(58)【調査した分野】(Int.Cl.,DB名)
前記制御器に動作可能に連結された弁装置を備え、前記制御器が、温度設定点より低い前記第1の熱交換器内の前記冷媒の温度を検出することに応答して、前記乾式排熱装置から前記冷却流体を排出するために前記弁装置を調節するように構成される、請求項4に記載の冷却装置。
前記制御器に動作可能に連結された弁装置を備え、前記制御器が、温度設定点より低い周囲温度、冷媒温度もしくは冷却流体温度、またはそれらの組合せを検出することに応答して、前記導管内の冷媒の前記流れを停止させるために前記弁装置を調節するように構成される、請求項4に記載の冷却装置。
前記シェルアンドチューブ蒸発器が、前記冷媒を循環させるように構成されたシェル側を備え、前記チューブが、前記冷却流体を循環させるように構成された、請求項9に記載の熱サイフォン冷却器。
前記チューブに連結された空気注入弁を備え、前記チューブから前記冷却流体を排出するために、前記空気注入弁は、周囲空気が前記チューブに入ることを可能にするように構成される、請求項9に記載の熱サイフォン冷却器。
前記空冷凝縮器から前記シェルアンドチューブ蒸発器への前記冷媒の帰還を選択的に遮断するために、前記導管に連結された弁を備える、請求項9に記載の熱サイフォン冷却器。
前記乾式排熱機器が熱サイフォン冷却器を備え、前記熱サイフォン冷却器の動作を有効にするステップが、前記熱サイフォン冷却器を通して冷却流体を循環させるように1つまたは複数の弁を位置づけるステップを含む、請求項17に記載の方法。
前記乾式排熱機器の実際の動力消費を計算するステップと、前記乾式排熱機器の前記実際の動力消費に基づいて、前記乾式排熱機器の1つまたは複数の送風機の速度を調節するステップとを含む、請求項17に記載の方法。
凍結予防モードを有効にするステップが、前記乾式排熱機器から冷却流体を排出するために、前記乾式排熱機器に周囲空気を注入するように弁を開くステップを含む、請求項21に記載の方法。
【発明を実施するための形態】
【0006】
[0016]本開示は、冷却塔を使用する冷却装置の中で使用されうる熱サイフォン冷却器を対象にする。本明細書で使用されるように、用語「冷却塔」は、水などの流体を、周囲空気を使用して蒸発冷却によって冷却する、開ループおよび閉ループの冷却塔を含む。冷却塔は、乾式冷却(dry cooling)に比べて、蒸発冷却によって達成されうる比較的低い温度に起因して、プロセス流体を冷却するために特に有用でありうる。さらに、冷却塔は、プロセスから遠く離れて設置されてよく、冷却される建物またはプロセスの付近にある不動産が他の目的で使用されることを可能にするので、冷却塔は、装置配置の決定において柔軟性を提供することができる。しかし、蒸発冷却であるため、冷却塔は、大量の水を消費する可能性がある。水を節約するために、特に水が供給不足である地域および/または高価である地域においては、冷却塔と併せて他の種類の冷却装置を使用することが望ましい。
【0007】
[0017]したがって、本開示は、冷却塔を含む冷却装置の中で、追加および/または代替の冷却をもたらすために使用されうる、熱サイフォン冷却器などの乾式排熱装置を対象にする。熱サイフォン冷却器は、冷却装置の中で、冷却塔の上流に冷却塔と直列に設置されてよく、冷却塔よりも熱サイフォン冷却器が、より経済的および/またはより資源効率的(resource efficient)に動作するときに、動作されてよい。例えば、周囲温度が低いときは、冷却塔の水消費を低減するために熱サイフォン冷却器を動作させることが、有益でありうる。周囲温度が高いときは、蒸発冷却を介して達成されうる、より低いプロセス冷却流体温度をもたらすために、冷却塔を動作させることが望ましい。いくつかの実施形態によれば、とりわけ周囲温度、電力のコスト、水のコスト、プロセス熱交換器を出る加熱された冷却流体の温度、およびプロセス熱交換器に入る冷却流体の所望の温度などの要因が、熱サイフォン冷却器を動作させるか、冷却塔を動作させるか、またはそれらの両方を動作させるかを確定するために使用されてよい。
【0008】
[0018]一実施形態では、熱サイフォン冷却器は、シェルアンドチューブ蒸発器(shell and tube evaporator)と空冷凝縮器(air cooled condenser)とを含む。冷却塔の水は、蒸発器のチューブを通って流れ、蒸発器と空冷凝縮器との間を循環する冷媒に熱を伝達することができる。熱サイフォン冷却器は、自然対流によって蒸発器と凝縮器との間を冷媒が循環するように、装置内の圧力低下を最小化するように設計されてよい。本明細書で使用されるように、用語「自然対流」は、機械力によらない、例えばポンプまたは圧縮機によってもたらされるような機械力によらない流体の循環を意味する。いくつかの実施形態によれば、加熱された冷媒の浮揚性と、空冷凝縮器と蒸発器との間の高さの差とが、自然対流によって冷媒を循環させるための駆動力をもたらすことを可能にする。冷媒は、自然対流を使用して循環されうるので、凝縮器の送風機および電動機(複数可)だけが、熱サイフォン冷却器内の可動部品でありうる。したがって、熱サイフォン冷却器は、ポンプ式凍結防止剤(pumped freeze protectant)の冷却ループを実施する伝統的な乾式冷却器(dry cooler)と比較すると、比較的低料金のエネルギー消費およびメンテナンスを有することができる。
【0009】
[0019]熱サイフォン冷却器内の蒸発器はまた、蒸発器チューブの内部が洗浄されるのを可能にする開閉カバー(access cover)および/または着脱可能な構成要素を含んでよい。したがって、熱サイフォン冷却器は、水が溶解固形物および他の混入物質にさらされる可能性がある開ループ冷却塔装置内の冷却塔の水を循環させるのに、特に適している。さらに、熱サイフォン冷却器は、グリコールなどの凍結防止剤を含む別個のループを使用するのではなく、熱サイフォン冷却器が冷却塔の水を直接冷却することを可能にする凍結予防装置(freeze protection system)を含んでよい。
【0010】
[0020]
図1は、熱サイフォン冷却器12および冷却塔14を使用する冷却装置10の概略図である。冷却装置10は、主として、建物16すなわち凍結より上の温度に維持される領域内に設置されてよい。しかし、熱サイフォン冷却器12および冷却塔14など、冷却装置10のいくつかの構成要素は、建物16の外部、例えば建物16の屋上に設置されてよい。さらに、他の実施形態では、冷却塔14は、建物16すなわちプロセス領域からある距離を置いて設置されてよく、いくつかの実施形態では、地表面に設置されてよい。
【0011】
[0021]冷却装置10は、プロセスループ20から冷却装置ループ22に熱を伝達するために使用されてよいプロセス熱交換器18を含む。いくつかの実施形態によれば、プロセスループ20は、冷媒、水蒸気、または凝縮されるべき他の蒸気など、プロセス流体を循環させることができる。例えば、プロセスループ20は、水冷器で凝縮される圧縮された冷媒蒸気を循環させることができる。別の例では、プロセスループ20は、蒸気タービンで凝縮される水蒸気を循環させることができる。別の例では、プロセスループ20は、冷却を必要とする産業プロセスのために、プロセス流体を循環させることができる。
【0012】
