(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
本発明のスタッドレスタイヤ用ゴム組成物は、天然ゴム及びブタジエンゴムの合計含有量が所定量のゴム成分と、平均繊維径が0.1μm以下のバイオナノファイバーを所定量含む。平均繊維径が0.1μm以下という非常に繊維径の小さいバイオナノファイバーをゴム組成物に配合することによって、タイヤ表面上にナノレベルの水路を形成することができ、これにより良好な耐摩耗性を維持しつつ、雪氷上性能(氷雪上でのグリップ性能)を向上させることができる。更に、本発明では、低温特性に優れる天然ゴムやブタジエンゴムを上記バイオナノファイバーと共に配合することにより、相乗的に雪氷上性能を改善できる。
【0011】
本発明において、ゴム成分100質量%中の天然ゴム(NR)及びブタジエンゴム(BR)の合計含有量は、30〜100質量%である。本発明では、NR、BRのいずれかを配合すればよいが、本発明の効果がより好適に得られるという点から、BRを配合することが好ましく、NRとBRを併用することがより好ましい。なお、上記合計含有量の下限は、好ましくは60質量%以上、より好ましくは80質量%以上である。
【0012】
上記NRとしては、TSR20、RSS#3などの一般的に用いられているものが挙げられる。
【0013】
本発明の効果がより良好に得られるという点から、ゴム成分100質量%中のNRの含有量は、好ましくは30質量%以上、より好ましくは40質量%以上であり、好ましくは85質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下、特に好ましくは60質量%以下である。
【0014】
BRとしては特に限定されず、例えば、JSR(株)製のBR730、BR51、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B、BR710等の高シス含量BR、日本ゼオン(株)製のBR1250H等の低シス含量BR等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
【0015】
上記BRのシス含量は、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上である。これにより、より良好な雪氷上性能が得られる。
なお、本明細書において、シス含量は、赤外吸収スペクトル分析により算出される値である。
【0016】
本発明の効果がより良好に得られるという点から、ゴム成分100質量%中のBRの含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、特に好ましくは40質量%以上である。また、該含有量は、好ましくは70質量%以下、より好ましくは60質量%以下である。70質量%を超えると、良好な耐摩耗性が得られるものの、雪氷上性能(氷雪上でのグリップ性能)が劣るおそれがある。
【0017】
上記NR、BR以外に本発明で使用できるゴム成分としては、例えば、イソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、ブタジエン−イソプレン共重合体ゴム、ブチルゴムなどが挙げられる。
【0018】
本発明で使用できるバイオナノファイバーとしては、特に制限されないが、良好な補強性が得られ、本発明の効果がより好適に得られるという点から、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙、バクテリアセルロース、ホヤセルロース等の天然物に由来するものが好ましい。
【0019】
上記バイオナノファイバーの製造方法としては特に制限されないが、例えば、上記セルロースミクロフィブリルの原料を水酸化ナトリウム等の薬品で化学処理した後、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。この方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないバイオナノファイバーが得られる。
【0020】
上記バイオナノファイバーの平均繊維径は、0.1μm以下である。バイオナノファイバーの平均繊維径がこのように非常に小さいことによって、タイヤ表面上にナノレベルの水路を形成することができ、これにより良好な耐摩耗性を維持しつつ、雪氷上性能(氷雪上でのグリップ性能)を向上させることができる。反対に0.1μmよりも大きいと、タイヤの耐摩耗性が大きく低下し、また、タイヤ表面上の水路の幅、深さが大きくなって、薄い氷上の水膜を除去することが出来なくなり、雪氷上性能も大きく低下してしまうおそれがある。バイオナノファイバーの平均繊維径として好ましくは0.05μm以下であり、より好ましくは0.03μm以下である。また、バイオナノファイバーの平均繊維径の下限は特に制限されないが、バイオナノファイバーの絡まりがほどけにくく、分散し難いという理由から、4nm以上であることが好ましい。
【0021】
上記バイオナノファイバーの平均繊維長は、好ましくは5mm以下、より好ましくは1mm以下であり、また、好ましくは1μm以上、より好ましくは50μm以上である。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。
【0022】
上記バイオナノファイバーの平均繊維径及び平均繊維長は、走査型電子顕微鏡写真の画像解析、透過型顕微鏡写真の画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。
【0023】
上記バイオナノファイバーの含有量は、ゴム成分100質量部に対して、1質量部以上であり、好ましくは1.5質量部以上、より好ましくは2質量部以上であり、また、該含有量は、10質量部以下であり、好ましくは9質量部以下、より好ましくは8質量部、更に好ましくは7質量部以下である。1質量部未満であると、十分に本発明の効果が発揮されないおそれがある。一方、10質量部を超えると、タイヤの耐摩耗性が悪化するおそれがあり、また、硬度が大幅に高くなり、雪氷上性能がかえって低下するおそれがある。
【0024】
