【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度、独立行政法人新エネルギー・産業技術総合開発機構委託研究、産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
前記凝縮器及び前記蒸発器のうち、前記圧力検出器により圧力が検出された方の内部において凝縮する前記冷媒又は蒸発する前記冷媒の温度を検出する冷媒温度検出器を備え;
前記制御装置が、前記判定対象値を、前記圧力検出器で検出された圧力に代えて、前記圧力検出器で検出された圧力における前記冷媒の露点温度に換算した値である換算露点温度から、前記冷媒温度検出器で検出された値である検出冷媒温度を差し引いた温度、又は、前記圧力検出器で検出された圧力から、前記検出冷媒温度における前記冷媒の露点の圧力に換算した値である換算露点圧力を差し引いた圧力とするように構成された;
請求項1に記載の吸収ヒートポンプ。
冷媒の気体である冷媒蒸気を冷却して凝縮させる凝縮器内又は前記冷媒の液体である冷媒液を加熱して前記冷媒蒸気を発生させる蒸発器内の気相部の圧力を直接又は間接に検出する圧力検出工程と;
前記圧力検出工程で検出された圧力を判定対象値とし、前記判定対象値が所定の値以上のとき又は所定の経過時間に対する前記判定対象値の増加分が所定の量以上のときに、気密漏れがあったと判定する判定工程と;
前記凝縮器内の不凝縮ガスを外部に抽出する抽気工程と;
前記抽気工程において抽出した前記不凝縮ガスを収集して抽気タンクに貯留するガス貯留工程と;
前記抽気タンク内の気相部の圧力である抽気圧力を検出する抽気圧力検出工程とを備え;
前記判定工程が、前記判定対象値に基づく動作と並行して、前記抽気圧力検出工程で検出された前記抽気圧力の、所定の時間間隔に対する増加分が所定の量以上のときに、気密漏れがあったと判定するように構成され;
前記抽気工程が、駆動源として前記冷媒液をエジェクタに導入することで行われるように構成され;
前記エジェクタに前記駆動源として導入される前記冷媒液を冷却する冷却工程と;
前記冷却工程において前記冷媒液の冷却に用いられる冷却水の温度、又は前記冷却工程において冷却された後の前記冷媒液の温度を検出する補正温度検出工程と;
前記補正温度検出工程で検出された前記冷却水又は前記冷媒液の温度に応じて、前記抽気圧力検出工程で検出された前記抽気圧力を補正する補正工程とを備える;
吸収ヒートポンプの運転方法。
前記凝縮器及び前記蒸発器のうち、前記圧力検出工程で気相部の圧力が検出された方の内部において凝縮する前記冷媒又は蒸発する前記冷媒の温度を検出する冷媒温度検出工程を備え;
前記判定工程が、前記判定対象値を、前記圧力検出工程で検出された圧力に代えて、前記圧力検出工程で検出された圧力における前記冷媒の露点温度に換算した値である換算露点温度から、前記冷媒温度検出工程で検出された値である検出冷媒温度を差し引いた温度、又は、前記圧力検出工程で検出された圧力から、前記検出冷媒温度における前記冷媒の露点の圧力に換算した値である換算露点圧力を差し引いた圧力とするように構成された;
請求項3に記載の吸収ヒートポンプの運転方法。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、吸収ヒートポンプは、内部が負圧になるといっても吸収冷凍機に比べて作動圧力が高く、少量の気密漏れがあったとしても直ちに性能の低下として現れることが少なく、気密漏れに気付きにくい。その反面、吸収ヒートポンプは溶液が比較的高温になるため、気密漏れがあった場合に侵入した酸素によって内部の腐食を招くおそれがある。このため、少量の気密漏れであっても生じた場合は早期に対策することが望まれる。
【0005】
本発明は上述の課題に鑑み、気密漏れが生じた場合に早期に発見することができる吸収ヒートポンプ及び吸収ヒートポンプの運転方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば
図1に示すように、冷媒の気体である冷媒蒸気Vgを冷却して凝縮させる凝縮器40と;冷媒の液体である冷媒液Vfを加熱して冷媒蒸気Veを発生させる蒸発器20と;凝縮器40内又は蒸発器20内の気相部の圧力を直接又は間接に検出する圧力検出器52と;圧力検出器52で検出された圧力Pdを判定対象値とし、判定対象値が所定の値以上のとき又は所定の経過時間に対する判定対象値の増加分が所定の量以上のときに、気密漏れがあったと判定する制御装置99とを備える。
【0007】
このように構成すると、ヒートポンプサイクルの効率を低下させるガスが外部から侵入したことが懸念される状況である、判定対象値が所定の値以上のとき又は所定の経過時間に対する判定対象値の増加分が所定の量以上のときに気密漏れがあったと判定するため、機外に対して気密が破壊された状態のまま運転を継続することに伴う機器の損傷を回避することが可能となる。なお、制御装置は、気密漏れありと判定した際、典型的には運転を停止させる信号を発信する。
【0008】
また、本発明の第2の態様に係る吸収ヒートポンプは、例えば
図1に示すように、上記本発明の第1の態様に係る吸収ヒートポンプ1において、凝縮器40及び蒸発器20のうち、圧力検出器52により圧力が検出された方の内部において凝縮する冷媒又は蒸発する冷媒の温度を検出する冷媒温度検出器51を備え;制御装置99が、判定対象値を、圧力検出器52で検出された圧力Pdに代えて、圧力検出器52で検出された圧力Pdにおける冷媒の露点温度に換算した値である換算露点温度Tcから、冷媒温度検出器51で検出された値である検出冷媒温度Tdを差し引いた温度、又は、圧力検出器52で検出された圧力Pdから、検出冷媒温度Tdにおける冷媒の露点の圧力に換算した値である換算露点圧力を差し引いた圧力とするように構成されている。
【0009】
このように構成すると、機外からのガスの侵入の有無をより高精度に検出することができる。
【0010】
また、本発明の第3の態様に係る吸収ヒートポンプは、例えば
図4及び
図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収ヒートポンプにおいて、凝縮器40内の不凝縮ガスNgを外部に抽出する抽気装置61と;凝縮器40から抽出した不凝縮ガスNgを収集して貯留する抽気タンク62と;抽気タンク62内の気相部の圧力である抽気圧力Pgを検出する抽気圧力検出器68とを備え;制御装置99が、判定対象値に基づく制御と並行して、抽気圧力検出器68で検出された抽気圧力Pgの、所定の時間間隔に対する増加分が所定の量以上のときに、気密漏れがあったと判定するように構成されている。
