特許第5816285号(P5816285)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社UACJの特許一覧 ▶ 株式会社UACJ製箔の特許一覧

特許5816285電極集電体用アルミニウム合金箔及びその製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5816285
(24)【登録日】2015年10月2日
(45)【発行日】2015年11月18日
(54)【発明の名称】電極集電体用アルミニウム合金箔及びその製造方法
(51)【国際特許分類】
   H01M 4/66 20060101AFI20151029BHJP
   C22C 21/00 20060101ALI20151029BHJP
   C22F 1/04 20060101ALI20151029BHJP
   H01G 11/68 20130101ALI20151029BHJP
   C22F 1/00 20060101ALN20151029BHJP
【FI】
   H01M4/66 A
   C22C21/00 A
   C22F1/04 K
   H01G11/68
   !C22F1/00 622
   !C22F1/00 630A
   !C22F1/00 661A
   !C22F1/00 661C
   !C22F1/00 682
   !C22F1/00 683
   !C22F1/00 691B
   !C22F1/00 691C
   !C22F1/00 694A
   !C22F1/00 694B
   !C22F1/00 685Z
【請求項の数】4
【全頁数】11
(21)【出願番号】特願2013-526630(P2013-526630)
(86)(22)【出願日】2011年7月29日
(86)【国際出願番号】JP2011067477
(87)【国際公開番号】WO2013018162
(87)【国際公開日】20130207
【審査請求日】2014年7月14日
(73)【特許権者】
【識別番号】000107538
【氏名又は名称】株式会社UACJ
(73)【特許権者】
【識別番号】000231626
【氏名又は名称】株式会社UACJ製箔
(74)【代理人】
【識別番号】110001139
【氏名又は名称】SK特許業務法人
(74)【代理人】
【識別番号】100130328
【弁理士】
【氏名又は名称】奥野 彰彦
(74)【代理人】
【識別番号】100130672
【弁理士】
【氏名又は名称】伊藤 寛之
(72)【発明者】
【氏名】石 雅和
(72)【発明者】
【氏名】鈴木 覚
(72)【発明者】
【氏名】山本 兼滋
(72)【発明者】
【氏名】古谷 智彦
【審査官】 松本 陶子
(56)【参考文献】
【文献】 特開2000−054046(JP,A)
【文献】 特開平01−215959(JP,A)
【文献】 特開2008−095142(JP,A)
【文献】 特開2010−067591(JP,A)
【文献】 国際公開第2012/066448(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/64−4/84
C22C 21/00
C22F 1/00−1/04
H01G 11/68
(57)【特許請求の範囲】
【請求項1】
Fe:0.1〜0.5mass%(以下、単に%と記す。)、Si:0.01〜0.3%、Cu:0.01〜0.2%、Mn:0.01%以下を含有し、残部Alと不可避的不純物から成り、引張強さが220MPa以上、0.2%耐力が180MPa以上、導電率が58%IACS以上を特徴とする電極集電体用アルミニウム合金箔。
【請求項2】
Feの固溶量が100ppm以上、Siの固溶量が80〜1800ppm、Cuの固溶量が80〜1500ppmであることを特徴とする請求項1記載の電極集電体用アルミニウム合金箔。
【請求項3】
120℃で24時間、140℃で3時間、160℃で15分間の何れの熱処理を行った場合でも熱処理後の引張強さが190MPa以上、0.2%耐力が160MPa以上であることを特徴とする、請求項1または2に記載の電極集電体用アルミニウム合金箔。