[0022]冷却装置ループ22は、水、または水と他の成分との混合物など、冷却されるべき流体を循環させることができる。冷却流体は、プロセス熱交換器18を通って流れるので、プロセス流体から熱を吸収することができる。いくつかの実施形態によれば、冷媒などの中間流体(intermediate fluid)が、プロセスループ20内のプロセス流体から冷却装置ループ22内の冷却流体に熱を伝達するために使用されてよい。例えば、いくつかの実施形態では、プロセス熱交換器18は、プロセスループ20から冷却装置ループ22に熱を伝達する冷媒を循環させる冷却機の一部である水冷凝縮器(water cooled condenser)であってよい。これらの実施形態では、プロセス流体は、冷却機の蒸発器を通って流れてよい。しかし、他の実施形態では、中間流体は省略されてよく、プロセス熱交換器18は、プロセス流体から冷却流体に熱を直接伝達するために使用されてよい。さらに、他の実施形態では、プロセス熱交換器18は省略されてよく、冷却装置ループ22内の冷却流体は、冷却されるべきプロセスに直接循環されてよい。
【0013】
[0023]冷却流体はプロセス熱交換器18を通って流れるので、冷却流体は、プロセス流体から熱を吸収することができる。したがって、加熱された冷却流体は、プロセス熱交換器18を出て冷却装置ループ22を通り、弁24を通って熱サイフォン冷却器12に流れることができる。いくつかの実施形態では、冷却流体を弁24から熱サイフォン冷却器12に循環させるために、ポンプが含まれてよい。しかし、他の実施形態では、ポンプは省略されてよい。
【0014】
[0024]加熱された冷却流体は、冷却流体が冷却されうる熱サイフォン冷却器12に入ることができる。
図2および
図3に関連して以下に説明されるように、熱サイフォン冷却器12は、シェルアンドチューブ蒸発器76と空冷凝縮器78とを含むことができる。冷媒ループ80は、シェルアンドチューブ蒸発器76を通って流れる冷却流体から空冷凝縮器78に熱を伝達するために使用されてよい。1つまたは複数の電動機28で駆動される1つまたは複数の送風機26によって空冷凝縮器78全体に案内される周囲空気を介して、熱が熱サイフォン冷却器12から除去されうる。いくつかの実施形態によれば、電動機28は、送風機26の速度が、熱サイフォン冷却器12によってもたらされる冷却量を増減させるように調節されることを可能にする、可変速駆動(VSD)を組み込むことができる。次いで、冷却流体は、熱サイフォン冷却器12を出て、弁30および32を通って冷却塔14に流れることができ、そこで、冷却流体は、蒸発冷却によってさらに冷却されうる。
【0015】
[0025]冷却塔14内で、冷却流体は、周囲空気を用いる蒸発冷却を介して冷却されうる。冷却塔14を下向きに通して、飛散棒(splash bar)、シート充填パック(sheet fill pack)または任意の他の適切な表面などの充填材料(fill material)36の上に冷却流体を案内する噴口34を通して、冷却流体が冷却塔14に入る。電動機40で駆動される送風機38は、冷却塔14を通して空気を上方に案内することを可能にし、それにより、空気が、冷却塔14を通って流れる冷却流体と混合して、蒸発冷却を促進する。いくつかの実施形態によれば、送風機38は、VSDで駆動される遠心送風機または軸流送風機であってよい。しかし、他の実施形態では、送風機38は省略されてよく、冷却塔内の空気移動は、自然対流によって誘導される。冷却塔14は、横流式冷却塔(crossflow cooling tower)または向流式冷却塔(counterflow cooling tower)であってよい。さらに、誘引通風式冷却塔(induced draft cooling tower)として示されるが、他の実施形態では、冷却塔14は、強制通風式冷却塔(forced draft cooling tower)であってよい。
【0016】
[0026]次いで、冷却された冷却流体は、冷却塔14を出て液だめ(sump)42内に集められてよい。図示のように、液だめ42は建物16内に設置され、建物16は、いくつかの実施形態では、液だめ42内の冷却流体の凍結を阻止することができる。しかし、他の実施形態では、液だめ42は、冷却塔14と一体の部分であってよく、
図4に関連して以下に詳細に説明されるように、建物16の外部に設置されてよい。
【0017】
[0027]冷却流体が冷却塔14を通って流れ、周囲空気に触れるのにつれて、固形物および他の混入物質は、冷却流体の中に閉じ込められるかまたは取り込まれるようになる。追加の無機物、塩および他の混入物質が、補給水と共に冷却流体に入る可能性がある。蒸発を介して冷却流体から純粋な水が除去されるので、そのような混入物質の濃度は、冷却流体内で増加する。したがって、微粒子、溶解固形物、および/または混入物質を含む可能性がある、冷却流体の一部分が、弁46を開くことによってブローダウンとして除去されてよい。また、ブローダウンおよび蒸発による冷却流体の損失のために、補給冷却流体を液だめ42に案内するように、弁44が開かれてよい。次いで、液だめ42からの冷却された冷却流体は、プロセス流体ループ20内を循環するプロセス流体から冷却流体が再び熱を吸収することができるプロセス熱交換器18に、ポンプ48を介して戻されてよい。
【0018】
[0028]冷却装置10はまた、冷却装置10の動作を管理する制御器50を含んでよい。制御器50は、装置10内の弁およびセンサなどの構成要素から入力信号52を、
図8に示されるようなアナログ入力および/またはディジタル入力の形態で受けることができる。入力信号に基づいて、冷却装置10の動作を変更するために、制御器50は、
図8に示されるようなアナログ出力および/またはディジタル出力などの出力信号54を送ることができる。
図6および
図7に関連して以下に詳細に説明されるように、制御器50は、冷却塔14の追加または代替として熱サイフォン冷却器12を動作させることが効率的であるときはいつでも、熱サイフォン冷却器12の動作を有効にする(enable)ために、入力信号52と出力信号54とを使用することができる。
【0019】
[0029]いくつかの実施形態によれば、制御器50はまた、冷却装置10内に含まれる凍結予防装置56の動作を管理することができる。凍結予防装置56は、熱サイフォン冷却器12に入る冷却流体とそこを出る冷却流体との間の圧力差を測定する差圧スイッチ58と、蒸発器76のシェル側の中の冷媒の温度を測定する温度センサ57とを含んでよい。冷却流体が熱サイフォン冷却器12を通って流れているかどうかを確定するために、制御器50は、差圧スイッチ58から入力信号52を使用することができる。差圧スイッチ58からの入力に基づいて冷却流体が流れていないことを制御器50が検出すると、制御器50は、熱サイフォン冷却器12の中で使用される冷却流体の凍結を阻止する、凍結予防装置56の低温予防モードを起動することができる。低温予防モードを起動するために、制御器50は、凝縮器78内に冷媒を集積することを促進するために弁97を閉じることができる。蒸発器76への冷媒流の欠乏が、蒸発器76内の冷却流体の凍結を阻止することを可能にする。制御器50はまた、蒸発器76内に含まれる冷却流体の凍結を阻止するために、蒸発器76に対する補助熱源(supplemental heat)を電源投入して、蒸発器76に熱の流入をもたらすことができる。
【0020】
[0030]凍結予防装置56の動作を管理するために、制御器50はまた、温度センサ57からの入力を使用することができる。例えば、蒸発器76内の温度が一定の設定点より低いことを指示する入力を制御器50が温度センサ57から受けると、制御器50は、冷却流体を熱サイフォン冷却器12から排出しかつ冷却流体の流れを熱サイフォン冷却器12を避けて転向させる、凍結予防装置56の凍結予防モードを起動することができる。冷却流体を熱サイフォン冷却器12から排出するために、制御器50は、弁60および62を開いて、冷却流体を排液管路(drain line)64に案内することができる。図示のように、排液管路64は、冷却流体を液だめ42に案内することができる。しかし、他の実施形態では、例えば、液だめ42が建物16の外部に設置される場合は、排液管路64は、下水管または回収容器に接続されてよい。
【0021】