【0011】
このように構成すると、不凝縮ガスが収集される抽気タンク内の抽気圧力に基づいて機外からのガスの侵入の有無を重畳して判定することとなり、機外からのガスの侵入の有無をより高精度に検出することができる。
【0012】
また、本発明の第4の態様に係る吸収ヒートポンプは、例えば
図4及び
図1に示すように、上記本発明の第3の態様に係る吸収ヒートポンプにおいて、抽気装置が、冷媒液Vfを駆動源とするエジェクタ61を含んで構成され;エジェクタ61に駆動源として導入される冷媒液Vfと冷却水cとを導入して冷媒液Vfを冷却する冷却機器66と;冷却水cの温度又は冷却機器66よりも下流側の冷媒液Vfの温度を検出する補正温度検出器69とを備え;制御装置99が、補正温度検出器69で検出された温度Trに応じて、抽気圧力検出器68で検出された抽気圧力Pgを補正するように構成されている。
【0013】
このように構成すると、冷却される冷媒液の温度が低下するのに応じた不凝縮ガス及び冷媒蒸気の圧力の低下分を制御に反映させることができ、機外からのガスの侵入の有無をより高精度に検出することができる。
【0014】
上記目的を達成するために、本発明の第5の態様に係る吸収ヒートポンプの運転方法は、例えば
図1及び
図3に示すように、冷媒の気体である冷媒蒸気Vgを冷却して凝縮させる凝縮器40内又は冷媒の液体である冷媒液Vfを加熱して冷媒蒸気Veを発生させる蒸発器20内の気相部の圧力を直接又は間接に検出する圧力検出工程(S2)と;圧力検出工程(S2)で検出された圧力を判定対象値とし、判定対象値が所定の値以上のとき又は所定の経過時間に対する判定対象値の増加分が所定の量以上のときに、気密漏れがあったと判定する判定工程(S4’、S5)とを備える。
【0015】
このように構成すると、ヒートポンプサイクルの効率を低下させるガスが外部から侵入したことが懸念される状況である、判定対象値が所定の値以上のとき又は所定の経過時間に対する判定対象値の増加分が所定の量以上のときに気密漏れがあったと判定することとなるため、機外に対して気密が破壊された状態のまま運転を継続することに伴う機器の損傷を回避することが可能となる。
【0016】
また、本発明の第6の態様に係る吸収ヒートポンプの運転方法は、例えば
図1及び
図2に示すように、上記本発明の第5の態様に係る吸収ヒートポンプの運転方法において、凝縮器40及び蒸発器20のうち、圧力検出工程(S2)で気相部の圧力が検出された方の内部において凝縮する冷媒又は蒸発する冷媒の温度を検出する冷媒温度検出工程(S1)を備え;判定工程(S4、S5)が、判定対象値を、圧力検出工程(S2)で検出された圧力Pdに代えて、圧力検出工程(S2)で検出された圧力Pdにおける冷媒の露点温度に換算した値である換算露点温度Tcから、冷媒温度検出工程(S1)で検出された値である検出冷媒温度Tdを差し引いた温度、又は、圧力検出工程(S2)で検出された圧力Pdから、検出冷媒温度Tdにおける冷媒の露点の圧力に換算した値である換算露点圧力を差し引いた圧力とするように構成されている。
【0017】
このように構成すると、機外からのガスの侵入の有無をより高精度に検出することができる。
【0018】
また、本発明の第7の態様に係る吸収ヒートポンプの運転方法は、例えば
図4並びに
図5を参照して示すと、上記本発明の第5の態様又は第6の態様に係る吸収ヒートポンプの運転方法において、凝縮器40内の不凝縮ガスNgを外部に抽出する抽気工程と;抽気工程において抽出した不凝縮ガスNgを収集して抽気タンク62に貯留するガス貯留工程と;抽気タンク62内の気相部の圧力である抽気圧力Pgを検出する抽気圧力検出工程(S101)とを備え;判定工程(S104、S105)が、判定対象値に基づく動作と並行して、抽気圧力検出工程(S101)で検出された抽気圧力Pgの、所定の時間間隔に対する増加分が所定の量Z以上のときに、気密漏れがあったと判定するように構成されている。
【0019】
このように構成すると、不凝縮ガスが収集される抽気タンク内の抽気圧力に基づいて機外からのガスの侵入の有無を重畳して判定することとなり、機外からのガスの侵入の有無をより高精度に検出することができる。
【0020】
また、本発明の第8の態様に係る吸収ヒートポンプの運転方法は、例えば
図4及び
図5を参照して示すと、上記本発明の第7の態様に係る吸収ヒートポンプの運転方法において、抽気工程が、駆動源として冷媒液Vfをエジェクタ61に導入することで行われるように構成され;エジェクタ61に駆動源として導入される冷媒液Vfを冷却する冷却工程と;冷却工程において冷媒液Vfの冷却に用いられる冷却水cの温度、又は冷却工程において冷却された後の冷媒液Vfの温度を検出する補正温度検出工程(S102)と;補正温度検出工程(S102)で検出された冷却水c又は冷媒液Vfの温度に応じて、抽気圧力検出工程(S101)で検出された抽気圧力Pgを補正する補正工程(S103)とを備える。
【0021】
このように構成すると、冷却される冷媒液の温度が低下するのに応じた不凝縮ガス及び冷媒蒸気の圧力の低下分を考慮することとなり、機外からのガスの侵入の有無をより高精度に検出することができる。
【発明の効果】
【0022】
本発明によれば、ヒートポンプサイクルの効率を低下させるガスが外部から侵入したことが懸念される状況である、判定対象値が所定の値以上のとき又は所定の経過時間に対する判定対象値の増加分が所定の量以上のときに気密漏れがあったと判定するため、機外に対して気密が破壊された状態のまま運転を継続することに伴う機器の損傷を回避することが可能となる。
【発明を実施するための形態】
【0024】
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。
【0025】
まず
図1を参照して、本発明の第1の実施の形態に係る吸収ヒートポンプ1を説明する。
図1は、吸収ヒートポンプ1の模式的系統図である。吸収ヒートポンプ1は、吸収ヒートポンプサイクルを行う主要構成機器である吸収器10、蒸発器20、再生器30、及び凝縮器40と、吸収器10で加熱された被加熱媒体を気液分離する気液分離器80と、制御装置99とを備えている。吸収ヒートポンプ1は、比較的利用価値の低い低温(例えば80℃〜90℃程度)の排温水を熱源媒体として再生器30及び蒸発器20に供給して、利用価値の高い被加熱媒体蒸気Wv(例えば、圧力が約0.1MPa(ゲージ圧)を超え、望ましくは0.8MPa(ゲージ圧)程度)を気液分離器80から取り出すことができるものである。