本発明のゴム組成物は、カーボンブラックを含むことが好ましい。カーボンブラックを配合することにより、補強効果が得られ、本発明の効果がより良好に得られる。
【0025】
カーボンブラックの窒素吸着比表面積(N
2SA)は50m
2/g以上が好ましく、90m
2/g以上がより好ましい。50m
2/g未満では、充分な補強性が得られず、充分な耐摩耗性、雪氷上性能が得られないおそれがある。該N
2SAは、180m
2/g以下が好ましく、130m
2/g以下がより好ましい。180m
2/gを超えると、分散させるのが困難となり、耐摩耗性が悪化する傾向がある。
なお、カーボンブラックのN
2SAは、JIS K 6217−2:2001によって求められる。
【0026】
カーボンブラックのジブチルフタレート吸油量(DBP)は、50ml/100g以上が好ましく、100ml/100g以上がより好ましい。50ml/100g未満では、充分な補強性が得られず、充分な耐摩耗性、雪氷上性能が得られないおそれがある。また、カーボンブラックのDBPは、200ml/100g以下が好ましく、135ml/100g以下がより好ましい。200ml/100gを超えると、加工性、耐摩耗性が低下するおそれがある。
なお、カーボンブラックのDBPは、JIS K6217−4:2001に準拠して測定される。
【0027】
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上である。10質量部未満では、充分な補強性が得られず、充分な耐摩耗性、雪氷上性能が得られないおそれがある。該含有量は、好ましくは80質量部以下、より好ましくは60質量部以下、更に好ましくは40質量部以下である。80質量部を超えると、分散性が悪化し、耐摩耗性が悪化する傾向がある。
【0028】
本発明のゴム組成物は、シリカを含むことが好ましい。シリカを配合することにより、補強効果が得られ、本発明の効果がより良好に得られる。シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。
【0029】
シリカの窒素吸着比表面積(N
2SA)は、好ましくは40m
2/g以上、より好ましくは70m
2/g以上、更に好ましくは110m
2/g以上である。40m
2/g未満であると、充分な補強性が得られず、充分な耐摩耗性、雪氷上性能が得られないおそれがある。また、シリカのN
2SAは、好ましくは220m
2/g以下、より好ましくは200m
2/g以下である。220m
2/gを超えると、シリカが分散しにくくなり、耐摩耗性が悪化するおそれがある。
なお、シリカのN
2SAは、ASTM D3037−93に準じてBET法で測定される値である。
【0030】
シリカの含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上である。10質量部未満では、充分な補強性が得られず、充分な耐摩耗性、雪氷上性能が得られないおそれがある。該含有量は、好ましくは80質量部以下、より好ましくは60質量部以下、更に好ましくは40質量部以下である。80質量部を超えると、分散性が悪化し、耐摩耗性が悪化する傾向がある。
【0031】
本発明のゴム組成物は、シリカを含む場合、シリカとともにシランカップリング剤を含むことが好ましい。
シランカップリング剤としては、ゴム工業において、従来からシリカと併用される任意のシランカップリング剤を使用することができ、例えば、ビス(3−トリエトキシシリルプロピル)ジスルフィド等のスルフィド系、3−メルカプトプロピルトリメトキシシランなどのメルカプト系、ビニルトリエトキシシランなどのビニル系、3−アミノプロピルトリエトキシシランなどのアミノ系、γ−グリシドキシプロピルトリエトキシシランのグリシドキシ系、3−ニトロプロピルトリメトキシシランなどのニトロ系、3−クロロプロピルトリメトキシシランなどのクロロ系等が挙げられる。なかでも、スルフィド系が好ましく、ビス(3−トリエトキシシリルプロピル)ジスルフィドがより好ましい。
【0032】
シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。1質量部未満では、充分な補強性が得られず、充分な耐摩耗性、雪氷上性能が得られないおそれがある。また、該シランカップリング剤の含有量は、好ましくは15質量部以下、より好ましくは10質量部以下である。15質量部を超えると、コストの増加に見合った効果が得られない傾向がある。
【0033】
本発明のゴム組成物は、オイルを含むことが好ましい。オイルを配合することにより、ゴムの硬度が低下し、より良好な雪氷上性能が得られる。
【0034】
オイルとしては、例えば、プロセスオイル、植物油脂、その混合物等を用いることができる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル(アロマオイル)等が挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生湯、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。
【0035】
オイルの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上である。5質量部未満では、充分な雪氷上性能が得られないおそれがある。また、オイルの含有量は、好ましくは80質量部以下、より好ましくは60質量部以下、更に好ましくは50質量部以下である。80質量部を超えると、耐摩耗性が悪化するおそれがある。
【0036】
本発明のゴム組成物には、前記成分以外にも、タイヤ工業において一般的に用いられている配合剤、例えば、ワックス、ステアリン酸、酸化亜鉛、老化防止剤、硫黄等の加硫剤、加硫促進剤等の材料を適宜配合してもよい。
【0037】
加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド−アミン系若しくはアルデヒド−アンモニア系、イミダゾリン系、又はキサンテート系加硫促進剤等が挙げられる。これら加硫促進剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、本発明の効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤が好ましく、スルフェンアミド系加硫促進剤と、ジフェニルグアニジン等のグアニジン系加硫促進剤とを併用することがより好ましい。