[0031]制御器50はまた、弁30を閉じて、熱サイフォン冷却器12を出る冷却流体を、弁62を介して排液管路64に案内することができる。さらに、熱サイフォン冷却器12からの冷却流体の排出を促進するために、制御器50は、弁66を開いて、熱サイフォン冷却器12に空気を注入することができる。いくつかの実施形態によれば、弁66は、蒸発器チューブから冷却流体を押し出すために、熱サイフォン冷却器12の蒸発器チューブに空気を注入するように設計されてよい。追加の冷却流体が熱サイフォン冷却器12に流入するのを阻止するために、制御器50はまた、弁24の位置を変更して、熱サイフォン冷却器12を迂回して弁32に直接流れるように、プロセス熱交換器18からの冷却流体を案内することができる。いくつかの実施形態によれば、弁60、62および66は、開位置で機能停止し、電源故障時に、凍結予防装置56を自動的に有効にすることができるように設計されたソレノイド弁であってよい。
【0022】
[0032]冷却装置10はまた、冷却装置10の動作を管理するために、制御器50によって使用される温度を検出するために使用されうる温度センサ68、70、72および74を含んでよい。例えば、温度センサ68は、周囲の空気温度を検出し、温度センサ70は熱サイフォン冷却器12を出る冷却流体の温度を検出し、温度センサ72はプロセス熱交換器18を出る冷却流体温度を検出し、また、温度センサ74はプロセス熱交換器18に入る冷却流体の温度を検出することができる。温度センサ68、70、72および74は、冷却装置10の動作を制御するために使用されうる入力信号52の形態で、温度を制御器50に供給することができる。
【0023】
[0033]いくつかの実施形態によれば、制御器50は、凍結予防装置56をいつ有効にするかを確定するために、センサ57、68、70、72および74のうちのいくつかまたはすべてで感知される温度を使用することができる。例えば、差圧スイッチ58で検出されるような流れが存在しないときで、かつセンサ68で検出されるような周囲温度が周囲温度設定点より低いときに、制御器50は、凍結予防装置56の低温予防モードを起動してよい。別の例では、センサ70で検出されるような、熱サイフォン冷却器12を出る冷却流体の温度が中間温度設定点より高いときに、制御器50は、凍結予防装置56の凍結予防モードを無効にしてよい。
【0024】
[0034]熱サイフォン冷却器12の動作パラメータを確定するために、制御器50はまた、センサ57、68、70、72および74のうちのいくつかまたはすべてで感知される温度を使用することができる。いくつかの実施形態によれば、冷却装置10は、プロセス熱交換器18に入る冷却流体を、冷却装置温度設定点と呼ばれてよい特定の温度まで冷却するように設計されてよい。センサ74で検出されるような、プロセス熱交換器18に入る冷却流体の温度が、冷却装置温度設定点より高い場合、制御器50は、凝縮器の送風機26の速度を増加させるように、出力信号を電動機28に供給してよい。同様に、センサ74で検出されるような、プロセス熱交換器18に入る冷却流体の温度が、冷却装置温度設定点より低い場合、制御器50は、凝縮器の送風機26の速度を減少させるように、出力信号を電動機28に供給してよい。
【0025】
[0035]制御器50はまた、冷却塔14をいつ動作させるかを確定するために、センサ57、68、70、72および74のうちのいくつかまたはすべてで感知される温度を使用することができる。例えば、センサ70で検出されるような、熱サイフォン12を出る冷却流体の温度が冷却装置温度設定点以下である場合、制御器50は、出力信号を弁32に供給して、冷却流体が冷却塔14を迂回して液だめ42に直接進むように弁32の位置を変更することができる。このモードの動作では、熱サイフォン冷却器12は、冷却装置温度設定点を達成するのに十分な冷却能力を供給することができ、それゆえ、冷却装置10は、冷却塔14を使用することなく動作されてよく、そのことで、冷却装置10内の水消費を低減することができる。
【0026】
[0036]
図6および
図7に関連して以下に詳細に説明されるように、制御器50はまた、熱サイフォン冷却器12をいつ動作させるかを確定するために、センサ57、68、70、72および74のうちのいくつかまたはすべてで感知される温度を使用することができる。例えば、プロセス熱交換器18を出る冷却流体と周囲空気との間の温度差を確定するために、制御器50は、センサ72および68で感知された温度を使用することができる。次いで、熱サイフォン冷却器12をいつ動作させると経済的および/または資源効率的であるかを確定するために、制御器50は、この温度差を、水道料金および電力料金と併せて使用することができる。
【0027】
[0037]
図2および
図3は、熱サイフォン冷却器12の一実施形態を表す。
図2に示されるように、熱サイフォン冷却器12は、シェルアンドチューブ蒸発器76と空冷凝縮器78とを含む。シェルアンドチューブ蒸発器76は、プロセス熱交換器18(
図1)から加熱された冷却流体を受けて、冷却流体から蒸発器76を通って流れる冷媒に熱を伝達することができる。いくつかの実施形態によれば、冷媒はHFCタイプまたはHFOタイプの冷媒であってよいが、他の実施形態では、任意の適切な冷媒が使用されてよい。加熱された冷媒は、冷媒ループ80の導管(piping)を通って凝縮器78に案内されてよく、凝縮器78で、冷媒は、送風機26によって凝縮器78を通って案内される周囲空気によって冷却されてよい。次いで、冷却された冷媒は、冷媒ループ80を通って蒸発器76に戻されてよい。いくつかの実施形態によれば、蒸発器76および凝縮器78は、熱サイフォン冷却器12が単一の一体型パッケージ(package)として販売されることを可能にする共通枠82内に含まれてよい。しかし、他の実施形態では、蒸発器76および凝縮器78は、別個の枠内に配置されるか、または冷却装置10の別個の部品内に搭載されてよい。さらに、
図2および
図3に反映される実施形態は、シェルアンドチューブ蒸発器として蒸発器76を示すが、他の実施形態は、シェルアンドチューブ設計の代わりに、プレート蒸発器(plate evaporator)設計など、別の種類の蒸発器を含んでよい。
【0028】
[0038]冷媒および冷却流体は、
図3に示されるように、熱サイフォン冷却器12を通って循環することができる。シェルアンドチューブ蒸発器76は、冷媒が蒸発器76を通って流れるので、冷媒を含むシェル84を含んでよい。シェル84はまた、蒸発器76を通して冷却流体を循環させるチューブ86を収納してよい。冷却流体は
、入口87を通ってチューブ86に入り
、出口89を通ってチューブ86を出ることができる。冷却流体は、チューブ86を通って流れるので、シェル84内を流れる冷媒に熱を伝達することができる。冷媒は熱を吸収するので、冷却器の冷媒より浮揚性がある加熱された冷媒は、自然対流によって導管80を通って、蒸発器76より低い温度の凝縮器78に引き込まれうる。次いで、加熱された冷媒は、凝縮器78内に含まれる熱伝達コイル88を通って流れ、送風機26が、コイル88内を流れる冷媒を冷却するために、コイル88の上に周囲空気を引き込むことを可能にする。次いで、冷却された冷媒は、重力によって、冷媒がチューブ86内の冷却流体から再び熱を吸収するシェル84まで戻ることができる。
【0029】
[0039]冷却された冷媒の蒸発器76内への帰還を促進するために、凝縮器78は、蒸発器76より高さ90だけ高い位置に配置されて、冷却された冷媒の蒸発器76への帰還を促進する。凝縮器78、蒸発器76および冷媒ループ80の導管は、熱サイフォン冷却器