【0026】
なお、以下の説明においては、溶液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「溶液S」ということとする。また、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、溶液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(H
2O)が用いられている。また、被加熱媒体に関し、液体の被加熱媒体である「被加熱媒体液Wq」、気体の被加熱媒体である「被加熱媒体蒸気Wv」、被加熱媒体液Wqと被加熱媒体蒸気Wvとが混合した「混合被加熱媒体Wm」を総称して「被加熱媒体W」ということとする。本実施の形態では、被加熱媒体Wとして水(H
2O)が用いられている。
【0027】
吸収器10は、被加熱媒体Wの流路を構成する加熱管11と、濃溶液Saを散布する濃溶液散布ノズル12とを、吸収器缶胴17の内部に有している。濃溶液散布ノズル12は、散布した濃溶液Saが加熱管11に降りかかるように、加熱管11の上方に配設されている。吸収器10は、濃溶液散布ノズル12から濃溶液Saが散布され、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱を発生させる。この吸収熱を、加熱管11を流れる被加熱媒体Wが受熱して、被加熱媒体Wが加熱されるように構成されている。吸収器10の下部には、散布された濃溶液Saが蒸発器冷媒蒸気Veを吸収して濃度が低下した希溶液Swが貯留される貯留部13が形成されている。加熱管11は、希溶液Swに没入しないように、貯留部13よりも上方に配設されている。貯留部13には、貯留された希溶液Swの液位を検出する吸収器液位検出器14が配設されている。
【0028】
蒸発器20は、加熱媒体としての熱源温水hの流路を構成する伝熱管21を、蒸発器缶胴27の内部に有している。蒸発器20は、蒸発器缶胴27の内部に冷媒液Vfを散布するノズルを有していない。このため、伝熱管21は、蒸発器缶胴27内に貯留された冷媒液Vfに浸かるように配設されている(満液式蒸発器)。蒸発器20は、伝熱管21周辺の冷媒液Vfが伝熱管21内を流れる熱源温水hの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。蒸発器缶胴27内には、内部に貯留された冷媒液Vfの液面の高位VHを検出する高位検出器24H及び低位VLを検出する低位検出器24Lを有する蒸発器液位検出器24が配設されている。蒸発器缶胴27の底面には、蒸発器缶胴27内に冷媒液Vfを供給する冷媒液管45が接続されている。
【0029】
吸収器缶胴17と蒸発器缶胴27とは、上部で接続されており、これにより、吸収器10と蒸発器20とが気相部で相互に連通している。吸収器10と蒸発器20とが気相部で連通することにより、吸収器10及び蒸発器20の内部の圧力が概ね等しくなっている。また、吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。吸収器10と蒸発器20とは、典型的には、濃溶液散布ノズル12より上方で連通している。
【0030】
再生器30は、希溶液Swを加熱する熱源媒体としての熱源温水hを内部に流す熱源管31と、希溶液Swを散布する希溶液散布ノズル32とを、再生器缶胴37の内部に有している。再生器30は、散布された希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが下部に貯留されるように構成されている。再生器30では、希溶液Swが熱源温水hに加熱されることにより、希溶液Sw中の冷媒Vが離脱し、濃溶液Saと再生器冷媒蒸気Vgとが生成されるように構成されている。再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液散布ノズル12とは、濃溶液Saを流す濃溶液管35で接続されている。濃溶液管35には、再生器30の濃溶液Saを吸収器10に圧送する溶液ポンプ35pが配設されている。溶液ポンプ35pは、吸収器液位検出器14と信号ケーブルで接続されたインバータ35vを有しており、吸収器液位検出器14が検出する液位に応じて回転速度が調節されて吸収器10に圧送する濃溶液Saの流量を調節することができるように構成されている。希溶液散布ノズル32と吸収器10の貯留部13とは希溶液Swを流す希溶液管16で接続されている。濃溶液管35及び希溶液管16には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。
【0031】
凝縮器40は、冷却媒体流路を形成する冷却水管41を、凝縮器缶胴47の内部に有している。冷却水管41には、冷却媒体としての冷却水cが流れる。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これを冷却水cで冷却して凝縮させるように構成されている。冷却水管41は、再生器冷媒蒸気Vgを直接冷却することができるように、再生器冷媒蒸気Vgが凝縮した冷媒液Vfに浸らないように配設されている。凝縮器40には凝縮した冷媒液Vfを蒸発器20に送る冷媒液管45が接続されている。冷媒液管45には、冷媒液Vfを蒸発器20に圧送するための冷媒ポンプ46が配設されている。冷媒ポンプ46は、蒸発器液位検出器24と信号ケーブルで接続されており、蒸発器液位検出器24が検出する液位に応じて発停が制御されるように構成されている。
【0032】
凝縮器40には、さらに、冷媒Vの飽和温度(蒸発する冷媒Vの温度)を検出する冷媒温度検出器としての温度センサ51と、凝縮器缶胴47内の気相部の圧力を検出する圧力検出器としての圧力センサ52とが設けられている。温度センサ51は、飽和蒸気となっている再生器冷媒蒸気Vgの温度を検出するように、凝縮器缶胴47内の気相部の温度を検出する配置としてもよいが、熱伝導の良好な飽和液の温度を検出するように、凝縮器缶胴47内の冷媒液Vfの液面の温度を検出する配置とすることが好ましい。温度センサ51及び圧力センサ52は、それぞれ制御装置99と信号ケーブルで接続されており、検出された値を信号として制御装置99に送信することができるように構成されている。
【0033】