【請求項4】
請求項1〜3の何れか1つに記載の電極集電体用アルミニウム合金箔の製造方法であって、Fe:0.1〜0.5%、Si:0.01〜0.3%、Cu:0.01〜0.2%、Mn:0.01%以下を含有し、残部Alと不可避的不純物からなるアルミニウム合金鋳塊を550〜620℃で1〜20時間保持し、開始温度が500℃以上、終了温度が255〜300℃で熱間圧延することを特徴とする電極集電体用アルミニウム合金箔の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は二次電池、電気二重層キャパシター、リチウムイオンキャパシター等に使用される電極集電体に関するもので、特にリチウムイオン二次電池の正極用電極材に使用されるアルミニウム合金箔に関する。更にはリチウムイオン二次電池の負極用電極材に使用されるアルミニウム合金箔に関するものである。
【背景技術】
【0002】
携帯電話、ノートパソコン等の携帯用電子機器の電源にエネルギー密度の高いリチウムイオン二次電池が用いられている。
リチウムイオン二次電池の電極材は、正極板、セパレータおよび負極板で構成される。正極材には電気伝導性に優れ、二次電池の電気効率に影響せず、発熱が少ないという特徴を有するアルミニウム合金箔が支持体として使用されている。アルミニウム合金箔表面にはリチウム含有金属酸化物、たとえばLiCoOを主成分とする活物質を塗布する。製造方法としては、20μm程度のアルミニウム合金箔に、100μm程度の厚さの活物質を両面に塗布し、活物質中の溶媒を除去する乾燥を実施する。さらに、活物質の密度を増大させるために、プレス機にて圧縮加工を施す。(以下、この「プレス機にて圧縮加工を施す」工程をプレス加工と呼ぶ。)このようにして製造された正極板はセパレータ、負極板と積層された後、捲回し、ケースに収納するための成形を行った後、ケースに収納される。
【0003】
リチウムイオン二次電池の正極材に使用されるアルミニウム合金箔には、活物質塗布時の切れの発生や、捲回時に屈曲部で破断するなどの問題があるため、高い強度が要求されている。特に、活物質塗布後の乾燥工程(以下、単に乾燥工程と呼ぶ。)では、100℃〜180℃程度の加熱処理を実施するため、乾燥工程後の強度が低いと、プレス加工時に中伸びが発生し易くなるため、捲回時に捲きしわが発生し、活物質とアルミニウム合金箔との密着性の低下や、スリット時の破断が起こり易くなる。活物質とアルミニウム合金箔表面の密着性が低下すると、充放電の繰り返しの使用中に剥離が進行し、電池の容量が低下するという問題がある。
【0004】
近年、リチウムイオン二次電池の正極材に使用されるアルミニウム合金箔には、高い導電率も要求されている。導電率とは、物質内における電気の通り易さを表す物性値であり、導電率が高いほど、電気が通り易いことを示している。自動車や電動工具等に使用されるリチウムイオン二次電池は、民生用として使用される携帯電話やノートパソコン等のリチウムイオン二次電池より大きな出力特性が必要とされている。導電率が低い場合、大きな電流が流れた時には、電池の内部抵抗が増加するため、電池の出力電圧が低下してしまう問題がある。
【0005】
高強度のリチウムイオン二次電池用アルミニウム合金箔として、一般に3003合金が使用されている。3003合金には、Si、Fe、Mn、Cu等の元素が主要に添加されているため、強度が高いことが特徴である。特に、Mnが固溶及び微細析出していることにより、加熱処理時の強度低下は少ない。しかし、固溶したMnは導電率を低下させるため、Al純度が99%以上のアルミニウム合金に対して、3003合金の導電率は非常に低い。つまり、3003合金では、リチウムイオン二次電池用アルミニウム合金箔に要求される、高強度と高導電率の両方を満たすことが困難である。
【0006】
特許文献1には、引張強さが98MPa以上である電池集電体用アルミニウム合金箔が提案されている。特許文献2には、引張強さが200MPa以上であるリチウムイオン二次電池電極集電体用アルミニウム合金箔が提案されている。しかし、特許文献1と特許文献2は、いずれも導電率に関する記載はない。