12内の圧力低下を最小にするように寸法が決められてよく、それにより、より低い高さ90が、冷媒を凝縮器78から蒸発器76まで自然対流によって戻すために使用されることが可能になる。いくつかの実施形態によれば、高さ90は、熱サイフォン冷却器12が従来の道路トラック(road truck)上で単一の一体型パッケージとして輸送されることを可能にするために、約305〜366cm(10〜12フィート)より低くてよい。しかし、他の実施形態では、高さ90は任意の適切な高さであってよい。いくつかの実施形態では、蒸発器76はまた、蒸発器76からの冷却流体の排出を促進するために、ある角度で配置されてよい。いくつかの実施形態によれば、蒸発器76は、水平に対して約5度の角度で傾けられてよい。
【0030】
[0040]冷却流体と共にチューブ86に入る微粒子および/または溶解固形物による混入物質の集積を除去するために、蒸発器76は、チューブ86の内部が洗浄のためにアクセスされうる洗浄可能な蒸発器として設計されてよい。例えば、冷却流体は、冷却塔14内の冷却流体と接触する周囲の空気から、固形物を吸収する可能性がある。チューブ86へのアクセスを提供するために、蒸発器76は、チューブ86内への開口を露出させるために取り外されうる開閉カバー92を含んでよい。さらに、他の実施形態では、着脱可能な開閉カバー92の代替または追加として、蒸発器76は、洗浄のためにチューブ86にアクセスを可能にする、着脱可能な頭部(head section)94を含んでよい。
【0031】
[0041]いくつかの実施形態では、蒸発器76はまた、蒸発器76内の冷却流体の液面高さを検出するように設計された、光センサなどのセンサ95を含んでよい。これらの実施形態では、凍結予防装置56の凍結予防モードが有効にされているときに、冷却流体が蒸発器76から排出されていることを確実にするために、センサ95が、凍結予防装置56と併せて使用されてよい。さらに、いくつかの実施形態では、冷媒ループ80を通る冷媒の流れを停止させるために、熱サイフォン冷却器12は、冷媒ループ80の導管内に配置された弁97を含んでよい。これらの実施形態では、低い周囲温度、例えば温度センサ95で測定された低い蒸発器温度、および/または熱サイフォン冷却器12内に流れが存在しないことなど、凍結を発生する可能性のある条件を検出すると、弁97は、制御器50によって閉じられてよい。弁97は、閉じられると、凝縮器78のコイル88内への冷媒の収集を促進し、そのことが、回路80内の冷媒の循環を阻止し、蒸発器76への冷媒の循環を妨げることができる。これらの実施形態では、蒸発器76はまた、潜在的な凍結条件を検出すると、蒸発器76への熱の流入をもたらすために、補助加熱器(supplemental heating)および/または断熱体(insulation)を組み込むことができる。
【0032】
[0042]
図4は、開ループ冷却塔14および熱サイフォン冷却器12を含む冷却装置10の別の実施形態を表す。
図4に示される冷却装置10の実施形態は、全体的に、
図1に関連して上で説明された冷却装置10の実施形態に類似する。しかし、
図4に示される冷却塔14は、
図1に示されるような、建物16内に配置される液だめではなく、一体化された液だめ42を含む。
【0033】
[0043]
図4に示されるように、冷却流体は、熱サイフォン冷却器12内で冷却されてよい。熱サイフォン冷却器12は、
図1に関連して上で説明されたように動作することができる凍結予防装置56を含む。しかし、排液管路64は、液だめ42にではなく、下水管または回収容器に案内されてよい。熱サイフォン冷却器12を出る冷却流体は、弁32を通って冷却塔14に流れることができる。冷却塔14内で、冷却流体は、噴口34によって充填材料36の上に案内され、冷却塔14のより低い位置に設置されうる液だめ42の中に集まることができる。ブローダウンおよび蒸発による冷却流体の損失のために、弁44が、補給冷却流体を液だめ42に案内するように開かれてよい。弁46はまた、冷却塔14からブローダウンを除去するために開かれてよい。次いで、液だめ42からの冷却された冷却流体は、ポンプ48を介してプロセス熱交換器18に戻されてよい。プロセス熱交換器18内で、冷却流体は、プロセス流体ループ20内を循環するプロセス流体から再び熱を吸収することができる。
【0034】
[0044]
図1〜
図4に関連して上で説明されたように、熱サイフォン冷却器12は、冷却装置10を通って流れる冷却流体に周囲の空気が直接接触する可能性のある開ループ冷却塔を含む冷却装置10の中で使用されてよい。しかし、他の実施形態では、熱サイフォン冷却器
12は、
図5に示されるような閉回路冷却塔内で使用されてよい。閉ループ冷却塔は、冷却流体の中の混入物質を低減することが望ましい装置の中で、特に有用でありうる。
【0035】
[0045]
図5に示される冷却装置10の実施形態は、
図1に関連して上で説明された冷却装置と全体的に類似する。しかし、
図1におけるように、冷却塔14内の周囲空気に、冷却装置ループ22内の冷却流体が直接さらされることを許容するのではなく、
図5の冷却装置10は、冷却塔14の代わりに閉回路冷却塔91を使用することによって、周囲空気への接触から分離される。閉回路冷却塔91内で、冷却装置ループ22を通って流れる冷却流体は、閉回路冷却塔91と一体である噴出水ループ(spray water loop)102に熱を伝達することができる閉回路冷却塔の冷却コイル98を介して冷却されうる。噴出水ループ93内を循環する噴出水は、周囲空気による蒸発冷却を介して冷却されてよく、それゆえ、冷却装置ループ22を通って流れる冷却流体が、開かれた冷却装置ループに通常付随する、空気で運ばれる混入物質および補給水で運ばれる混入物質にさらされるのを防止することができる。噴出水ループは、閉回路冷却塔の冷却コイル98と、噴出水を回収するための水だめ(sump)42と、噴出水の導管99と、噴出水ポンプ101との上に噴出水を案内する噴口34を含んでよい。噴出水の蒸発冷却を促進するために、電動機40で駆動される送風機38は、閉回路冷却塔91を通して上方に空気を案内することができる。ブローダウン弁46は、噴出水ループ93から混入物質を除去するために使用されてよく、補給水弁44は、ブローダウンおよび蒸発による噴出水の損失のために、補給用噴出水を水だめ42に案内するために使用されてよい。
【0036】
[0046]
図6は、
図1および
図4に示されるような開ループ冷却塔、または
図5に示されるような閉ループ冷却塔を含む、冷却装置10の動作を管理するために使用されうる方法100を表す。方法100は、冷却装置10が動作を開始しているかどうかを確定する(ブロック102)ことによって開始する。例えば、冷却装置10は、プロセス熱交換器18の起動と同時に動作を開始することができる。冷却装置10が動作を開始している場合、制御器50は、凍結予防装置56の凍結予防モードを起動する(ブロック103)ことができる。凍結予防モードを起動するために、制御器50は、熱サイフォン冷却器12を迂回して冷却流体を案内するように、弁24を位置づけることができる。制御器50はまた、弁60、62および66を開位置のままにしてよい。さらに、制御器50は、熱サイフォン冷却器12の冷媒ループ80内の冷媒の流れを停止させるために、弁97を閉じてよい。
【0037】
[0047]冷却装置10が動作を開始していない場合、制御器50は、凍結予防装置56の低温予防モードを起動するかどうかを確定する(ブロック104)ことができる。例えば、制御器50は、温度センサ68からの入力のような周囲温度を受けて、周囲温度が、いくつかの実施形態では摂氏2.2度(華氏36度)であってよい周囲温度設定点より低いかどうかを確定することができる。しかし、他の実施形態では、周囲温度設定点は、変化してよい。周囲温度が周囲温度設定点より低い場合、制御器50は、次いで、熱サイフォン冷却器12を通る流れが存在するかどうかを確定することができる。例えば、制御器50は、差圧スイッチ58を使用して、熱サイフォン冷却器12を通る流れを検出することができる。