再生器缶胴37と凝縮器缶胴47とは、上部で接続されており、これにより、再生器30と凝縮器40とが気相部で相互に連通している。再生器30と凝縮器40とが気相部で連通することにより、再生器30及び凝縮器40の内部の圧力が概ね等しくなっている。また、再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。再生器30と凝縮器40とは、典型的には、希溶液散布ノズル32より上方で連通している。
【0034】
吸収ヒートポンプ1は、吸収器10及び蒸発器20が再生器30及び凝縮器40よりも高所に配設されており、位置ヘッドで吸収器10内の溶液Sを再生器30へ搬送可能に構成されている。また、吸収ヒートポンプ1は、一般に、熱源温水hと冷却水cとの温度関係から、溶液S及び冷媒Vが循環する内部が負圧になるため、その内部が気密に構成されている。しかしながら、仮に気密漏れが生じた場合には、負圧となっている機内に大気が侵入することとなる。また、吸収ヒートポンプ1の各缶胴17、27、37、47を構成する鋼材が、溶液Sと反応して水素ガスが発生することがあり(内部発生ガス)、特に作動温度が最も高くなる吸収器10で水素ガスが発生する確率が高くなる。吸収器10の気相部と再生器30の気相部とは、吸収器10に集まった不凝縮ガスNgを再生器30へと導く不凝縮ガス移動管15で接続されている。不凝縮ガスNgは、大気や水素ガス等の、吸収ヒートポンプサイクルにおいて凝縮しないガスである。不凝縮ガス移動管15には、オリフィス(不図示)が設置されている。また、凝縮器40の気相部には、凝縮器40に集まった不凝縮ガスNgを機外に排出する抽気管64が配設されている。
【0035】
気液分離器80は、吸収器10の加熱管11を流れて加熱された被加熱媒体Wを導入し、被加熱媒体蒸気Wvと被加熱媒体液Wqとを分離する機器である。気液分離器80には、内部に貯留する被加熱媒体液Wqの液位を検出する気液分離器液位検出器81が設けられている。気液分離器80の下部と吸収器10の加熱管11の一端とは、被加熱媒体液Wqを加熱管11に導く被加熱媒体液管82で接続されている。被加熱媒体液管82には、被加熱媒体液Wqを加熱管11に向けて圧送する被加熱媒体ポンプ83が配設されている。内部が気相部となる気液分離器80の側面と加熱管11の他端とは、混合被加熱媒体Wmを気液分離器80に導く加熱後被加熱媒体管84で接続されている。
【0036】
また、気液分離器80には、蒸気として系外に供給された分の被加熱媒体Wを補うための補給水Wsを系外から導入する補給水管85が接続されている。補給水管85には、気液分離器80に向けて補給水Wsを圧送する補給水ポンプ86と、逆止弁85cと、補給水Wsを温水で予熱する補給水熱交換器87Bと、希溶液Swと熱交換させて補給水Wsをさらに加熱する補給水熱交換器87Aとが、補給水Wsの流れ方向に向かってこの順に配設されている。補給水ポンプ86は、気液分離器液位検出器81と信号ケーブルで接続されており、気液分離器80内の被加熱媒体液Wqの液位に応じて発停が制御されるように構成されている。補給水熱交換器87Aは、補給水Wsと希溶液Swとを熱交換させるように、補給水管85と、溶液熱交換器38よりも上流側の希溶液管16とに配設されている。また、気液分離器80には、被加熱媒体蒸気Wvを系外に供給する被加熱媒体蒸気供給管89が上部(典型的には頂部)に接続されている。
【0037】
気液分離器80は、典型的には、加熱管11内で被加熱媒体液Wqの一部が蒸発して被加熱媒体液Wqと被加熱媒体蒸気Wvとが混合した混合被加熱媒体Wmを導入するが、被加熱媒体液Wqのまま気液分離器80に導いて減圧し一部を気化させて混合被加熱媒体Wmとしたものを気液分離させるようにしてもよい。被加熱媒体液Wqを減圧気化するには、オリフィス等の絞り手段を用いることができる。加熱管11内で被加熱媒体液Wqの一部を蒸発させるか否かは、典型的には、被加熱媒体ポンプ83及び/又は補給水ポンプ86の吐出圧力を調節することにより、加熱管11内の圧力を被加熱媒体液Wqの温度に相当する飽和圧力よりも高くするか否かによって調節することができる。
【0038】
制御装置99は、吸収ヒートポンプ1の運転を制御する機器である。制御装置99は、被加熱媒体ポンプ83と信号ケーブルで接続されており、この発停や回転速度の調節を行うことができるように構成されている。これまでの説明では吸収器液位検出器14の出力を直接入力して制御されることとした溶液ポンプ35p、蒸発器液位検出器24の出力を直接入力して制御されることとした冷媒ポンプ46、及び気液分離器液位検出器81の出力を直接入力して制御されることとした補給水ポンプ86も、制御装置99を介して(検出器の出力信号を一旦制御装置99に入力して)制御されることとしてもよい。また、制御装置99は、温度センサ51及び圧力センサ52と、それぞれ信号ケーブルで接続されており、温度センサ51及び圧力センサ52で検出された値を信号として受信することができるように構成されている。また、制御装置99には、冷媒Vの圧力と露点温度との関係があらかじめ記憶されており、圧力センサ52から送信されてきた圧力を、その圧力における露点温度に換算することができるように構成されている。
【0039】
引き続き
図1を参照して、吸収ヒートポンプ1の作用を説明する。まず、冷媒側のサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、冷却水管41を流れる冷却水cで冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、冷媒ポンプ46で蒸発器20に送られ、蒸発器缶胴27の底部から蒸発器缶胴27内に導入される。このとき、蒸発器缶胴27内に貯留される冷媒液Vfの液面が低位VLと高位VHとの間に収まるように、蒸発器液位検出器24の検出液位に応じて冷媒ポンプ46の発停が制御される。典型的には、冷媒液Vfの液面が低位VLまで下降したことを低位検出器24Lが検出したら冷媒ポンプ46が起動し、液面が高位VHまで上昇したことを高位検出器24Hが検出したら冷媒ポンプ46が停止する。蒸発器缶胴27内に貯留された冷媒液Vfは、伝熱管21内を流れる熱源温水hによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動する。
【0040】
