【実施例1】
【0016】
図1は、本発明の実施例1であるシンクロナスリラクタンスモータ1の構成を示す説明図である。シンクロナスリラクタンスモータは、ロータ(回転子)側に発生するリラクタンストルクによって回転駆動されるブラシレスモータの一種である。但し、通常のブラシレスモータとは異なり、ロータにはマグネットは使用されておらず、ロータには、回転方向に沿って磁気抵抗を変化させるため、フラックスバリアと呼ばれるスリットが形成されている。また、ステータ(固定子)側には3相の巻線が施され、3相の正弦波電流が供給される。
【0017】
シンクロナスリラクタンスモータ1(以下、モータ1と略記する)は、ステータ2の内側に、ロータ3を回転自在に配したインナーロータ形の構成となっている。ステータ2には、円環状のヨーク部11と、ヨーク部11から中心方向に向かって延びる複数(本実施例では9個)のティース12が設けられている。ティース12は周方向に沿って等間隔に配置されており、各ティース12には巻線4が巻装されている。各巻線4は、隣接するティース12間に形成されたスロット13内に収容される。ステータ2は、ヨーク部11とティース12からなる円板状の電磁鋼板を多数積層して形成されている。
【0018】
ロータ3もまた、円板状の電磁鋼板を多数積層して形成されている。ロータ3を構成する鋼板には、ロータ3の磁気抵抗を回転方向に沿って異ならせるためのスリット14が複数設けられている。スリット14は、略台形状に屈曲しており、スリット14内はロータ3の磁気抵抗を変化させるべく空隙となっている。なお、スリット14内に合成樹脂などの非磁性材料を適宜充填しても良い。スリット14は、ロータ回転軸15と直交するd軸を境界として、機械的に45度傾斜したq軸を中心に放射状に対象配置されている。当該モータ1では、q軸を中心とした複数のスリット14のセットが放射状に4組設けられており、各組にはそれぞれ複数層の磁路が形成されている。
【0019】
このスリット14により、ロータ3は、ステータ2から見て磁気抵抗が回転角度により異なる状態となる。そして、ロータ3には、スリット14の配置形態により、周方向に沿って複数の磁極が形成される。本実施例では、スリット14によって、中心角90度の4つの磁極がロータ3に形成される。つまり、当該モータ1は、ロータ3側に4極、ステータ2に9個のスロット13を設けた4極9スロット構成となっている。なお、以下では、極・スロットについてはP・Sと略記し、例えば、4極9スロットは4P9Sのように表記する。
【0020】
一方、当該モータ1では、巻線4は、1つのティース12のみを囲むように巻かれた集中巻きとなっている。この場合、巻線4の3個の同相コイル(例えば−U,+U,−U)は、
図1に示すように、中央のコイル(+U)に対し、電気角で左右に160度の離れた位置に配置される。また、3個の同相コイルは、中央のコイル(+U)と、左右のコイル(−U,−U)の巻線方向は互いに逆方向となっている。つまり、隣接する同相の巻線4は、ロータ回転方向に沿って電気角160度の間隔にて配置されると共に、隣接する同相の巻線4は中央のコイルに対して左右のコイルの巻線方向が互いに逆方向となっている。モータ1では、巻線4は、U,V,Wの3相分設けられており、各巻線4には、120度(電気角)位相がずれた正弦波電流が供給される。そして、これによりステータ2側には正弦波状の回転磁界が形成される。
【0021】
このようなモータ1では、ステータ2側に形成された正弦波状の回転磁界により、スリット14によって生じるロータ3の磁気抵抗差を利用してロータ3を回転させる。ここで、ロータ3には、スリット14により、磁束が最も通りやすい方向(d軸方向)と、磁束が最も通りにくい方向(q軸方向)が生じる。つまり、d軸方向の磁気抵抗が最も小さくなる一方、q軸方向の磁気抵抗が最も大きくなり、磁気的突極性が生じ、d軸インダクタンスLdがq軸インダクタンスLqよりも大きくなる。そして、d軸に対し所定角度方向のティース12に起磁力を発生させることにより、d軸磁束とq軸磁束との差(磁気抵抗差)によってリラクタンストルクが発生し、ロータ3の磁気抵抗の低い部分がティース12の起磁力方向へ回転移動してロータ3が所定の方向に回転する。
【0022】
ここで、前述のように、