【0038】
[0048]熱サイフォン冷却器12を通る流れが存在しないことを制御器50が確定する場合、制御器50は、凍結予防装置56の低温予防モードを起動する(ブロック105)ことができる。比較的短期間の低周囲温度の間、および/または比較的短期間の冷却装置10の運転停止(shutdown)の間、低温予防モードは、冷却流体が熱サイフォン冷却器12内に保持されることを可能にすることができる。例えば、プロセス熱交換器18からの冷却要求が存在しない夜間に、冷却装置10が運転停止されるときに、低温予防モードが起動されてよい。
【0039】
[0049]低温予防モードを起動するために、制御器50は、熱サイフォン冷却器12内の冷却流体が凍結するのを防ぐために、冷却装置10の動作を調節することができる。例えば、制御器50は、熱サイフォン冷却器の送風機26を電源遮断することができる。制御器50はまた、冷却流体が熱サイフォン冷却器12を通って流れることを可能にするために、弁24および30が開であることを確実にすることができる。さらに、冷媒ループ80を通る冷媒の流れを停止させるために、制御器50は、弁97を閉じることができる。弁97を閉じることが、冷媒が凝縮器78内に集まることを可能にし、そのことが、蒸発器76内の冷却流体の凍結を阻止することを可能にする。制御器50はまた、蒸発器76内に含まれる冷却流体の凍結を阻止するために熱を蒸発器76に供給する、蒸発器76のための補助熱源を電源投入することができる。
【0040】
[0050]熱サイフォン冷却器12を通る流れが存在する場合、および/または周囲温度が周囲温度設定点より高い場合、制御器50は、蒸発器温度が蒸発器温度設定点より低いかどうかを確定する(ブロック106)ことができる。例えば、制御器50は、蒸発器76のシェル側の中の冷媒の温度を指示する温度センサ57からの入力として、蒸発器温度を受けることができる。いくつかの実施形態によれば、蒸発器温度設定点は、摂氏0.56度(華氏33度)であってよい。しかし、他の実施形態では、蒸発器温度設定点は、変化してよい。
【0041】
[0051]蒸発器温度が蒸発器温度設定点より低いことを、制御器50が確定する場合、制御器50は、凍結予防装置56の凍結予防モードを起動する(ブロック108)ことができる。凍結予防モードを起動するために、制御器50は、冷却流体が熱サイフォン冷却器12を迂回するように、冷却装置10の動作を調節することができる。特に、制御器50は、熱サイフォン冷却器の送風機26を電源遮断し、弁24を使用して水を熱サイフォン冷却器12から転向させることができる。制御器50はまた、熱サイフォン冷却器12を出る冷却流体を、直接水だめ42に案内するように弁32を位置づけることができる。冷却流体が熱サイフォン冷却器12から排出した後、制御器50は、冷却流体が蒸発冷却によって冷却されうる冷却塔14を通って、冷却流体が流れることを可能にするように、弁32を位置づけることができる。
【0042】
[0052]凍結予防モードにおいて、制御器50はまた、冷却流体を熱サイフォン冷却器12から排出することができる。例えば、制御器50は、弁30を閉じ、弁60および62を開いて、熱サイフォン冷却器12内の冷却流体を排液管路64に案内することができる。熱サイフォン冷却器12からの冷却流体の排出をさらに促進するために、制御器50はまた、弁66を開いて、熱サイフォン冷却器12に空気を注入することができる。いくつかの実施形態によれば、凍結予防モードにおいて冷却流体を熱サイフォン冷却器12から排出することが、冷却流体の膨脹および/または凍結によってチューブ86が損傷するのを防止することを可能にする。
【0043】
[0053]凍結予防モードが起動されるべきでないことを制御器50が確定する場合、制御器50は、凍結予防モードが無効にされるべきかどうかを確定する(ブロック110)ことができる。最初に、制御器50は、例えば弁24、60、62、66および30の位置に基づいて、凍結予防モードが現在有効にされているかどうかを確定することができる。凍結予防モードが現在有効にされている場合、制御器50は、温度センサ70で測定されるような中間温度(すなわち、熱サイフォン冷却器12を出る冷却流体の温度)が、中間温度設定点より高いかどうかを確定することができ、中間温度設定点は、いくつかの実施形態では、約摂氏10度(華氏50度)であってよい。しかし、他の実施形態では、中間温度設定点は、変化してよい。
【0044】
[0054]中間温度が中間温度設定点より高くない場合、制御器50は、冷却装置10が凍結予防モードにおける動作を継続することを可能にしてよい。しかし、中間温度が中間温度設定点より高い場合、制御器50は、冷却流体が熱サイフォン冷却器12を通って流れることを可能にするために、冷凍再始動シーケンス(freeze restart sequence)を起動する(ブロック112)ことができる。特に、制御器50は、排液弁(drain valve)60および62を閉じ、同様に通気弁(vent valve)66を閉じることができる。さらに、制御器50は、冷却流体が熱サイフォン冷却器12を通って流れることを可能にするために、弁24および30の位置を調節することができる。したがって、次に、冷却装置10は、冷却流体が熱サイフォン冷却器12を通って流れて周囲空気で冷却される、プロセス冷却モードにおいて動作されてよい。
【0045】
[0055]次いで、
図7に示されるように、方法100は、冷却装置10がプロセス冷却モードにおいて動作しているかどうかを確定する(ブロック114)によって、継続することができる。プロセス冷却モードにおいて、冷却装置10は、冷却流体が熱サイフォン冷却器12と冷却塔14との両方を通して案内されるように設定されてよい。したがって、制御器50は、電動機28および40ならびに弁24および32からの入力に基づいて、プロセス冷却モードにおける動作を検出することができる。冷却装置10がプロセス冷却モードにおいて動作していないことを制御器50が検出する場合、制御器50は、冷却装置10を、その現在のモードにおいて動作しているままにしてよい。例えば、冷却装置10がプロセス冷却モードにおいて動作していない場合、冷却装置10は、凍結予防モードまたは低温モードにおいて動作している可能性がある。
【0046】
[0056]冷却装置10がプロセス冷却モードにおいて動作している場合、制御器50は、熱サイフォン冷却器12による冷却が有効にされるべきかどうかを確定する(ブロック118)ために使用されうる計算を実行する(ブロック116)ことができる。例えば、制御器50は、熱サイフォン経済的動力消費限界(TEPCL)を計算することができる。
図8に示されるように、TEPCLは、回避される水コストが、熱サイフォン冷却器12を動作させるために使用される増える電力コストより大きいことを確実にするために、熱サイフォン冷却器12によって達成される、冷却流体温度低下1度当たりに凝縮器の送風機26で使用されるべき最大キロワットの電力であってよい。
【0047】
[0057]TEPCLは、とりわけ水のコスト、電力のコスト、周囲の湿球温度および乾球温度、冷却塔の水使用、廃水のコスト、水処理のコスト、および/または冷却塔の送風機の動力消費などの入力を使用して計算されてよい。水および電力のコストは、運転者によって入力されてよく、またはネットワーク接続を介して制御器50によって得られてよい。水料金および電力料金を使用して、制御器50は、センサ72で測定されるような、プロセス熱交換器18を出る冷却流体の温度と、センサ70で測定されるような、熱サイフォン冷却器12を出る冷却流体の温度(すなわち、中間温度)との間の温度差によって測定されるような、冷却1度当たりに凝縮器の送風機28で使用されるべき最大キロワットとして、TEPCLを計算することができる。
【0048】