次に吸収ヒートポンプ1の溶液側のサイクルを説明する。吸収器10では、濃溶液Saが濃溶液散布ノズル12から散布され、この散布された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、加熱管11を流れる被加熱媒体液Wqが加熱される。ここで、被加熱媒体蒸気Wvを取り出すための気液分離器80まわりの作用について説明する。
【0041】
気液分離器80には、系外から補給水Wsが補給水管85を介して導入される。補給水Wsは、補給水ポンプ86により補給水管85を圧送され、まず補給水熱交換器87Bで温度が上昇した後に、補給水熱交換器87Aで希溶液Swと熱交換してさらに温度が上昇して、気液分離器80に導入される。気液分離器80に導入された補給水Wsは、被加熱媒体液Wqとして気液分離器80の下部に貯留される。気液分離器80の下部に貯留される被加熱媒体液Wqが所定の液位になるように、補給水ポンプ86が制御される。気液分離器80の下部に貯留されている被加熱媒体液Wqは、被加熱媒体ポンプ83で吸収器10の加熱管11に送られる。加熱管11に送られた被加熱媒体液Wqは、吸収器10における上述の吸収熱により加熱される。加熱管11で加熱された被加熱媒体液Wqは、一部が蒸発して被加熱媒体蒸気Wvとなった混合被加熱媒体Wmとして、気液分離器80に向けて加熱後被加熱媒体管84を流れる。あるいは、加熱後被加熱媒体管84を、温度が上昇した被加熱媒体液Wqが流れることとしてもよく、この場合、被加熱媒体液Wqは、気液分離器80に導入される際に減圧され、一部が蒸発して被加熱媒体蒸気Wvとなった混合被加熱媒体Wmとして気液分離器80に導入される。気液分離器80に導入された混合被加熱媒体Wmは、被加熱媒体液Wqと被加熱媒体蒸気Wvとが分離される。分離された被加熱媒体液Wqは、気液分離器80の下部に貯留され、再び吸収器10の加熱管11に送られる。他方、分離された被加熱媒体蒸気Wvは、被加熱媒体蒸気供給管89に導出され、蒸気利用場所に供給される。
【0042】
再び吸収ヒートポンプ1の溶液側のサイクルの説明に戻る。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、貯留部13に貯留される。貯留部13内の希溶液Swは、重力及び吸収器10と再生器30との内圧の差により再生器30に向かって希溶液管16を流れ、補給水熱交換器87Aで補給水Wsと熱交換して温度が低下した後に、溶液熱交換器38で濃溶液Saと熱交換してさらに温度が低下して、再生器30に至る。再生器30に送られた希溶液Swは、希溶液散布ノズル32から散布される。希溶液散布ノズル32から散布された希溶液Swは、熱源管31を流れる熱源温水h(本実施の形態では約85℃前後)によって加熱され、散布された希溶液Sw中の冷媒が蒸発して(離脱して)濃溶液Saとなり、再生器30の下部に貯留される。他方、希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、溶液ポンプ35pにより、濃溶液管35を介して吸収器10の濃溶液散布ノズル12に圧送される。このとき、吸収器10の貯留部13に貯留された希溶液Swが所定の液位になるように、吸収器液位検出器14の検出液位に応じてインバータ35vにより溶液ポンプ35pの回転速度(ひいては吐出流量)が調節される。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、濃溶液散布ノズル12から散布される。以降、同様のサイクルを繰り返す。
【0043】
上記のような溶液S及び冷媒Vのサイクルを行う吸収ヒートポンプ1は、内部発生ガスあるいは気密漏れによって侵入した大気に起因する不凝縮ガスNgが発生する場合がある。不凝縮ガスNgが発生すると、冷媒Vの蒸気及び不凝縮ガスNgを含む気体の全圧を高めることとなり、不凝縮ガスNgの分圧の増加に伴って冷媒Vの露点温度が上昇し、蒸発器冷媒蒸気Ve及び再生器冷媒蒸気Vgが発生しにくくなって、吸収ヒートポンプ1の能力の低下を招来することとなる。不凝縮ガスNgのうち、大気は比較的低圧となる再生器30及び/又は凝縮器40に侵入しやすく、水素ガスは比較的高温となる吸収器10で多く発生しやすい。吸収器10内の不凝縮ガスNgは、不凝縮ガス移動管15を介して再生器30へ移動する。再生器30内の不凝縮ガスNgは、連通する凝縮器40へ移動する。このように、不凝縮ガスNgは凝縮器40に集まる傾向にある。このため、吸収ヒートポンプ1では、抽気装置(不図示)により、抽気管64を介して、不凝縮ガスNgを機外へ排出することとしている。反面、吸収ヒートポンプ1は、吸収冷凍機と比較すると、作動圧力が高いために少量の気密漏れがあったとしても直ちに性能の急激な低下として現れることが少なく、気密漏れに気付きにくい。しかしながら、吸収ヒートポンプ1は、溶液Sが吸収冷凍機に比べて高温になるため、気密漏れがあった場合に侵入した酸素によって内部の腐食を招きやすいという事情がある。このため、少量の気密漏れであっても生じた場合は早期に対策することが望まれる。そこで、吸収ヒートポンプ1では、上記のような溶液S及び冷媒Vのサイクルを行っている際に、以下の制御を行うこととしている。
【0044】
図2は、気密漏れ判定の制御を説明するフローチャートである。吸収ヒートポンプ1の通常運転中、制御装置99は、温度センサ51で検出された温度(以下「検出冷媒温度Td」という。)の信号を受信している(冷媒温度検出工程:S1)。また、制御装置99は、並行して、圧力センサ52で検出された圧力(以下「検出圧力Pd」という。)の信号を受信している(圧力検出工程:S2)。制御装置99は、検出圧力Pdの信号を受信したら、あらかじめ記憶されている圧力と露点温度との関係に基づいて、その検出圧力Pdにおける冷媒Vの露点温度である換算露点温度Tcに換算する(露点温度換算工程:S3)。制御装置99は、換算露点温度Tcを求めたら、換算露点温度Tcから検出冷媒温度Tdを差し引いた値が所定の値X以上か否かを判断する(温度比較工程:S4)。本実施の形態では、換算露点温度Tcから検出冷媒温度Tdを差し引いた値(Tc−Td)が判定対象値となる。
【0045】