図7のようなモータ構成(4P12S)では、有効導体数比が小さくなるため、その分、出力トルクも小さくなる。これに対し、本発明によるモータ1では、
図2に示すように、有効導体の非相殺部分(スロット13a,13d,13f,13h)は
図7のものと同様に4ヶ所であるが、有効導体数比は0.583となる。すなわち、各巻線のコイル数により合計ターン数を合わせ、前述同様の想定にて有効導体数比を求めると、モータ1では、1相のコイル数が3個であることから、1コイルのターン数は(4/3)Xとなる。
【0023】
そこで、
図2のZ
1部を見ると、
・スロット13a:−V相のコイルV1((4/3)X・0.5A=(2/3)X・A)
・スロット13d:−W相のコイルW1((4/3)X・0.5A=(2/3)X・A)
・スロット13b:+U相のコイルU1((4/3)X・1A)−コイルV1(2/3)X・A=(2/3)X・A
・スロット13c:コイルU1((4/3)X・1A)−コイルW1(2/3)X・A=(2/3)X・A
であり、Z
1部の有効導体数は、(2/3)X・A×4=(8/3)X・Aとなる。
【0024】
次に、
図2のZ
2部では、
・スロット13d:−U相のコイルU2((4/3)X・1A)
・スロット13f:+W相のコイルW2((4/3)X・0.5A=(2/3)X・A)
・スロット13e:コイルU2((4/3)X・1A)−コイルW2(2/3)X・A=(2/3)X・A
であり、Z
2部の有効導体数は、(2/3)X・A×2+(4/3)X・A=(8/3)X・Aとなる。この場合、
図2のZ
4部はZ
2部と対称であり、Z
4部(スロット13hのコイルV3,スロット13iのコイルV3,U3,スロット13aのコイルU3)の有効導体数も(8/3)X・Aとなる。
【0025】
また、
図2のZ
3部では、
・スロット13f:−V相のコイルV2((4/3)X・0.5A=(2/3)X・A)
・スロット13h:−W相のコイルW3((4/3)X・0.5A=(2/3)X・A)
・スロット13g:コイルV2(2/3)X・A−コイルW3(2/3)X・A=0
であり、Z
3部の有効導体数は、(2/3)X・A×2=(4/3)X・Aとなる。
【0026】
従って、モータ1における有効導体数は、(8/3)X・A×3ヶ所+(4/3)X・A×1ヶ所=(28/3)X・Aとなる。これに対して、全体の導体数は、
・U相:2×(4/3)X×3×1A=8X・A
・V,W相:2×(4/3)X×6×0.5A=8X・A
の合計16X・Aとなる。従って、モータ1の有効導体数比は、(28/3)X・A/16X・A=0.583となり、
図7の構成に比して、約17%のトルクアップが望める。
【0027】
一方、シンクロナスリラクタンスモータでは、ステータの回転磁界による磁気吸引力のみでロータを回転させる構成のため、適正な回転磁界を得る基本的な極・スロットの組合せとしては、2P12S、2P9S、4P15S、4P12S、4P9Sなどの組み合わせが考えられる。そこで、各P・S構成ごとに、極数/スロット数と、有効導体数比及びトルク定数の関係を見ると
図3のように、また、極数/スロット数と、トルク定数及びトルクリップルの関係を見ると
図4のようになる。
【0028】
図3から分かるように、有効導体数比は、2P12S→2P9S→4P15S→4P12S→4P9S(→6P9S)の順に大きくなり、トルク定数も有効導体数比と共に大きくなる。すなわち、集中巻き仕様では、スロット内で隣り合う異相のコイル辺同士で起磁力の相殺が発生するため、極数/スロット数の値が大きい方が大きな磁気吸引力が得られ易く、トルク定数も増加する。一方、トルクリップルは、2P12S,4P12S,4P9Sはほぼ同等であるものの、6P9Sになると急増する。この場合、6P9Sは、通常の表面磁石型ブラシレスモータにおける基本の極・スロットの組合せ(P:S=2×n:3×n、n=1,2,3,・・・・、自然数)である。かかる構成の集中巻線は、トルクの発生原理として、マグネットの吸引・反発力を利用したものであるため、シンクロナスリラクタンスモータにそのまま適用すると、スムーズな回転力が得られない。
【0029】
従って、