[0058]TEPCLは、熱サイフォン始動閾値(start threshold)(TST)を計算するために使用されてよい。
図7に示されるように、凝縮器の送風機26が低い送風機速度で動作されているときに、熱サイフォン冷却器12がTEPCLより低い経済的動力消費レベルで動作されることを可能にするために、熱サイフォン始動閾値は、温度センサ72で測定されるような、プロセス熱交換器18を出る冷却流体の温度と、温度センサ68で測定されるような、周囲空気の温度との間に存在するべき最小温度差であってよい。
【0049】
[0059]次いで、制御器50は、プロセス熱交換器18を出る冷却流体の温度と周囲空気の温度との間の実際の温度差がTSTより大きいかどうかを確定する(ブロック118)ために、計算されたTSTを使用することができる。例えば、制御器50は、センサ
72および68から受けた温度に基づいて、実際の温度差を計算することができる。実際の温度差がTSTより低い場合、制御器50は、熱サイフォン冷却器12の動作を無効にする(ブロック120)ことができる。例えば、制御器50は、冷却流体が熱サイフォン冷却器12を迂回するように弁24を位置づけすることができる。さらに、いくつかの実施形態では、制御器50は凝縮器の送風機26を電源遮断することができる。
【0050】
[0060]さらに、いくつかの実施形態では、制御器50はまた、周囲温度が高温設定点より高いかどうかを確定することができる。例えば、制御器50は、周囲温度を指示する温度センサ68からの入力を受けることができる。周囲温度が高温設定点より高い場合、制御器50は、熱サイフォン冷却器12の動作を無効にする(ブロック120)ことができる。いくつかの実施形態によれば、高温設定点は、その周囲温度より高いと、熱サイフォン冷却器12を通って流れる冷却流体に熱が加えられる周囲温度であってよい。したがって、いくつかの実施形態では、高温設定点は、温度センサ72で検出されうる、プロセス熱交換器18を出る冷却流体の温度次第であってよい。周囲温度が、プロセス熱交換器18を出る冷却流体の温度にほぼ等しいかまたはそれより高い状況においては、熱サイフォン冷却器12を迂回して、周囲空気からの熱を冷却流体に加えることを避けることが望ましい。
【0051】
[0061]その一方で、制御器50が、周囲温度が高温設定点より低いことを確定する(ブロック118)場合、および/または実際の温度差がTSTより大きい場合、制御器50は、熱サイフォン冷却器12の動作を有効にする(ブロック122)ことができる。例えば、制御器50は、冷却流体が熱サイフォン冷却器12を通って流れることを可能にするように弁24を位置づけることができる。したがって、冷却流体は、流体が周囲空気で冷却されうる熱サイフォン12を通って流れることができる。
【0052】
[0062]熱サイフォン冷却器12が有効にされた後、制御器50は、熱サイフォン冷却器12によってもたらされる冷却量を変更するために、送風機26の動作を調節することができる。いくつかの実施形態によれば、送風機26の動作は、電力の消費を最小化しながら、依然として所望の冷却量をもたらしているように調節されてよい。例えば、制御器50は、温度センサ70で測定されるような中間温度が冷却装置温度設定点より低いかどうかを確定する(ブロック124)ことができる。中間温度が、プロセス熱交換器18に入る冷却流体の所望の温度である冷却装置温度設定点以下であるとき、熱サイフォン冷却器12は、冷却塔14による付加的な冷却なしに、冷却装置温度設定点を達成するのに十分な冷却をもたらすことを可能にすることができる。さらに、中間温度が冷却装置温度設定点より低いときは、熱サイフォン12は、現在、冷却流体を過剰に冷却している可能性があり、したがって、凝縮器の送風機26の速度が引き下げられてよい。
【0053】
[0063]中間温度が冷却装置温度設定点より低い場合、制御器50は、凝縮器の送風機が最低速度で動作しているかどうかを確定する(ブロック126)ことができる。凝縮器の送風機が最低速度で動作している場合、制御器50は、凝縮器の送風機を電源遮断する(ブロック128)ことができる。これらの実施形態では、周囲空気の温度は、送風機を動作させるための電力を必要とすることなく、冷却流体を冷却装置温度設定点まで冷却するのに十分に低い可能性がある。この動作モードでは、熱サイフォン冷却器12は、電力を消費することなく動作されてよい。その一方で、制御器50が、送風機が最低の送風機速度で動作していないことを確定する(ブロック126)場合、制御器50は、送風機速度を減少させる(ブロック130)ことができる。送風機速度を引き下げることが、熱サイフォン冷却器12で消費される電力の量を引き下げることを可能にする。
【0054】
[0064]制御器50が、中間温度が冷却装置温度設定点より高いことを確定する(ブロック124)場合、熱サイフォン冷却器12は、冷却装置温度設定点を達成するのに十分な冷却を現在もたらしていない可能性がある。したがって、制御器50は、凝縮器の送風機の速度を調節することによって熱サイフォン冷却器12の冷却能力を増加させるべきかどうかを確定することができる。最初に、制御器50は、凝縮器の送風機が動作可能であるかどうかを確定する(ブロック132)ことができる。送風機が動作可能であれば、制御器50は、送風機が経済的に効率の良い方式で動作しているかどうかを確定する(ブロック134)ことができる。いくつかの実施形態によれば、制御器134は、熱サイフォン冷却器12で使用される現在の熱サイフォンの経済的動力消費(TEPC)を計算することができる。例えば、制御器50は、電動機28で使用されている現在のキロワットを計算し、温度センサ72で測定されるような、プロセス熱交換器18を出る冷却流体の温度と、温度センサ70で測定されるような、熱サイフォン冷却器12を出る冷却流体の温度との間の温度差で、これらのキロワットを割ることができる。
【0055】
[0065]次いで、制御器50は、実際のTEPCをTEPCLと比較することができる。実際のTEPCがTEPCLより高い場合、制御器50は、送風機速度を減少させる(ブロック135)ことができる。送風機速度を減少させることが、熱サイフォン冷却器12によってもたらされる冷却量を引き下げ、したがって、より多くの冷却が冷却塔14によってもたらされてよい。これらの例では、制御器50は、追加の冷却能力をもたらすために、冷却塔の送風機38の速度を増加させてよい。その一方で、TECPがTECPLより低い場合、制御器50は、熱サイフォン冷却器12によってもたらされる冷却量を増加させるために、凝縮器の送風機の速度を増加させる(ブロック136)ことができる。さらに、制御器50が、送風機が通電されていないことを確定する(ブロック132)場合、制御器50は、送風機を電源投入して最低の送風機速度にする(ブロック138)ことができる。次いで、制御器50は、中間温度が冷却装置温度設定点より低いかどうかを再び確定し(ブロック124)、ブロック126〜138に関連して上で説明されたように、凝縮器の送風機の動作を調節することができる。
【0056】
[0066]ある量のヒステリシスが、凝縮器の送風機の動作を変更するときに使用されてよいことは、理解されよう。例えば、いくつかの実施形態では、制御器50は、温度センサ70で測定されるような中間温度において、閾の量の変化を検出した後に、凝縮器の送風機の動作を調節することができる。
【0057】
[0067]
図8は、冷却装置
10の動作を管理するために制御器50によって使用されてよい種々の入力および出力を表す。上で説明されたように、入力および出力は、アナログおよび/またはディジタルの出力であってよく、また、凍結予防装置56を有効にし、熱サイフォン冷却器12と冷却塔14との動作を管理するために、制御器50によって使用されてよい。さらに、いくつかの実施形態では、