ここで、圧力センサ52で圧力を検出している凝縮器40の気相部に不凝縮ガスNgが存在すると、圧力センサ52が検出する圧力は、再生器冷媒蒸気Vgの圧力と不凝縮ガスNgの圧力とを合計した全圧となる。換算露点温度Tcは、凝縮器40の気相部がすべて再生器冷媒蒸気Vgであると仮定して冷媒Vの露点温度に換算したものであるため、不凝縮ガスNgが存在すると、不凝縮ガスNgの分圧の分だけ実際よりも高い露点温度が現れることとなる。換言すると、不凝縮ガスNgの量に応じて、換算露点温度Tcと、実際の冷媒Vの露点温度との乖離が大きくなる。温度センサ51で検出された検出冷媒温度Tdは、再生器冷媒蒸気Vgが凝縮する際の温度に相当することに鑑みると、検出冷媒温度Tdが実際の冷媒Vの露点温度を現していると見ることができる。このような事情をふまえ、換算露点温度Tcから検出冷媒温度Tdを差し引いた値を判定対象値としている。
【0046】
所定の値Xは、本実施の形態では、不凝縮ガスNgが主に内部発生ガスであると仮定して内部発生ガスの発生量が最大のときの、不凝縮ガスNgの分圧の増加分が、換算露点温度Tcに占める割合に対応する値である。ここで、「不凝縮ガスNgが主に内部発生ガス」としたのは、吸収ヒートポンプ1の損傷に影響を与えない程度の大気侵入による内圧の増加分は許容する意図である。制御装置99は、温度比較工程(S4)において、換算露点温度Tcから検出冷媒温度Tdを差し引いた値が所定の値X未満のときは、冷媒温度検出工程(S1)に戻る。他方、換算露点温度Tcから検出冷媒温度Tdを差し引いた値が所定の値X以上のときは、気密漏れがあったと判定する(判定工程:S5)。
【0047】
制御装置99は、気密漏れがあったと判定したら、吸収ヒートポンプ1の運転を停止させる信号を溶液ポンプ35p等の各補機類に発信し、希釈運転等の所定の停止プロセスを経て吸収ヒートポンプ1を停止させる(停止工程:S6)。吸収ヒートポンプ1を停止させることにより、内部の腐食が進行する等の吸収ヒートポンプ1の損傷が拡大することを防ぐことができる。なお、気密漏れがあったと判定した後に、停止工程(S6)へ移行することに代えて、吸収ヒートポンプ1を管理する管理員が駐在している駐在室等に気密漏れがあった旨の信号(警報)を送り、その後の対応を管理員の判断に委ねることとしてもよい。
【0048】
以上で説明したように、吸収ヒートポンプ1は、判定対象値(Tc−Td)が所定の値X以上のときに気密漏れがあったと判定するので、吸収ヒートポンプ1の能力の著しい低下として現れなくても気密漏れの可能性を知ることができ、気密が破壊された状態のまま運転を継続することに伴う機器の損傷を回避することができる。
【0049】
なお、以上の説明では、判定対象値(Tc−Td)が所定の値X以上のときに気密漏れがあったと判定することとしたが、これに代えて、所定の経過時間に対する判定対象値(Tc−Td)の増加分が所定の量以上のときに気密漏れがあったと判定することとしてもよい。ここで、所定の経過時間は、仮に気密漏れがあったときに機内への大気の侵入が判定対象値(Tc−Td)に現れたことが確認できる時間であり、例えば30分である。また、所定の量は、当該所定の経過時間において内部発生ガスに起因する圧力上昇を超える圧力の上昇があったと認められる量である。
【0050】
また、以上の説明では、判定対象値が換算露点温度Tcから検出冷媒温度Tdを差し引いた値(Tc−Td)であるとしたが、検出圧力Pdから換算露点圧力(検出冷媒温度Tdにおける冷媒Vの露点の圧力)を差し引いた値を判定対象値としてもよい。判定対象値を(検出圧力Pd−換算露点圧力)とした場合、
図2のフローチャートにおいて、露点温度換算工程(S3)に代えて、制御装置99にあらかじめ記憶されている冷媒の露点温度と圧力との関係に基づいて、その検出冷媒温度Tdを露点温度として、これに対応する冷媒Vの圧力(換算露点圧力)に換算する工程を行うと共に、温度比較工程(S4)に代えて、検出圧力Pdから換算露点圧力を差し引いた値(判定対象値)が所定の値以上か否かを判断する工程を行えばよい。
【0051】
また、以上の説明では、判定対象値が換算露点温度Tcから検出冷媒温度Tdを差し引いた値(Tc−Td)であるとしたが、検出圧力Pdを判定対象値としてもよい。
図3は、気密漏れ判定の別の制御を説明するフローチャートである。
図3に示す判定対象値を検出圧力Pdとした制御は、
図2に示す判定対象値を(Tc−Td)とした制御と比較して、
図2に示されている冷媒温度検出工程(S1)及び露点温度換算工程(S3)が省略されていることに加え、
図2に示されている温度比較工程(S4)に代えて、検出圧力Pdが所定の値Y以上か否かを判断する工程(圧力比較工程:S4’)が設けられている点で異なっており、その他の工程(S2、S5、S6)は同じである。
図3に示す制御において、所定の値Yは、本実施の形態では、不凝縮ガスNgが主に内部発生ガスであると仮定して内部発生ガスの発生量が最大のときの、不凝縮ガスNgの分圧の増加分に相当する値である。
図3に示す制御によれば、制御装置99の負荷が軽くなると共に温度センサ51が不要になるので、装置構成の簡素化を図ることができる。他方、
図2に示す制御によれば、運転中における吸収ヒートポンプ1の負荷変動に伴う内圧の変動による影響(誤差として現れる)等を受けにくく、より正確な判定を行うことができる。なお、
図3に示す制御においても、
図2に示す制御と同様、判定対象値(Pd)が所定の値Y以上のときに気密漏れがあったと判定することに代えて、所定の経過時間に対する判定対象値(Pd)の増加分が所定の量以上のときに気密漏れがあったと判定することとしてもよい。
【0052】
次に
図4を参照して、本発明の第2の実施の形態に係る吸収ヒートポンプ2を説明する。
図4は、吸収ヒートポンプ2の抽気装置まわりの模式的系統図である。吸収ヒートポンプ2は、吸収ヒートポンプ1(
図1参照)の構成に加え、凝縮器缶胴47に集まった不凝縮ガスNgを機外に排出する抽気装置としてのエジェクタ61と、凝縮器缶胴47から抽出した不凝縮ガスNgを貯留する抽気タンク62と、を含む構成を備えるものである。つまり、
図4では、便宜上、抽気装置まわりを示しているが、吸収ヒートポンプ2は、
図1に示す構成を包含するものであり、
図4に示す凝縮器缶胴47と
図1に示す凝縮器缶胴47とは、同一のものを示している。以下の説明では、吸収ヒートポンプ1(
図1参照)の部分の構成に言及しているときは、適宜
図1を参照することとする。
【0053】