図3,4の結果から、集中巻き仕様のシンクロナスリラクタンスモータとしては、コイル1ターンあたりのトルク定数を確保し、トルクリップルを最適にする極・スロット構成としては4P9S(または、その自然数倍、つまり、P:S=4×n:9×n(n=1,2,3,・・・・、自然数)が最適であることが分かり、モータ1もその構成を採用している。
【0030】
このように、本発明によるシンクロナスリラクタンスモータでは、モータの巻線構造として集中巻き方式を採用しているので、スロット分割コアが採用可能であるなど、巻線の加工性が向上し、製造コストを下げることが可能となる。また、集中巻きの採用により、コイルの巻き太り高さを小さくでき、モータの小型化が可能となる。さらに、巻線の占積率を上げることもできる。加えて、渡り線の削減によりコイル抵抗を下げることができ、巻線電流の増加により出力向上を図ることが可能となる。
【0031】
一方、本発明では、正弦波駆動の集中巻きシンクロナスリラクタンスモータにて、極とスロットを4P9S×nの関係とすると共に、中央のコイルに対して左右のコイルを電気角で160度ずつ離れた位置に配置し、隣接する同相コイルの巻線方向を互いに逆方向とすることにより、4P12Sのモータに比して有効導体数比を大きくすることが可能となる。従って、有効導体数比と連関するトルク定数も大きくなり、モータの出力トルクの向上が図られる。すなわち、本発明によれば、正弦波駆動の集中巻きシンクロナスリラクタンスモータを小型化、低コスト化しつつ、その出力向上を図ることが可能となる。
【実施例2】
【0032】
次に、本発明の実施例2であるシンクロナスリラクタンスモータ21(以下、モータ21と略記する)について説明する。
図5は、モータ21の構成を示す説明図である。なお、実施例2では、実施例1と同様の部材、部分については同一の符号を付し、その説明は省略する。
【0033】
前述のように、モータ1は、小型化・低コスト化を図りつつ出力向上を達成した構成となっているが、同相のティース12がロータ回転軸15に対し点対称位置に配されていないため磁気的なバランスが均等化されていない。このため、電磁加振力が大きくなり、電動パワーステアリング装置の駆動源としては好ましくない。そこで、モータ21では、
図1の4P9S構成を倍加し(n=2)、極・スロットの組を機械的に180度対向させて磁気的なバランスを図っている。
【0034】
図5に示すように、モータ21は、モータ1の極・スロットを2組配置した構成となっており、ステータ2のティース12は、モータ1の2倍の18本(スロット13も18個)が等分に配置されている。また、ロータ3側には、スリット14によって8つの磁極が形成されている。なお、レイアウト上、スリット14の数はモータ1よりも少なくなっており、磁路は5層となっている。モータ21においても、1組の隣接する同相の巻線4は回転方向に沿って電気角160度(ここでは機械角80度)の間隔にて配置されている。また、隣接する同相の巻線4は、巻線方向が中央のコイルに対して左右のコイルが互いに逆方向となっている。
【0035】
このように、正弦波駆動の集中巻きシンクロナスリラクタンスモータを8P18S構成とすると、各相の巻線4がロータ回転軸15に対し点対称位置に配されるため、磁気的なバランスが均等化され、電磁加振力の振れがほとんど解消される。発明者らの机上検討結果によれば、8P18Sのモータ21では、電磁加振力の振れはほとんどなく、分布巻きのリラクタンスモータとほぼ同等程度の振れに抑えることができた。
【0036】
本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
例えば、前述の実施例では、正弦波駆動の集中巻きシンクロナスリラクタンスモータとして、4P9S構成のもの(実施例1)と、8P18S構成のもの(実施例2)を示したが、本発明は、極数をP、スロット数をSとしたとき、P:S=4×n:9×n(n=1,2,3,・・・・、自然数)の関係を満たすシンクロナスリラクタンスモータ一般に適用可能である。但し、前述のように、nが偶数の場合の方が磁気的バランスが良い。また、nが3以上となると、ロータ3の製造、特にスリット14の作成が難しくなるため、実用的には、前述の実施例のように、n=1,2の場合が好適である。なお、シンクロナスリラクタンスモータにおいても、トルクリップル改善のため、ロータをスキュー構造としたり、スリット14のバリアパターンを複数化したりしても良い。