【0038】
スルフェンアミド系加硫促進剤としては、例えば、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(TBBS)、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)等が挙げられる。なかでも、本発明の効果がより好適に得られるという理由から、CBSが好ましく、CBSと、ジフェニルグアニジン等のグアニジン系加硫促進剤とを併用することがより好ましい。
【0039】
本発明のゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法等により製造できる。
【0040】
本発明のゴム組成物は、スタッドレスタイヤの各部材に好適に用いることができ、特にトレッド(キャップトレッド)に好適に用いることができる。このように、本発明のスタッドレスタイヤ用ゴム組成物を用いて作製したキャップトレッドを有するスタッドレスタイヤもまた、本発明の1つである。
【0041】
本発明のスタッドレスタイヤは、上記ゴム組成物を用いて通常の方法により製造される。すなわち、ゴム成分、バイオナノファイバー、及び必要に応じて上記各種配合剤を配合したゴム組成物を、未加硫の段階でトレッドなどの形状に合わせて押し出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することで、本発明のスタッドレスタイヤが得られる。
【0042】
本発明のスタッドレスタイヤは、乗用車用スタッドレスタイヤとして好適に用いることができる。
【実施例】
【0043】
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
【0044】
以下に、実施例及び比較例で用いた各種薬品について説明する。
天然ゴム:RSS#3
ブタジエンゴム:日本ゼオン(株)製のBR1220(シス含量:96質量%)
カーボンブラック:三菱化学(株)製のシーストN220(N
2SA:114m
2/g、DBP:114ml/100g)
シリカ:エボニックデグサ社製のウルトラシルVN3(N
2SA:175m
2/g、平均一次粒子径:15nm)
シランカップリング剤:エボニックデグサ社製のSi75(ビス(3−トリエトキシシリルプロピル)ジスルフィド)
バイオナノファイバー:ダイセルファインケム(株)製のセリッシュKY−100G(平均繊維長:0.5mm、平均繊維径:0.02μm、固形分:10質量%)
オイル:(株)ジャパンエナジー製のプロセスX−140
ワックス:大内新興化学工業(株)製のサンノックN
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製のステアリン酸「椿」
老化防止剤:住友化学(株)製のアンチゲン6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(N,N’−ジフェニルグアニジン)
【0045】
(実施例及び比較例)
表1に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を約150℃の条件下で5分間混練りし、混練り物を得た(この際、仕様によってはオイルを2分割投入して混練りを行った。)。次に、得られた混練り物に硫黄及び加硫促進剤を表1に示す配合内容で添加し、オープンロールを用いて、約80℃の条件下で3分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃で15分間加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。
【0046】
得られた試験用タイヤについて下記の評価を行った。結果を表1に示す。
【0047】
(硬度[Hs])
JIS K6253に準じて、タイプA硬さ計にて−10℃で、試験用タイヤのトレッドから切り出したゴム組成物の硬度を測定した。比較例1を100として指数表示した。数値が大きいほど硬度が高いことを示す。
【0048】
(表面観察)
試験用タイヤを国産FF車に装着して、乾燥アスファルト路面を200km走行させた後、そのタイヤのトレッドからゴム組成物をサンプリングして、ゴム表面のTEM観察を行った。100μm×100μmの視野に対する水路の面積をA(μm
2)として、水路の割合Bを下記式により算出した。
B(%)=(A/10000)×100
数値が大きいほど水路が多いことを示す。
【0049】
(雪氷上性能)
上記試験用タイヤを国産2000ccのFR車に装着し、下記条件下で氷雪上を実車走行し、雪氷上性能を評価した。雪氷上性能評価としては、具体的には、上記車両を用いて氷上又は雪上を走行し、時速30km/hでロックブレーキを踏み、停止させるまでに要した停止距離(氷上制動停止距離、雪上制動停止距離)を測定し、下記式により指数表示した。指数が大きいほど、氷雪上でのグリップ性能が良好である。
(制動性能指数)=(比較例1の制動停止距離)/(各配合の制動停止距離)×100
(氷上) (雪上)
試験場所:北海道名寄テストコ−ス 北海道名寄テストコ−ス
気温 :−1〜−6℃ −2℃〜−10℃
【0050】
(耐摩耗性)
試験用タイヤを国産FF車に装着し、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を算出し、下記式により指数表示した。指数が大きいほど、耐摩耗性が良好である。なお、指数が95以上の場合に良好であると判断した。
(耐摩耗性指数)=(1mm溝深さが減るときの走行距離)/(比較例1のタイヤ溝が1mm減るときの走行距離)×100
【0051】
【表1】
【0052】
表1より、天然ゴム及びブタジエンゴムの合計含有量が所定量のゴム成分と、所定の平均繊維径を有するバイオナノファイバーを所定量含む実施例では、良好な耐摩耗性を維持しつつ、雪氷上性能(氷雪上でのグリップ性能)を向上させることができることが明らかとなった。