エジェクタ61は、駆動源としての冷媒液Vfを減圧して加速させるノズル(不図示)と、吸引物としての不凝縮ガスNgを導入する導入口61aとを有している。エジェクタ61の導入口61aには、抽気流路を構成する抽気管64が接続されている。エジェクタ61のノズルは、冷媒ポンプ46よりも下流側の冷媒液管45から分岐した駆動媒体管65に挿入配置されている。駆動媒体管65は、エジェクタ61の下流側で、抽気タンク62に接続されている。冷媒ポンプ46は、凝縮器缶胴47内の冷媒液Vfを蒸発器20に圧送するポンプであると共に、凝縮器缶胴47内の冷媒液Vfを抽気タンク62に圧送する抽気冷媒ポンプを兼ねている。抽気冷媒ポンプとして機能する冷媒ポンプ46は、典型的には、凝縮器缶胴47内の冷媒液Vfを大気圧以上に昇圧できるヘッドを持つように構成されている。
【0054】
抽気タンク62は、駆動源の冷媒液Vfと吸引物の不凝縮ガスNgとを導入し、捕集した不凝縮ガスNgを溜めておくことができるタンクである。抽気タンク62の底部には、駆動媒体管65が接続されている。駆動媒体管65は、液トラップを形成するように、下に凸のU字状に配設されている。抽気タンク62の底部にはまた、抽気タンク62内の冷媒液Vfを凝縮器缶胴47に戻す戻り媒体管67が接続されている。戻り媒体管67もまた、液トラップを形成するように、抽気タンク62の底部及び凝縮器缶胴47の底部よりも下方へ一旦下がるように抽気タンク62と凝縮器缶胴47との間でU字状に配設されており、冷媒ポンプ46の停止時には内部に冷媒液Vfが満たされて気体の流通がないようになっている。これにより、抽気タンク62に導かれた不凝縮ガスNgが凝縮器40に逆流しないように構成されている。抽気タンク62の天板には、分離された不凝縮ガスNgを系外に排出する排出管63が接続されている。排出管63には、二方弁63vが配設されていると共に、二方弁63vより下流側に抽気タンク62内の不凝縮ガスNgを系外に排出する真空ポンプ63pが配設されている。また、抽気タンク62には、抽気タンク62内の気相部の圧力を検出する抽気圧力検出器としての抽気圧力センサ68が設けられている。
【0055】
駆動媒体管65には、エジェクタ61よりも上流側に、冷却機器としての熱交換器66が配設されている。熱交換器66は、駆動媒体管65を介して冷媒液Vfを導入するほか、冷却水cを導入し、冷媒液Vfと冷却水cとで熱交換を行わせて冷媒液Vfを冷却することができるように構成されている。熱交換器66には、熱交換器66に導入される冷却水cの温度を検出する補正温度検出器としての補正温度センサ69が設けられている。
【0056】
制御装置99は、上述した吸収ヒートポンプ1の運転を含む吸収ヒートポンプ2の運転を制御するように構成されている。制御装置99は、真空ポンプ63pと信号ケーブルで接続されており、真空ポンプ63pの発停を制御することができるように構成されている。また、制御装置99は、二方弁63vと信号ケーブルで接続されており、二方弁63vの開閉を制御することができるように構成されている。また、制御装置99は、抽気圧力センサ68及び補正温度センサ69と、それぞれ信号ケーブルで接続されており、抽気圧力センサ68及び補正温度センサ69で検出された値を信号として受信することができるように構成されている。
【0057】
引き続き
図4及び
図1を参照して、吸収ヒートポンプ2の作用を説明する。ここでは、吸収ヒートポンプ1の部分の作用は前述したので省略し、主に凝縮器40からの抽気の作用を説明する。凝縮器40内の不凝縮ガスNgを抽気タンク62に収集するに際し、凝縮器40から蒸発器20に圧送される冷媒液Vfの一部を、駆動媒体管65を介してエジェクタ61に導く。駆動媒体管65を流れる冷媒液Vfは、熱交換器66で冷却水cと熱交換して温度が低下し(冷却工程)、その後にエジェクタ61に導入される。エジェクタ61に導かれた冷媒液Vfは、エジェクタ61内のノズル(不図示)で減圧・加速され、導入口61aに接続された抽気管64を介して凝縮器40内から不凝縮ガスNgを吸引する(抽気工程)。冷媒液Vfと不凝縮ガスNgとは混合して駆動媒体管65内を流れ、抽気タンク62に流入する。抽気タンク62に流入した冷媒液Vfと不凝縮ガスNgとの混合流体は分離して、冷媒液Vfは抽気タンク62の下部に溜まり、不凝縮ガスNgは、抽気タンク62の上部に溜まる(ガス貯留工程)。抽気タンク62内の冷媒液Vfは、戻り媒体管67を通って凝縮器40に戻る。この凝縮器40から抽気タンク62への不凝縮ガスNgの抽気は、吸収ヒートポンプ2の稼動中は常時行っている。
【0058】
抽気タンク62は、常時排出管63から真空引きしなくても不凝縮ガスNgを溜めておくことができる。抽気タンク62内の不凝縮ガスNgは、真空ポンプ63pが起動すると共にそれまで閉じられていた二方弁63vが開となることにより排出管63から系外に排出される。このようにして、凝縮器40内の不凝縮ガスNgが吸収ヒートポンプ2から排出される。不凝縮ガスNgを抽気タンク62から排出するタイミングは、本実施の形態では、抽気圧力センサ68で検出された圧力が、あらかじめ設定された圧力に到達したときに制御装置99からの開信号の送信により二方弁63vを開にすることにより行われるが、吸収ヒートポンプ2を起動及び/又は停止する度に行ってもよく、あるいは、タイマー(不図示)によって所定の時間ごとに二方弁63vを開閉制御することにより行ってもよい。
【0059】
エジェクタ61の作動により、凝縮器40から抽気された不凝縮ガスNgに同伴して再生器冷媒蒸気Vgも抽気タンク62内に導かれることもあり得るが、抽気タンク62内に流入した冷媒Vの蒸気は冷媒液Vfの温度と平衡するので、抽気タンク62内の気相部に存在する冷媒Vの蒸気は冷媒液Vfの温度における飽和圧力分だけであり、存在する気体のうち、不凝縮ガスNgの占める割合が高い。したがって、抽気圧力センサ68で検出される圧力は、不凝縮ガスNgの量に支配される(不凝縮ガスNgの影響が大きい)と見ることができる。この特性を利用して、吸収ヒートポンプ2では、気密漏れ判定の制御として、
図2に示す制御又は
図3に示す制御と並行して、以下の制御を行うこととしている。
【0060】
図5は、気密漏れ判定のさらに別の制御を説明するフローチャートである。なお、ここでは、並行して行われる
図2に示す制御又は
図3に示す制御の説明は省略する。吸収ヒートポンプ2が、抽気工程、ガス貯留工程、及び冷却工程を行っている通常運転中、制御装置99は、抽気圧力センサ68で検出された圧力(以下「抽気圧力Pg」という。)の信号を受信している(抽気圧力検出工程:S101)。また、制御装置99は、並行して、補正温度センサ69で検出された温度(以下「補正温度Tr」という。)の信号を受信している(補正温度検出工程:S102)。
【0061】