特許文献3には、アルミニウム合金箔を高強度化することでプレス加工時に塑性変形をせず、活物質との剥離を防止する方法が示されている。しかし、主要元素としてMn、Cu、Mgを添加した合金であるため、高い導電率を満足することはできない。
特許文献4には、Feの固溶量が50ppm未満であり、板厚が0.1〜2mmで引張強さが145〜200MPaのアルミニウム合金板が提案されている。しかし、上記板厚の範囲内では、電極集電体への適用は困難である。また、Feの固溶量が少ないために、120〜160℃で15分〜24時間の熱処理を行った際には、強度が大きく低下してしまう。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−207117号公報
【特許文献2】特開平11−219709号公報
【特許文献3】特開2008−150651号公報
【特許文献4】特開2002−129269号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
このように、従来技術では、強度と導電率の両方において満足な特性を有する電極集電体用アルミニウム合金箔は得られなかった。
本発明は、このような事情に鑑みてなされたものであり、電極集電体用アルミニウム合金箔について、高い導電率を有しつつ、乾燥工程後の強度も高い電極集電体用アルミニウム合金箔を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者等は、リチウムイオン二次電池の正極材に使用されるアルミニウム合金箔について検討したところ、成分を適切な範囲に規制し、その製造工程において鋳塊の均質化処理と熱間圧延時の温度条件を最適化し元素の固溶析出状態を制御することで、高い導電率を維持しつつ、活物質塗布後の乾燥工程における熱処理後も高い強度を維持できることを見出し、本発明に至った。
【0010】
すなわち、第1の発明は、Fe:0.1〜0.5mass%(以下単に%と記す。)、Si:0.01〜0.3%、Cu:0.01〜0.2%、Mn:0.01%以下を含有し、残部Alと不可避的不純物から成り、引張強さが220MPa以上、0.2%耐力が180MPa以上、導電率が58%IACS以上を特徴とする電極集電体用アルミニウム合金箔である。
【0011】
第2の発明は、Feの固溶量が100ppm以上、Siの固溶量が80〜1800ppm、Cuの固溶量が 80〜1500ppmであることを特徴とする上記記載の電極集電体用アルミニウム合金箔である。
【0012】
第3の発明は、120℃で24時間、140℃で3時間、160℃で15分間の何れの熱処理を行った場合でも熱処理後の引張強さが190MPa以上、0.2%耐力が160MPa以上であることを特徴とする、上記記載の電極集電体用アルミニウム合金箔である。
【0013】
第4の発明は、上記記載の電極集電体用アルミニウム合金箔の製造方法であって、Fe:0.1〜0.5%、Si:0.01〜0.3%、Cu:0.01〜0.2%、Mn:0.01%以下を含有し、残部Alと不可避的不純物からなるアルミニウム合金鋳塊を550〜620℃で1〜20時間保持し、開始温度が500℃以上、終了温度が255〜300℃で熱間圧延することを特徴とする電極集電体用アルミニウム合金箔の製造方法である。
また、第1〜第4の発明は、適宜組み合わせ可能である。
【0014】
本発明を完成するに当たって特に重要であった点は、(1)均質化熱処理を550〜620℃で1〜20時間行うこと、(2)熱間圧延の開始温度を500℃以上にすること、(3)熱間圧延の終了温度を255〜300℃にすることの3つの温度条件を同時に満たすことであり、これらの条件のうちの一つでも充足されていない場合には、強度と導電率の両方において優れた特性を有する電極集電体用アルミニウム合金箔を得ることはできない。これらの温度条件を充足することによって初めて、Fe,Si,Cuが十分に固溶された状態の高強度且つ高導電率のアルミニウム合金箔が得られることが明らかになった。