図7に示される入力および出力は、熱サイフォン冷却器12を通して、冷却塔14を通して、または熱サイフォン冷却器12と冷却塔14との両方を通して冷却流体をいつ案内するかを確定するために、制御器50によって使用されてよい。
【0058】
[0068]
図6および
図7は、他の実施形態において、熱サイフォン冷却器を背景として方法100を説明するが、方法100の一部は、冷媒を直接、排熱機器(device)に循環させる装置内で、蒸発凝縮器(evaporative condenser)と並列に使用される空冷凝縮器など、他の種類の乾式排熱装置を用いる冷却装置を制御するために使用されてよい。
【0059】
[0069]
図6および
図7は、他の実施形態において、熱サイフォン冷却器を背景として方法100を説明するが、方法100の一部は、凍結防止冷却剤(freeze protectant coolant)と併せて使用される乾式冷却器など、他の種類の乾式排熱装置を用いる冷却装置を制御するために使用されてよい。
図9は、乾式冷却器142および熱交換器143を含む、冷却装置10の別の実施形態を表す。いくつかの実施形態によれば、乾式冷却器142は、熱サイフォン冷却器12内で使用される空冷凝縮器78に類似してよい。しかし、他の実施形態では、任意の適切な空冷凝縮器または他の種類の乾式排熱機器が使用されてよい。本明細書で使用されるように、用語「乾式排熱機器」は、湿式冷却または蒸発冷却を使用しない熱伝達機器に言及することができる。いくつかの実施形態によれば、熱交換器143は、熱サイフォン冷却器12内で使用される蒸発器76に類似してよい。しかし、他の実施形態では、プレート熱交換器(plate heat exchanger)など、任意の適切な種類の熱交換器が使用されてよい。
【0060】
[0070]
図9に示されるように、冷却装置10は、熱交換器143、乾式冷却器142、グリコールまたはブラインのループ138などの凍結防止冷却剤ループ、およびポンプ140を含む乾式排熱装置を含む。プロセス熱交換器18からの冷却流体は、熱交換器143を通って流れるグリコールまたはブラインなどの凍結防止冷却剤に冷却流体が熱を伝達することができる熱交換器143を通って流れることができる。次いで、冷却流体は、熱交換器143を出て、
図1に関連して上で説明されたように、冷却流体がさらに冷却されうる冷却塔14に流れることができる。熱交換器143がシェルアンドチューブ熱交換器であるいくつかの実施形態では、冷却流体が、熱交換器143のチューブを通って流れる一方で、グリコールまたはブラインなどの凍結防止冷却剤が、熱交換器143のシェル側を通って流れることができる。
【0061】
[0071]乾式排熱装置内で、熱交換器143からの加熱された凍結防止冷却剤は、ポンプ140を介して冷却剤ループ138を通り、乾式冷却器142に流れることができる。図示されていないが、ポンプ140は、1つまたは複数の電動機で駆動されてよい。乾式冷却器142内で、凍結防止冷却剤は、送風機26によって乾式冷却器142を通って案内される空気で冷却されてよい。次いで、冷却された冷却剤は、乾式冷却器142を出て、冷却剤が熱交換器143を通って流れる冷却流体から熱を再び吸収することができる熱交換器143に戻ることができる。
【0062】
[0072]追加の凍結防止冷却剤ループ138によって、冷却流体は、建物16内に収容されてよく、周囲空気にさらされなくてよい。したがって、冷却装置は建物16によって低い周囲温度から保護されうるので、凍結予防装置は使用されなくてよい。したがって、
図9に示される冷却装置の実施形態を動作させるときは、方法100のブロック102〜112(
図6)は、省略されてよい。しかし、
図10に示されるように、
図7のブロック114〜138に類似する方法146は、
図9に示される乾式排熱装置を動作させるために使用されてよい。
【0063】
[0073]
図10に示されるように、方法146は、冷却装置10がプロセス冷却モードにおいて動作していることを検出する(ブロック148)ことによって開始することができる。例えば、制御器50は、弁24および32の位置に基づいて、プロセス冷却モードにおける動作を検出することができる。装置がプロセス冷却モードにおいて動作していることを制御器50が検出すると、制御器50は、乾式排熱経済的動力消費限界(DEPCL)を計算する(ブロック150)を検出することによって開始することができる。
【0064】
[0074]DEPCLは、
図5〜
図7に関連して上で説明されたTEPCLに類似してよい。例えば、DEPCLは、回避される水コストが、乾式排熱装置を動作させるために使用される増える電力コストより大きいことを確実にするために、乾式排熱装置によって達成される、冷却流体温度低下1度当たりに乾式排熱装置で使用される最大キロワットの電力であってよい。例えば、
図8に示されるように、電力コストは、送風機26を駆動するために使用される電動機28の電力消費、ならびにポンプ140を駆動する電動機で使用される電力に基づくことができる。次いで、制御器50は、乾式排熱装置始動閾値(DST)を計算する(ブロック152)ことができる。DSTは、
図5〜
図7に関連して上で説明されたTSTに類似してよい。例えば、DSTは、DEPCLより低い乾式排熱装置の実際の動力消費を可能にすることが知られている、センサ72で測定されるような、プロセス熱交換器を出る冷却流体の温度と温度センサ68で測定されるような周囲温度との間に存在するべき、最低の温度差であってよい。
【0065】
[0075]次いで、制御器50は、プロセス熱交換器18を出る冷却流体と周囲空気との間の実際の温度差がDSTより大きいかどうかを確定する(ブロック154)ために、計算されたDSTを使用することができる。実際の温度差がDSTより小さい場合、制御器50は、乾式排熱装置の動作を無効にする(ブロック156)ことができる。例えば、制御器50は、熱交換器143を迂回し、弁32を介して冷却塔14に直接流れるように、冷却流体を案内するように弁24を位置づけることができる。さらに、いくつかの実施形態では、制御器50は、送風機26およびポンプ140を電源遮断することができる。
【0066】
[0076]その一方で、制御器50が、実際の温度差がDSTより大きいことを確定する(ブロック154)場合、制御器50は、乾式排熱装置を有効にする(ブロック158)ことができる。例えば、冷却流体からの熱を、乾式冷却器142を通って流れる凍結防止冷却剤に伝達するために、制御器50は、冷却流体を熱交換器143を通して案内するように弁24を調節することができる。さらに、制御器50は、送風機26およびポンプ140を電源投入することができる。さらに、ブロック124〜138に関連して
図6において上で説明されたように、乾式排熱装置が動作している間に、制御器50は、送風機26の動作を管理することができる。
【0067】
[0077]
図11は、熱サイフォン冷却器12と、自然通風式双曲線形(natural draft hyperbolic)冷却塔である開ループ冷却塔160とを含む冷却装置10の別の実施形態を表す。復水器(steam condenser)162が、タービンからの水蒸気の熱を冷却装置ループ22に伝達するために使用されてよい。いくつかの実施形態によれば、冷却装置10は、発電所用の冷却をもたらすために使用されてよい。
図11に示される冷却装置は、
図1に関連して上で説明された冷却装置に全体的に類似して動作することができ、方法100は、
図6および
図7に関連して上で説明されたように、冷却装置を動作させるために使用されてよい。
【0068】
