸化ガリウムの各原料粉末を、含有金属の比率がZr:In:Zn:Ga=6.9:31.0:53.0:9.1(原子%)になるように秤量し、実施例1と同様の方法で実施例4のスパッタリングターゲットを得た。
【0033】
実施例1と同様の原料粉であって、酸化インジウム、酸化亜鉛、酸化ガリウムの各原料粉末を、含有金属の比率がZr:In:Zn:Ga=46.0:8.5:37.0:8.5(原子%)になるように秤量し、実施例1と同様の方法で比較例1のスパッタリングターゲットを得た。
【0034】
実施例1と同様の原料粉であって、酸化インジウム、酸化亜鉛、酸化ガリウムの各原料粉末を、含有金属の比率がZr:In:Zn:Ga=20.0:32.0:16.0:32.0(原子%)になるように秤量し、実施例1と同様の方法で比較例2のスパッタリングターゲットを得た。
【0035】
[従来例1]
酸化ジルコニウム(純度:3N、平均粒径:10μm)、酸化インジウム(純度:3N、平均粒径:6μm)、酸化ケイ素(純度:4N、平均粒径:0.2μm)の各粉末を、原子比にてZr:In:Si=33.4:33.3:33.3(原子%)になるように秤量した。秤量した粉末とその3倍量(重量比)のジルコニアボール(直径5mm)とをポリ容器に入れ、ボールミル装置にて18時間湿式混合した。なお、この際の溶媒には、アルコールを用いた。得られた混合物を乾燥後、目開き:500μmの篩にかけ、1050℃にて3時間、350Kgf/cm
2の圧力で真空ホットプレスし、従来例1のスパッタリングターゲットとした。
【0036】
[従来例2]
酸化ジルコニウム(純度:3N、平均粒径:10μm)、酸化インジウム(純度:3N、平均粒径:6μm)の各粉末を、原子比にてZr:In=33.3:66.7(原子%)になるように秤量した。秤量した粉末とその3倍量(重量比)のジルコニアボール(直径5mm)とをポリ容器に入れ、ボールミル装置にて18時間湿式混合した。なお、この際の溶媒には、アルコールを用いた。得られた混合物を乾燥後、目開き:500μmの篩にかけ、1050℃にて3時間、350Kgf/cm
2の圧力で真空ホットプレスし、従来例2のスパッタリングターゲットとした。
【0037】
<評価>
各実施例・比較例のスパッタリングターゲットについて、ホットプレス後の金属溶出の有無を確認し、相対密度を求めた。
相対密度は、焼結体の嵩密度を理論密度で割り、算出した。尚、理論密度は以下のようにして求めた。
【0038】
【数1】
【0039】
金属溶出の有無は、X線回折測定の結果、金属の回折ピークが見られるか否かにより確認した。X線回折の測定条件は次のとおりである。
【0040】
試料の準備:試料はSiC−Paper(grit 180)にて湿式研磨、乾燥の後、測定試料とした。
装置:理学電気社製(RINT−Ultima/PC)
管球:Cu
管電圧:40kV
管電流:40mA
走査範囲(2θ):5°〜90°
スリットサイズ:発散(DS)2/3度、散乱(SS)2/3度、受光(RS)0.8mm
測定ステップ幅:2θで0.02度
スキャンスピード:毎分2度
試料台回転スピード:30rpm
評価の結果を表1に示す。また、実施例1のスパッタリングターゲットのX線回折測定結果を
図1に示す。
【0041】
【表1】
【0042】
表1より、ZnOとGa
2O
3とを含有させた実施例1〜4では、金属の溶出がない高密度なスパッタリングターゲットが得られることがわかる。また、
図1に示すように、実施例のスパッタリングターゲットでは、InGaZnO
4に帰属する回折ピークとZrO
2に帰属する回折ピークとが確認された。
また、本発明の実施例は、いずれも
相対密度が91%以上であった。
【0043】
<EPMA分析>
実施例1のスパッタリングターゲットについて、その組織観察をEPMA(フィールドエミッション型電子線プローブ)にて、反射電子像(CP)および各元素の組成分布を示す元素分布像を用いて実施した。上記反射電子像および元素分布像を
図2に示す。
なお、EPMAによる元素分布像は、本来カラー像であるが、白黒像に変換して記載しているため、濃淡の淡い部分(比較的白い部分)が所定元素の濃度が高い部分となっている。
これら画像から、実施例1のスパッタリングターゲットは、InとZnとGaとの酸化物からなる複合酸化物相を含む相がZrO
2相を囲んだ組織を有していることがわかる。
【0044】
なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態および上記実施例では、加圧焼結をホットプレスによって行っているが、他の方法としてHIP法(熱間等方加圧式焼結法)等を採用しても構わない。