これらの3つの条件のうち特に重要なのは、熱間圧延の終了温度を255〜300℃にすることである。熱間圧延の終了温度がこの範囲外であると、アルミニウム箔の生産効率が悪化したり、アルミニウム箔の強度が低下したりするという問題が生じる。
【発明の効果】
【0015】
本発明により、高い導電率を有しつつ、乾燥工程後の強度が高いために、プレス加工時に中伸びが発生せず、活物質の剥離やスリット時の破断を防止することができ、リチウムイオン電池用アルミニウム合金箔をはじめとした電極集電体用アルミニウム合金箔を提供することができる。
【発明を実施するための形態】
【0016】
<アルミニウム合金箔の組成>
本発明に係るリチウムイオン電池用アルミニウム合金箔の組成は、Fe:0.1〜0.5%、Si:0.01〜0.3%、Cu:0.01〜0.2%、Mn:0.01%以下を含有し、残部Al及び不可避的不純物からなる。
【0017】
Siは、添加することで強度を向上させる元素であり、0.01〜0.3%含有する。Si添加量が0.01%未満では、強度向上に寄与しない。また、通常使用するAl地金には不純物としてSiが含まれており、0.01%未満に規制するためには高純度の地金を使用することになるため、経済的に実現が困難である。一方、Si添加量が0.3%を超えると、Al−Fe−Si化合物がアルミニウム合金箔内部及び表面に多く存在するようになり、ピンホールを増加させるので、好ましくない。
【0018】
Feは、添加することで強度を向上させる元素であり、0.1〜0.5%含有する。Fe添加量が0.1%未満では、強度向上に寄与しない。一方、Fe添加量が0.5%を超えると、Al−Fe化合物あるいはAl−Fe−Si化合物がアルミニウム合金箔内部及び表面に多く存在するようになり、ピンホールを増加させるので好ましくない。
【0019】
Cuは、添加することで、強度を向上させる元素であり、0.01〜0.2%含有する。Cu添加量が0.01%未満では、Cu固溶量が低下するため、強度が低下する。一方、Cu添加量が0.2%を超えると加工硬化性が高くなるために、箔圧延時での切れが発生し易くなる。
【0020】
Mnは、微量でも含有するとAl合金中に固溶して導電率を大きく低下させるために、0.01%以下に規制される。0.01%を超えると、高導電率を維持するのが困難になるので好ましくない。
【0021】
その他、本材料にはCr、Ni、Zn、Mg、Ti、B、V、Zr等の不可避的不純物が含まれる。これら不可避的不純物は、個々に0.02%以下、総量としては0.15%以下であることが好ましい。
【0022】
<固溶量>
アルミニウムに固溶したFeは、アルミニウムの強度を向上させる。その固溶量は、100ppm以上とすることが好ましい。Feの固溶量が100ppm未満では、強度向上への寄与は少ない。Feの固溶量の上限は特に規定しないが、Feの固溶量が多くなりすぎると導電率の低下が大きくなるため、300ppm以下が好ましい。
【0023】
アルミニウムに固溶したSiは、アルミニウムの強度を向上させる。その固溶量は、80〜1800ppmとすることが好ましい。Siの固溶量が80ppm未満では、強度向上への寄与は少ないうえに、高純度の地金を使用することになるため、経済的に実現が困難である。1800ppmを超えると、加工硬化性が高くなりすぎるため、箔圧延時に切れが発生し易くなる。
【0024】
アルミニウムに固溶したCuは、アルミニウムの強度を向上させる。その固溶量は、80〜1500ppmとすることが好ましい。Cuの固溶量が80ppm未満では、強度向上への寄与は少ない。1500ppmを超えると、加工硬化性が高くなりすぎるため、箔圧延時に切れが発生し易くなる
【0025】
<素板強度>
Fe、Si、Cuのみが主に添加されているアルミニウム合金では、鋳塊の均質化処理と熱間圧延時の温度条件を最適化し、各元素をより多く固溶させることで、転位の移動が抑制されて、より高強度を達成することができる。さらに、固溶量が増加することで、加工硬化性も向上するために、冷間圧延と箔圧延により、アルミニウム合金箔の強度をより高くすることができる。