[0078]本発明のいくつかの特徴および実施形態が例示され、説明されたにすぎないが、特許請求の範囲に記載される主題の新規な教示および利点を著しく逸脱することなく、多くの改変および変形(例えば、大きさ、寸法、構造、形状における変化、および種々の要素、パラメータ(例えば、温度、圧力など)の値、取り付け配列、材料の使用、配向などの比率)が、当業者には想到されよう。例えば、任意のプロセスもしくは方法ステップの順序もしくはシーケンスは、代替実施形態によって変更または再配列されてよい。さらに、個別の実施形態が本明細書で説明されるが、本開示は、これらの実施形態のすべての組合せを包含することが意図されている。それゆえ、添付の特許請求の範囲は、本発明の真の趣旨の中に入るすべてのそのような改変および変形を包含することが意図されていることを理解されたい。さらに、例示的実施形態の簡潔な説明を提供するために、実際の実施のすべての特徴が説明されているわけではない(すなわち、本発明を遂行するために現在考えられる最良のモードに無関係なもの、または特許請求される本発明を可能にすることに無関係なもの)。任意のエンジニアリングまたは設計のプロジェクトにおけるように、任意のそのような実際の実施の開発では、多数の実施に固有の決定がなされてよいことを理解されたい。そのような開発努力は複雑で時間がかかるものであるが、それにもかかわらず、本開示の便益を有する当業者にとっては、過度の実験をすることなく、日常的な設計、組み立ておよび製造の仕事であろう。
以上説明したように、本発明は以下の形態を有する。
[形態1]
乾式冷却を介して冷却流体から周囲空気に熱を伝達するように構成された乾式排熱装置と、
前記冷却流体に対して前記乾式排熱装置の下流に配置され、蒸発冷却を介して前記冷却流体から周囲空気に熱を伝達するように構成された冷却塔と、
水コストおよび/または電力コストに基づいて前記乾式排熱装置の動作を選択的に有効にするように構成された制御器とを備える、冷却装置。
[形態2]
前記乾式排熱装置が熱サイフォン冷却器を備える、形態1に記載の冷却装置。
[形態3]
前記乾式排熱装置が、機械的循環機器なしに動作する、形態1に記載の冷却装置。
[形態4]
前記乾式排熱装置が、
前記冷却流体から、シェルアンドチューブ蒸発器を通って循環する冷媒に熱を伝達するように構成された前記シェルアンドチューブ蒸発器と、
前記冷媒から前記周囲空気に熱を伝達するように構成された空冷凝縮器と、
自然対流に基づいて前記シェルアンドチューブ蒸発器と前記空冷凝縮器との間で前記冷媒を循環させるように寸法決めされた導管とを備える、形態1に記載の冷却装置。
[形態5]
前記制御器に動作可能に連結された弁装置を備え、前記制御器が、温度設定点より低い前記シェルアンドチューブ蒸発器内の前記冷媒の温度を検出することに応答して、前記乾式排熱装置から前記冷却流体を排出するために前記弁装置を調節するように構成される、形態4に記載の冷却装置。
[形態6]
前記制御器に動作可能に連結された弁装置を備え、前記制御器が、温度設定点より低い周囲温度、冷媒温度もしくは冷却流体温度、またはそれらの組合せを検出することに応答して、前記導管内の冷媒の前記流れを停止させるために前記弁装置を調節するように構成される、形態4に記載の冷却装置。
[形態7]
前記冷却塔が開ループ冷却塔を備え、前記冷却流体が水を含む、形態1に記載の冷却装置。
[形態8]
前記乾式排熱装置が、
前記冷却流体から、シェルアンドチューブ蒸発器を通して循環する凍結防止冷却剤に熱を伝達するように構成された前記シェルアンドチューブ蒸発器と、
前記凍結防止冷却剤から前記周囲空気に熱を伝達するように構成された空冷凝縮器と、
前記シェルアンドチューブ蒸発器と前記空冷凝縮器との間で前記冷媒を循環させるように構成されたポンプとを備える、形態1に記載の冷却装置。
[形態9]
冷却流体から冷媒に熱を伝達するように構成されたシェルアンドチューブ蒸発器であって、前記シェルアンドチューブ蒸発器のチューブを洗浄するための着脱可能部を備える、シェルアンドチューブ蒸発器と、
前記冷媒から周囲空気に熱を伝達するように構成された空冷凝縮器と、
自然対流に基づいて前記シェルアンドチューブ蒸発器と前記空冷凝縮器との間で前記冷媒を循環させるように寸法決めされた導管とを備える、熱サイフォン冷却器。
[形態10]
前記熱サイフォン冷却器が、前記シェルアンドチューブ蒸発器と、前記導管と、前記空冷凝縮器とを包含する単一の枠を備える、形態9に記載の熱サイフォン冷却器。
[形態11]
前記着脱可能部が、前記シェルアンドチューブ蒸発器の頭端から着脱可能な開閉カバーを備える、形態9に記載の熱サイフォン冷却器。
[形態12]
前記着脱可能部が、前記シェルアンドチューブ蒸発器の着脱可能な頭端を備える、形態9に記載の熱サイフォン冷却器。
[形態13]
前記シェルアンドチューブ蒸発器が、前記冷媒を循環させるように構成されたシェル側を備え、前記チューブが、前記冷却流体を循環させるように構成された、形態9に記載の熱サイフォン冷却器。
[形態14]
前記チューブに連結された空気注入弁を備え、前記チューブから前記冷却流体を排出するために、前記空気注入弁は、周囲空気が前記チューブに入ることを可能にするように構成される、形態9に記載の熱サイフォン冷却器。
[形態15]
前記シェルアンドチューブ蒸発器から前記冷却流体を排出するように構成された1つまたは複数の弁の弁装置を備える、形態9に記載の熱サイフォン冷却器。
[形態16]
前記空冷凝縮器から前記シェルアンドチューブ蒸発器への前記冷媒の帰還を選択的に遮断するために、前記導管に連結された弁を備える、形態9に記載の熱サイフォン冷却器。
[形態17]
水料金および電力料金に基づいて前記熱サイフォン冷却器を選択的に動作させるように構成された制御器を備える、形態9に記載の熱サイフォン冷却器。
[形態18]
冷却装置を動作させるための方法であって、
経済的動力消費限界より低いと、熱サイフォン冷却器を動作させることがコスト効率的である経済的動力消費限界を確定するステップであって、前記経済的動力消費限界が、水コストおよび/または電力コストに基づいて確定される、ステップと、
前記冷却装置で冷却されるプロセス熱交換器を出る冷却流体の最初の温度と周囲温度との間の所望の温度差を、前記経済的動力消費限界を使用して確定するステップと、
前記最初の温度と前記周囲温度との間で感知された温度差が前記所望の温度差より大きいことを検出することに応答して、熱サイフォン冷却器の動作を有効にするステップとを含む、方法。
[形態19]
前記熱サイフォン冷却器の動作を有効にするステップが、前記熱サイフォン冷却器を通して冷却流体を循環させるように1つまたは複数の弁を位置づけるステップを含む、形態18に記載の方法。
[形態20]
前記熱サイフォン冷却器の実際の動力消費を計算するステップと、前記熱サイフォン冷却器の前記実際の動力消費に基づいて、前記熱サイフォン冷却器の1つまたは複数の送風機の速度を調節するステップとを含む、形態18に記載の方法。
[形態21]
前記実際の動力消費が前記経済的動力消費限界を超えることを検出することに応答して、前記速度を減少させるステップを含む、形態20に記載の方法。
[形態22]
凍結予防温度設定点より低い冷媒温度を検出することに応答して、凍結予防モードを有効にするステップを含む、形態18に記載の方法。
[形態23]
凍結予防モードを有効にするステップが、前記熱サイフォン冷却器から冷却流体を排出するように、1つまたは複数の弁の位置を調節するステップを含む、形態22に記載の方法。
[形態24]
凍結予防モードを有効にするステップが、前記熱サイフォン冷却器から冷却流体を排出するために、前記熱サイフォン冷却器に周囲空気を注入するように弁を開くステップを含む、形態22に記載の方法。
[形態25]
熱サイフォン冷却器を出る冷却流体の中間温度を検出するステップと、
前記中間温度が、前記冷却流体がプロセス熱交換器に入るための温度設定点より高いことを検出することに応答して、冷却塔の動作を有効にするステップとを含む、形態18に記載の方法。