制御装置99は、補正温度Trの信号を受信したら、検出された抽気圧力Pgを補正する(補正工程:S103)。抽気圧力Pgの補正の内容は後述する。制御装置99は、抽気圧力Pgが補正されたら(以下、補正された抽気圧力Pgを「補正圧力Pr」という。)、所定の時間間隔に対する補正圧力Prの増加分が、所定の量Z以上か否かを判断する(補正圧力比較工程:S104)。ここで、所定の時間間隔は、仮に気密漏れがあったときに機内への大気の侵入が補正圧力Prの増加分に現れたことが確認できる時間間隔であり、例えば30分である。また、所定の量Zは、当該所定の時間間隔において内部発生ガスに起因する圧力上昇を超える圧力の上昇があったと認められる量である。なお、抽気圧力センサ68で検出される抽気タンク62内の気相部の圧力は、冷媒Vの蒸気と不凝縮ガスNgとを合わせた全圧であるので、不凝縮ガスNgの基準量における基準温度に対して、抽気タンク62内の温度が低ければ圧力が低くなり、逆に温度が高ければ圧力が高くなる。抽気タンク62内の温度は、抽気タンク62内に流入される冷媒液Vfの温度と相関があるので、抽気タンク62に流入する冷媒液Vfの温度変化の影響を考慮して、補正圧力比較工程(S104)の前に、補正工程(S103)において、検出された補正温度Trに基づいて抽気圧力Pgを補正することとしている。
【0062】
制御装置99は、補正圧力比較工程(S104)において、所定の時間間隔に対する補正圧力Prの増加分が所定の量Z未満のときは、抽気圧力検出工程(S101)に戻る。他方、所定の時間間隔に対する補正圧力Prの増加分が所定の量Z以上のときは、気密漏れがあったと判定する(判定工程:S105)。制御装置99は、気密漏れがあったと判定したら、吸収ヒートポンプ2の運転を停止させる信号を溶液ポンプ35p等の各補機類に発信し、希釈運転等の所定の停止プロセスを経て吸収ヒートポンプ2を停止させる(停止工程:S106)。吸収ヒートポンプ2を停止させることにより、内部の腐食が進行する等の吸収ヒートポンプ2の損傷が拡大することを防ぐことができる。なお、
図2に示す制御と同様、気密漏れがあったと判定した後に、停止工程(S106)へ移行することに代えて、吸収ヒートポンプ2を管理する管理員が駐在している駐在室等に気密漏れがあった旨の信号(警報)を送り、その後の対応を管理員の判断に委ねることとしてもよい。
【0063】
吸収ヒートポンプ2は、上述のように、
図5に示す制御と並行して、
図2又は
図3に示す制御を行っている。制御装置99は、
図5に示す判定工程(S105)及び
図2又は
図3に示す判定工程(S5)のいずれかが行われたときに、吸収ヒートポンプ2の運転を停止する工程に移行する。このように、吸収ヒートポンプ2は、凝縮器缶胴47の内圧の変化と、抽気タンク62の内圧の変化という、異なる2つの視点から気密漏れの有無を判定しているため、より高い確率で気密漏れの発生を検出することができる。
【0064】
以上の説明では、補正温度センサ69が熱交換器66に導入される冷却水cの温度を検出する位置に設けられているとしたが、熱交換器66から導出された冷却水cの温度を検出する位置に設けられていてもよく、あるいはエジェクタ61から導出された冷媒液Vfの温度を検出する位置に設けられていてもよい。
【0065】
以上の説明では、駆動媒体管65及び戻り媒体管67が凝縮器缶胴47に接続されてエジェクタ61の駆動源として冷媒液Vfが用いられることとしたが、駆動媒体管65及び戻り媒体管67が再生器缶胴37に接続されてエジェクタ61の駆動源として濃溶液Saが用いられることとしてもよい。
【0066】
以上の説明では、補正圧力比較工程(S104)に先だち、補正温度Trに基づいて抽気圧力Pgを補正する補正工程(S103)を行うこととしたが、補正工程(S103)を省略してもよい。補正工程(S103)が省略された場合、補正圧力比較工程(S104)は、所定の時間間隔に対する抽気圧力Pgの増加分が所定の量Z以上か否かを判断することとなる。補正工程(S103)を省略すると、制御装置99の負荷が軽くなると共に補正温度センサ69が不要になるので、装置構成の簡素化を図ることができる。しかしながら、気密漏れ判定の精度を高める観点からは、補正工程(S103)を行うとよい。
【0067】
以上の説明では、熱交換器66を設けてエジェクタ61に導入される冷媒液Vfの温度を低下させることとしたが、熱交換器66を省略して装置構成を簡略化することとしてもよい。
【0068】
以上の説明では、
図5に示す制御を
図2に示す制御又は
図3に示す制御と並行して行うこととしたが、
図2に示す制御及び
図3に示す制御を行わずに、
図5の制御を単独で行うこととしてもよい。しかしながら、気密漏れ判定の精度を高める観点からは、
図5に示す制御を、
図2に示す制御又は
図3に示す制御と並行して行うとよい。
【0069】
以上の説明では、温度センサ51及び圧力センサ52が、凝縮器缶胴47に設けられて凝縮器缶胴47内における冷媒Vの飽和温度及び気相部の圧力を検出することとしたが、蒸発器缶胴27に設けられて蒸発器缶胴27内における冷媒Vの飽和温度及び気相部の圧力を検出することとしてもよい。しかしながら、凝縮器缶胴47内の方が、蒸発器缶胴27内よりも作動圧力が低いために不凝縮ガスNgが集まりやすく、気密漏れの発生の有無を検出しやすいので、温度センサ51及び圧力センサ52は凝縮器缶胴47に設けられることが好ましい。
【0070】
以上の説明では、温度センサ51及び圧力センサ52が、共に凝縮器缶胴47に設けられていることとしたが、再生器缶胴37は凝縮器缶胴47と連通していて両者の内圧は略等しいので、圧力センサ52は再生器缶胴37に設けられることとして、凝縮器缶胴47内の気相部の圧力を間接的に検出することとしてもよい。しかしながら、凝縮器缶胴47内の気相部のより正確な圧力を検出する観点から、圧力センサ52は凝縮器缶胴47の上部に設けられることとして、凝縮器缶胴47内の気相部の圧力を直接的に検出することが好ましい。同様に、温度センサ51及び圧力センサ52が蒸発器缶胴27に設けられる場合は、蒸発器缶胴27と連通する吸収器缶胴17に圧力センサ52が設けられることとして蒸発器缶胴27内の気相部の圧力を間接的に検出することとしてもよい。
【0071】
以上の説明では、吸収ヒートポンプ1が、吸収器10及び蒸発器20を1つずつ備える単段の吸収ヒートポンプであるとしたが、吸収器10及び蒸発器20を作動温度の異なる2組あるいは3組以上に構成して、2段あるいは3段以上の多段の吸収ヒートポンプとしてもよい。