【0026】
最終冷間圧延後の素板引張強さは220MPa以上、0.2%耐力は180MPa以上とする。引張強さが220MPa未満、0.2%耐力が180MPa未満では強度が不足し、活物質塗布時に加わる張力によって、切れや亀裂が発生し易くなる。また、中伸びなどの不具合も引き起こし、生産性に悪影響を及ぼすため、好ましくない。
【0027】
<熱処理後の強度>
正極板の製造工程は、活物質中の溶媒を除去する目的で活物質塗布後に乾燥工程がある。この乾燥工程では100〜180℃程度の温度の熱処理が行われる。この熱処理により、アルミニウム合金箔は軟化して機械的特性が変化する場合があるため、熱処理後のアルミニウム合金箔の機械的特性が重要となる。100〜180℃の熱処理時には、外部からの熱エネルギーにより、転位が活性化されて移動し易くなり、回復過程で強度が低下する。熱処理時の回復過程での強度低下を防ぐには、アルミニウム合金中の固溶元素や析出物によって、転位の移動を抑制することが有効である。特に、Fe、Si、Cuのみが主に添加されているアルミニウム合金では、Fe固溶量による効果が大きい。つまり、鋳塊の均質化処理温度を高温化させることで、Feをより多く固溶させ、熱間圧延時にはこれらの固溶したFeをできるだけ析出させずに、高い固溶量を維持することで、熱処理後の強度低下を抑制することができる。
【0028】
本発明では、120℃で24時間、140℃で3時間、160℃で15分間の何れの熱処理を行った場合でも熱処理後の引張強さを190MPa以上、0.2%耐力を160MPa以上とするように均質化処理条件及び熱間圧延条件を制御する。このような熱処理後の引張強さが190MPa未満、0.2%耐力が160MPa未満では、乾燥工程後のプレス加工時に中伸びが発生し易くなるため、捲回時に捲きしわが発生し、活物質の剥離やスリット時の破断が起こり易くなるため、好ましくない。
【0029】
<導電率>
導電率は58%IACS以上とする。導電率は溶質元素の固溶状態を示す。本願電極集電体をリチウムイオン二次電池に用いる場合、導電率が58%IACS未満では、放電レートが5Cを超えるような高い電流値で使用する際に、電池容量が低下するため、好ましくない。なお、1Cとは公称容量値の容量を有するセルを定電流放電して、1時間で放電終了となる電流値のことである。
【0030】
<アルミニウム合金箔の製造方法>
本発明では上記合金組成のアルミニウム合金鋳塊を以下の工程で製造する。
前記組成を有するアルミニウム合金は、常法により溶解鋳造後、鋳塊を得ることができ、半連続鋳造法や連続鋳造法により製造される。鋳造したアルミニウム合金鋳塊は、550〜620℃で1〜20時間の均質化処理を行う。
均質化処理温度が550℃未満あるいは1時間未満の保持時間では、Si、Fe等の元素が十分に固溶せず、強度が低下するので好ましくない。温度が620℃を超えると局部的に鋳塊が溶融したり鋳造時に混入した極僅かの水素ガスが表面に出て材料表面に膨れが生じ易くなったりするため好ましくない。また、均質化処理時間が20時間を超えると効果が飽和し、生産性の低下やコストアップとなる。
【0031】
上記均質化処理を行った後、熱間圧延、冷間圧延及び箔圧延が実施されて、箔厚6〜30μmのアルミニウム合金箔を得る。熱間圧延は、均質化処理終了後に500℃以上の温度で開始する。熱間圧延の開始温度が500℃未満では、Si、Fe等の元素の析出量が多くなり、強度を向上させるための固溶量確保が困難となる。特に固溶したFe量は、高強度を維持するために大きな影響を与える。Feは、350〜500℃の温度域で、AlFe、Al−Fe−Si系の金属間化合物として析出し易いために、この温度域の所要時間をできるだけ短くすることが必要である。特に、熱間圧延における350〜500℃の温度域の所要時間は、20分以内が好ましい。
【0032】
熱間圧延の終了温度は、255〜300℃とする。熱間圧延時の終了温度は、ライン速度を変化させて、加工発熱や冷却条件を調整することによって、決定することができる。なお、熱間圧延されたアルミニウム板は、熱間圧延機の出側で巻き取られてコイルとなり冷却される。
熱間圧延の終了温度を255℃未満とするには、加工発熱の発生を抑制するためにライン速度を大きく低下させることが必要となり、生産性が低下してしまうため好ましくない。熱間圧延の終了温度が300℃を超えると、冷却中にコイル内部のアルミニウムの再結晶が進行するために、蓄積されたひずみが減少し強度が低下してしまう。より好ましい温度域は、255〜285℃である。
【0033】
熱間圧延終了後に冷間圧延を施すが、冷間圧延の前あるいは途中において、中間焼鈍は実施しないことが好ましい。中間焼鈍を実施すると、中間焼鈍前の熱間圧延及び冷間圧延によって蓄積された歪みが開放され、強度が低下してしまう。さらに、均質化処理及び熱間圧延時に固溶させたFeが析出し、Feの固溶量が低下するために、最終冷間圧延後のアルミニウム合金箔の強度及び120〜160℃で15分〜24時間の熱処理後の強度が低下する。
【0034】
最終冷間圧延後のアルミニウム合金箔の厚みは6〜30μmとする。厚みが6μm未満の場合、箔圧延中にピンホールが発生し易くなるために好ましくない。30μmを超えると、同一体積に閉める電極集電体の体積及び重量が増加し、活物質の体積及び重量が減少する。リチウムイオン二次電池の場合、それは電池容量の低下をまねくので好ましくない。
【実施例】
【0035】
以下に、実施例・比較例により本発明を詳細に説明するが、本実施例は一例に過ぎず、本発明に限定されるものではない。
【0036】
表1に示す組成のアルミニウム合金を半連続鋳造法により溶解鋳造し、厚さ500mmの鋳塊を作製した。次に、この鋳塊を面削後、表1に示す条件で均質化処理を行い、均質化処理後には熱間圧延を行い、板厚を3.0mmとした。実施例1〜4及び6〜14においては、中間焼鈍を実施せずに、冷間圧延と箔圧延を連続で行い、箔厚12μmのアルミニウム合金箔を得た。実施例5は、熱間圧延後に0.8mmまで冷間圧延を実施し、490℃で4時間の中間焼鈍を実施した。その後、冷間圧延と箔圧延を連続で行い、箔厚12μmのアルミニウム合金箔を得た。比較例15〜24についても、上記実施例と同様の製造工程にて製造した。
【0037】
【表1】
【0038】
そして、各アルミニウム合金箔でリチウムイオン二次電池の正極材を製造した。LiCoOを主体とする活物質に、バインダーとなるPVDFを加えて正極スラリーとした。正極スラリーを、幅30mmとした前記アルミニウム合金箔の両面に塗布し、120℃で24時間、140℃で3時間、160℃で15分の3条件にて熱処理を行い乾燥した後、ローラープレス機により圧縮加工を施し、活物質の密度を増加させた。
【0039】
製造した各々のアルミニウム合金箔について、引張強さ、0.2%耐力、導電率、固溶量、箔圧延時の切れの発生回数、ピンホール個数、120℃で24時間の熱処理後の引張強さと0.2%耐力、140℃で3時間の熱処理後の引張強さと0.2%耐力、160℃で15分の熱処理後の引張強さと0.2%耐力を測定して評価した。結果を表2に示す。さらに、各正極材材料について、活物質塗布工程における切れ発生の有無、活物質剥離の有無を評価した。結果を表3に示す。
【0040】
【表2】
【0041】
【表3】
【0042】
<引張強さ>
圧延方向に切り出したアルミニウム合金箔の引張強さを、島津製作所製インストロン型引張試験機AG−10kNXを使用して測定した。測定条件は、試験片サイズを10mm×100mm、チャック間距離50mm、クロスヘッド速度10mm/分とした。また、乾燥工程を想定し、120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後のアルミニウム合金箔についても、圧延方向に切り出し、上記と同じく引張強さを測定した。引張強さは、220MPa以上を合格とし、220MPa未満を不合格とした。120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の引張強さは、190MPa以上を合格とし、190MPa未満を不合格とした。
【0043】
<0.2%耐力>
上記と同じく、引張試験を実施して、応力/ひずみ曲線から0.2%耐力を求めた。
0.2%耐力は、180MPa以上を合格とし、180MPa未満を不合格とした。120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の0.2%耐力は、160MPa以上を合格とし、160MPa未満を不合格とした。
【0044】
<導電率>
導電率は、四端子法にて電気比抵抗値を測定し、導電率に換算して求めた。58%IACS以上を合格とし、58%IACS未満を不合格とした。
【0045】
<固溶量>
FeおよびCuの固溶量は、アルミニウム合金箔1.0gとフェノール50mLを、約200℃に加熱して分解して、固化防止材としてベンジルアルコール100mLを添加後、金属間化合物をろ過にて分離し、ろ液をICP発光分析にて測定した。
上記ろ過にて分離された金属間化合物を、フッ酸と硝酸と塩酸の混合溶液で溶解し、ろ液をICP発光分析によって、金属間化合物として析出しているSi量を測定した。Siの固溶量は、初期のSi含有量から、析出しているSi量を差し引くことで得た。
【0046】
<ピンホール密度>
12μmまで箔圧延されたアルミニウム合金箔を、巾0.6mで長さ6000mのコイル状とし、表面検査機にてピンホールの個数を測定した。測定されたピンホール数を全表面積で除すことで、単位面積1m当たりのピンホール数を算出し、ピンホール密度とした。ピンホール密度が2.0×10−3個/m未満を合格、ピンホール密度が2.0×10−3個/m以上を不合格とした。
【0047】
<活物質塗布工程における切れ発生の有無>
活物質塗布工程において塗布した正極材に、切れが発生したか否かを目視で観察した。切れが発生しなかった場合を合格とし、発生した場合を不合格とした。
【0048】
<活物質剥離の有無>
活物質剥離の有無は、目視で観察を行った。剥離が発生しなかった場合を合格とし、一部分でも剥離が発生した場合を不合格とした。
【0049】
実施例1〜14では、活物質塗布工程における切れ発生や活物質剥離の有無もなく、導電率も高く、良好な評価結果を得られた。ただし、中間焼鈍を行った実施例5では導電率は十分に高いものの強度が他の実施例に比べて若干低かった。また、実施例9と10の比較から、熱間圧延終了温度を285℃以下にすることによって、アルミニウム合金箔の強度がより高くなることが分かった。
【0050】
比較例15では、Si量が多いために、導電率が十分でなく、加工硬化性が高くなりすぎて箔圧延時には切れが発生し、ピンホールも多く発生した。
比較例16では、Fe量が多いために、導電率が十分でなく、ピンホールも多く発生した。
比較例17では、Fe量及びFe固溶量が少ないために、強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例18では、Cu量及びCu固溶量が多いために、加工硬化性が高くなりすぎて、箔圧延時に切れが発生した。
比較例19では、Mn量が多いために、導電率が低下した。
比較例20では、Cu量及びCu固溶量が少ないために、強度及び120℃で24時間を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例21では、熱間圧延開始温度が低いために、Fe固溶量が低く、強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例22では、均質化処理温度が低いために、Fe固溶量が低く、強度及び120℃で24時間、140℃で3時間の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例23では、均質化処理時の保持時間が短いために、Fe固溶量が十分でなく、強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。
比較例24では、熱間圧延終了の温度が高いために、熱間圧延後のアルミニウム板が再結晶し、強度及び120℃で24時間、140℃で3時間、160℃で15分の熱処理を行った後の強度が不足し、活物質塗布工程における切れと活物質の剥離が発生した。